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Hyperspectral target detection (HTD) is a critical methodology characterized by its extensive applications,
particularly noted for its efficacy in target identification based on limited prior spectral information, thereby
reducing dependence on texture and geometric features. Although recent advancements in HTD have largely
embraced deep learning-based approaches, they often hindered by the significant challenge of data scarcity,
particularly in obtaining labeled datasets. To address this challenge, this paper proposes a novel approach
employing spectral metric learning within a Siamese network framework, named as SN-HTD. Leveraging the
metric learning capabilities of the Siamese network architecture, the proposed method strategically employs
unlabeled samples to train a model with the ability of target and background spectral discrimination, aiming to
minimize the distance between homogeneous features while maximizing the separation between heterogeneous
features. Spectral data argumentation is firstly conducted by modulating the priori target spectra with Gaussian
white noise to effectively address the issue of insufficient target samples. Then the training procedure of the
proposed deep learning model is bifurcated into pre-training and spectral metric learning phases, aiming to
optimize resource utilization and computational efficiency. The core of the proposed model is a spectral metric
learning with Siamese network, constructed atop the discriminator of a pre-trained one-dimensional generative
adversarial network (GAN), which is fed by positive and negative sample pairs derived from prior target spec-
trum against the augmented data and unlabeled background samples, respectively. Additionally, a guided image
filter is incorporated for spatial information exploitation, thereby improving the detection performance of the
method. Comparative experiments have been conducted on real hyperspectral images captured by different
sensors in various scenes, demonstrating the superiority of the proposed SN-HTD method against the state-of-the-
art methods, positioning it as a notable advancement in the field of HTD.

1. Introduction

Hyperspectral imaging, distinct from traditional single-band and
multi-spectral imaging systems, captures the reflectance of objects
across hundreds of narrow and contiguous bands, yielding to three-
dimensional hyperspectral images (HSIs) that exhibit rich spectral and
spatial information. The exceptional spectral band resolution allows
each pixel in HSIs to be represented as a spectral curve, providing
detailed insights into substance properties. This characteristic positions
hyperspectral target detection (HTD) as an advanced remote sensing
technology with extensively applications in both civil and military do-
mains, including urban target detection, mineral surveying, medical
diagnostics, environment detection, and military camouflage target
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identification [1-5].

HTD, as an approach proficient in identifying targets independent of
texture and geometric features, relies on the discernment of spectral
differences for precise recognition of ground objects. Many hyper-
spectral target detection methods have appeared in the past research
literature. Among the traditional HTD methods, adaptive coherence
estimation (ACE) [6,7] is a classical HTD method based on probability
statistics by assuming that the background conforms to the multivariate
Gaussian distribution. In signal filtering-based methods, constrained
energy minimization (CEM) [8] is a notable approach, being instru-
mental in highlighting targets while suppressing background through a
custom-designed finite pulse filter. The CEM detector has attracted
increasing attention owing to its outstanding performance, aligning with
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the burgeoning development of CEM-based methodologies, exemplified
by notable advancements such as the hierarchical CEM (hCEM) [9], the
ensemble-based CEM (E-CEM) [10], and so on. In light of the extensive
integration of sparsity theory, the HTD has been advanced by proposing
the sparsity-based target detector (STD) (Chen et al.) [11] and the
combined sparse and cooperative representation detector (CSCR) (Li
et al.) [12]. Within the STD framework, the detection process involves
computing the reconstruction error of a vector, linearly represented by
atomic vectors in a complete dictionary, with respect to the pixel to be
detected, while CSCR achieves detection by representing the image
element to be detected by targets library and backgrounds library.

The ascent of artificial intelligence technology in recent years has
propelled deep learning to the forefront of image analysis in remote
sensing [13-16]. In the context of HTD, perceived as an image binary
classification problem, the potency of deep learning in generalization
and high-level semantic feature extraction has ignited novel research
avenues. Given the inherent limitations of prior information, where only
the target spectrum of interest is known, transfer learning has been
proved an effective strategy for deep learning-based HTD. Examples
include convolutional neural network-based target detection (CNND)
[17], and meta-learning with Siamese network-based target detection
(MLSN) [18]. CNND augments training samples for HTD by pairing and
labeling pixels from hyperspectral datasets with known labels in the
source domain, and then trains a binary classification multi-layer CNN
network for HTD. However, the challenge of domain mismatch caused
by different sensor poses a notable hindrance. In response, MLSN in-
corporates meta-learning to enhance the adaptability of deep transfer
learning models to HTD. Acknowledging the data-intensive nature of
deep neural networks and the limited availability of training data for
HTD, hyperspectral target detection based on deep network (HTD-Net)
[19] adopts a U-net structure for generating potential target samples,
and employs a linear prediction algorithm for identifying background
samples significantly different from targets. Another approach is
hyperspectral target detection method based on two-stream convolu-
tional network proposed in [20], which employs the mixed sparse rep-
resentation to acquire background pixels, and subsequently blends the
prior target spectra and background pixels with selected typical back-
ground pixels. This process aims to generate a substantial volume of
training data, pairing them with prior spectra to construct positive and
negative training samples, which are then fed into the two-stream
convolutional network to accomplish the detection task. In the realm
of unsupervised learning, Xie et al. introduce the background learning
based on a target suppression constraint (BLTSC) detector [21],
employing a rough detection method to identify background samples,
and then feeding them into an adversarial auto encoder (AAE) with
target suppression constraints to reconstruct the pure background,
thereby achieving target detection by comparing the reconstructed
image with the image to be detected. To leverage spatial information for
the improvement of the detection performance, a 3-D macro-micro-re-
sidual auto encoder is designed and used to extract macro- and micro-
features, which are fused and sent to a hierarchical radial basis func-
tion (hRBF) detector for background suppression and target preserva-
tion [22]. From the perspective of self-supervised learning, a
hyperspectral target detection method based on self-supervised spectral
level contrast learning (SCLHTD) is proposed in [23,24]. SCLHTD uses
the spectral data enhancement method based on odd and even band
sampling to extract supervisory information from the image itself, fol-
lowed with the learning of the spectral similarities and differences
through spectral level contrast learning to achieve the target detection
task.

This paper aims to address the performance bottleneck in hyper-
spectral target detection caused by the scarcity of labeled samples, while
leveraging limited prior target information to achieve high-quality
detection. To this end, inspired by the principles of metric learning
[25], a deep spectral metric learning framework is proposed based on a
Siamese network (SN-HTD). The training process is divided into two
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stages: pre-training and metric learning. In the pre-training stage, a one-
dimensional generative adversarial network (1D-GAN) is employed to
model the hyperspectral image under test, enabling the extraction of
supervisory signals inherent to the image itself and training a discrimi-
nator with a certain level of spectral discrimination capability. In the
metric learning stage, a Gaussian noise-based spectral data augmenta-
tion strategy is firstly employed to expand the limited target samples.
This strategy preserves the consistency of spectral features while simu-
lating variations under different environmental conditions, thereby
enhancing generalization without introducing significant distortions.
The pre-trained discriminator is then transferred to a Siamese network
to extract spectral features. Metric learning is performed using positive
and negative sample pairs to model subtle spectral differences between
targets and background, thereby enhancing the model’s sensitivity to
fine-grained variations, improving generalization, and accelerating
convergence. Finally, spatial information is integrated via a guided
image filter to enhance spectral-spatial consistency and further improve
detection performance. The main contributions of this paper are sum-
marized as follows:

1) A two-stage training strategy is proposed, involving pretraining and
spectral metric learning. Specifically, a 1D-GAN is employed in the
pretraining phase to extract discriminative spectral features, which
are subsequently transferred to a Siamese network for efficient
metric learning.

2) To address the challenge of limited annotated samples, a spectral
data augmentation based on Gaussian noise is proposed, enhancing
sample diversity while preserving spectral characteristics.

3) Hyperspectral target detection is reformulated as a spectral metric
learning problem. A Siamese-based spectral metric network is
designed to learn discriminative spectral difference features from
positive and negative pairs, enabling accurate similarity measure-
ment between pixels under test and the prior target spectra.

The remainder of this paper is organized as follows: Section 2 pro-
vides a comprehensive description of the proposed SN-HTD method, and
Section 3 presents experimental studies and analysis to validate the
proposed method. Finally, conclusions are drawn in Section 4.

2. Proposed method

This section shows the details of the proposed deep spectral metric
Siamese network for hyperspectral target detection (SN-HTD). The
approach consists of three key stages: pre-training of the 1D-GAN,
spectral metric learning with spectral metric Siamese network and
spectral data augmentation, and spectral-spatial target detection, with
the flowchart shown in Fig. 1.

2.1. Pre-training for 1D-Generative adversarial network

In the first stage of model training, the hyperspectral image under
test is utilized to pretrain a 1D-GAN, as illustrated in the top of Fig. 1.
The goal of this pre-training process is to enhance the spectral
discrimination ability of the discriminator, which serves as a strong
foundation for the subsequent spectral metric learning phase.

Generative Adversarial Networks (GANs), which combines genera-
tive and adversarial principles, have been widely applied in natural
image processing [27,28]. A typical GAN consists of two neural net-
works: a generator G and a discriminator D. The generator attempts to
produce synthetic (“fake”) samples that resemble real data, while the
discriminator strives to distinguish between real and generated samples.
Through adversarial training, both networks iteratively improve, with
the generator learning to produce more realistic outputs and the
discriminator learning more refined decision boundaries. This adversa-
rial process can be mathematically expressed as follow:
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Fig. 1. Flowchart of the proposed SN-HTD method.
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where the generator G(-) builds a mapping p, : G(2)—pg, p; denotes the
distribution of generated samples and p, denotes the distribution of
radom noise. As for the discriminator, let D(x, §) denote the probability
of x from the distribution pg.q of real data rather than p,. & demotes
whether the input of D is true or not. V (D, G) represents the process
where the generator and the discriminator alternate and iteratively train
during the training stage, which can be expressed as:

mGinV(D, G) = mGinEZNI,Z [log(1 —D(G(2)))] 2)

mgle(D7 G) = mglx(EXNp e 108D (X) ] + E5 . [log(1 — D(G(2) ) )] ) 3)

In natural image processing, GANs typically use two-dimensional
convolutional layers to act on the spatial dimensions of images. How-
ever, hyperspectral target detection relies on the spectral dimension of
hyperspectral images (HSIs). Therefore, two-dimensional convolutional
layers are not directly applicable to the task of hyperspectral target
detection. To address this, 1D-GAN is specifically designed for the
spectral dimension, utilizing one-dimensional convolutional layers in
place of two-dimensional convolutions. It is important to note that
different criteria are followed in constructing both the structures of
generator and discriminator. To further improve the stability of the
generator in modeling the complex distributions of target and back-
ground spectra, the spectral normalization (BN) layer [29] is added after
each linear fully connected layer of the generator. This helps prevent
training degradation due to poor initialization. For the discriminator, in
order to make it more focused on extracting spectral feature

information, it is primarily constructed using one-dimensional con-
volutional layers. To prevent the loss of detailed spectral semantic fea-
tures caused by pooling operation, a one-dimensional convolutional
layer with a stride of 2 is used instead of the average pooling layer. This
enables the discriminator to more effectively capture relevant spectral
information and adapt quickly to the detection task. Additionally, to
stabilize the training of the 1D-GAN, the generator employs a Tanh
activation function.

Empirical observations show that the generator can effectively syn-
thesize both target-like and background-like spectral samples, while the
discriminator successfully learns to differentiate them. After conver-
gence, the discriminator is fine-tuned using a small number of labeled
samples, transforming it into a simple yet effective detector. This de-
tector achieves performance comparable to, or even exceeding, that of
traditional methods, demonstrating the strong spectral feature extrac-
tion capability of the pretrained discriminator. Building upon this
capability, the pretrained discriminator serves as the backbone of a
spectral metric Siamese network in the subsequent learning stage,
further enhancing detection performance.

2.2. Deep spectral metric learning with Siamese network

To efficiently assess the similarity between spectral pixels and the
prior target spectra for hyperspectral target detection, the conventional
binary classification problem of target detection is reformulated into a
similarity metric learning problem. Metric learning is a well-established
machine learning technique that aims to learn a distance function
capable of distinguishing between similar and dissimilar samples. Its
core objective is to minimize the distance between homogeneous
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(similar) features while maximizing the separation between heteroge-
neous (dissimilar) ones. In other words, metric learning seeks to bring
similar samples closer together in feature space, while pushing dissim-
ilar ones further apart. This principle enables models to generalize
better, particularly when labeled data are scarce. Due to the success of
Siamese network in various visual tasks [30-34], which a widely used
method in metric learning, it has gained significant popularity. A Sia-
mese network is composed of two or more identical subnetworks (with
shared weights), which process input pairs to learn whether they are
similar or not. This architecture has been widely applied in tasks such as
detection, tracking, and face verification [35-37]. A key advantage of
Siamese networks is their inductive bias toward invariance—meaning
that two observations of the same class should yield the same output.
This characteristic has contributed to its success in modeling complex
transformations, similar to how convolution operations model trans-
lational invariance.

In this section, the spectral data augmentation and spectral metric
learning with Siamese network is introduced into hyperspectral target
detection, transforming the target detection task into a deep spectral
metric learning problem.

2.2.1. Spectral data augmentation

In hyperspectral target detection, it is common to have only one prior
target spectrum, with no additional labeled data. This scarcity is com-
pounded by the difficulty and cost of acquiring labeled hyperspectral
samples. To address this issue, this paper proposes a new data
augmentation approach aimed at overcoming the scarcity of labeled
training data for hyperspectral target detection. The proposed data
augmentation not only enhances the models’ generalization ability, but
also acts as a regularization technique to avoid overfitting, thereby
improving the quality of the learned representations.

Traditional data augmentation methods for RGB images typically
include operations such as random flipping, random cropping, and
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random rotation, which enhance image symmetry, reduce positional
dependence, and increase viewpoint diversity, respectively. However, in
hyperspectral target detection, which relies primarily on the spectral
information, applying these conventional image operations would
significantly disrupt the spectral features. Currently, target sample
augmentation methods mainly involve mixing the a priori target spectra
with background spectra, which addresses issues related to subpixels in
hyperspectral target detection.

To overcome the aforementioned challenges, this paper proposes a
spectral data augmentation approach specifically designed for hyper-
spectral data. In this approach, a sufficient number of target samples are
generated by modulating the known priori target spectrum with
Gaussian white noise at varying signal-to-noise ratios (SNRs). This
strategy simulates the aberrant target spectra that arise from different
environmental conditions. As shown in Fig. 2, the augmented spectra
maintain the overall shape and trend of the original spectral curve at the
global level, ensuring semantic consistency. At the local level, the added
noise introduces moderate perturbations that reflect practical spectral
variability. This augmentation strategy offers two main advantages: On
one hand, it preserves spectral consistency, ensuring that augmented
samples remain representative of the true target class; On the other
hand, it introduces controlled variability, enhancing the model’s ability
to generalize to real-world target conditions. It is evident that this
strategy of spectral data augmentation has two advantages. This can, to
some extent, alleviate the issue of spectral variability for the same
object.

It should be noted that, the proposed model utilizes the unlabeled
pixels, which are considered as background samples, along with the
known prior target spectra to form negative sample pairs. While treating
all unlabeled spectra as background may seem overly optimistic,
particularly given the presence of target pixels within the image scence,
the experimental results demonstrate that pre-training of generative
adversarial network effectively mitigates this misallocation [26]. This
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can be largely attributed to the fact that the target pixels in hyper-
spectral images typically account for less than 1 % of the total pixels,
making such a treatment feasible.

2.2.2. Spectral metric learning with Siamese network

As shown in Fig. 3, a spectral metric Siamese network is designed for
extracting spectral feature difference. This network is constructed based
on the discriminator pretrained via the 1D-GAN introduced in Section
2.1. Both the upper and lower branches of the Siamese architecture are
instantiated using the same structure as the discriminator, ensuring
shared weights and identical feature extraction pathways. By trans-
ferring the pretrained parameters from the GAN discriminator, the Si-
amese network benefits from a strong initialization and can quickly
adapt to the downstream detection task. At the end of the network, a
spectral classification head—composed of a linear fully connected layer
followed by a Sigmoid activation function—is appended to produce a
similarity score.

Although the 1D-GAN discriminator is effective at extracting spectral
features, it is not directly optimized for binary classification. Therefore,
the Siamese network is fine-tuned using supervised sample pairs. In this
process, positive sample pairs are formed by pairing target samples with
the prior target spectra, while negative sample pairs are formed by
pairing background samples with the prior target spectra. These pairs
are used to train the network to distinguish between pixels that match
the target signature and those that do not.

The output features from the twin branches are passed through the
spectral classification head to produce a similarity score, which is
interpreted as the probability that a given pixel belongs to either the
“target” or the “background”. The final output of the spectral metric
Siamese network is presented as a score or label. To optimize the
training process, the Binary Cross Entropy (BCE) function is used as the
loss function, which is defined as follows:

LOSSBCE = —

Z [yilogfi + (1 —yi)-log(1 — fi) ] “

| =

where f; is the output of the Sigmoid layer of the spectral metric Siamese
network and y; denotes the label (1 or 0).

This loss function is well-suited to our binary target detection
objective, enabling the Siamese network to learn a robust similarity
metric that differentiates between target and background spectra based
on pairwise spectral relationships.

2.3. Spectral-Spatial target detection

Following the spectral metric learning phase, each spectral pixel in
the hyperspectral image (HSI) is paired with the prior target spectrum to
form spectral pixel pairs. These pairs are then input into the trained
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spectral metric Siamese network to compute their similarity scores
relative to the target, resulting in a spectral detection map.

Although the hyperspectral image is inherently a three-dimensional
data cube containing both spatial and spectral information, the SN-HTD
framework primarily focuses on spectral features during the detection
phase. This may lead to suboptimal performance in complex scenes
where spatial consistency is crucial. To address this limitation, a guide
image filter [38] is incorporated to exploit the spatial information
contained in the HSI. The guided image filter is an adaptive filtering
technique that computes the filtering operation based on the content of a
guiding image. Mathematically, the filter can be expressed as follows:

0 =) Wy(DK; (5)
Jj

In essence, the guide image filter assumes a linear model between the
image K to be detected and the output O of filter. The filter weight can be
mathematically expressed as:

Wg(I):% Z <1+(Ii—ﬂk)(1j—ﬂk))

6

lel” (i, j)eex ok te ©
where ey represents the window centered on the Kkt pixel, with a window
size of (2r+ 1) x (2r + 2), and r represents the radius of the window.
The mean and variance of the filter are represented by y, and o2,
respectively. The penalty value is represented by ¢, and |e| represents the
number of pixels in ex. I; and I; represent two neighboring pixels in the
bootstrap image.

The guide image filter is a smoothing operator that preserves edges
and is more efficient than bilateral filters, particularly near image
boundaries. To integrate spatial information into the detection process,
the spectral detection result in fed into the guide image filter, using the
first principal component of the HSI as the guide image, so as to obtain
the final spectral-spatial detection result, where the first principal
component is obtained through the principal components analysis (PCA)
of HSI.

3. Experimental results and analysis

In this section, a comprehensive set of experiments is conducted on
five real hyperspectral datasets to validate the effectiveness of the pro-
posed SN-HTD method in terms of target detection performance.

The experiments were performed on a system equipped with an Intel
Core i5-8300H 8-core CPU and a NVIDIA GeForce RTX 1050ti GPU. The
proposed SN-HTD, as well as the deep learning-based comparison
methods, were implemented using Python 3.8.0 and PyTorch 1.12, with
ROC analysis and result evaluation conducted in MATLAB R2022a,
while other traditional comparison methods were implemented in
MATLAB R2022a.

N Spectral
Classification Head
Cc7 C8
-
| _________ A
N | FC Conv :
|
I ReLU Sigmoid :
c7 cs - __

Fig. 3. The framework of spectral metric Siamese network.
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3.1. Hyperspectral datasets

San Diego Dataset: The San Diego dataset was collected by AVIRIS
over the San Diego Airport area, California, USA. It has a spatial reso-
lution of 3.5 m and image of size 120 x 120, with a total of 224 bands,
spectral resolution of 10 nm and a wavelength range of 370-2510 nm.
After removing low SNR and water absorption bands, a total of 189
bands are retained for detection. Two images from this dataset were
used for experiments: San Diegol (120 x 120) and San Diego2 (100 x
100), taken from the center and upper-left corner of the scene, respec-
tively. The pseudo-color images and corresponding ground truth maps
are shown in Fig. 4 (a)-(b) and Fig. 5 (a)-(b). The target, identified as
aircraft in both images, contains 58 and 134 pixels, respectively.

Beach Dataset: The Beach dataset was captured by the AVIRIS
sensor on Cat Island, with a spatial resolution of 17.2 m. The image used
for the experiment has a size of 90 x 90 x 188 after removing the noise
bands. The pseudo-color image and corresponding ground truth map,
which includes 19 anomaly pixels, are shown in Fig. 6 (a) and (b).

Segundo Dataset: The Segundo dataset, also captured by the AVIRIS
sensors in the EI Segundo region of California, USA, has a spatial reso-
lution of 7.1 m and a wavelength range of 400-2500 nm. The whole
image has 250 x 300 pixels, with a total of 224 bands. In the experiment,
it is named the captured scene with the shape of 100 x 100 x 224 as
Segundo. Its pseudo-color image and corresponding ground truth map
are shown in Fig. 7 (a) and (b). There are 715 target pixels in the scene,
including facilities such as oil storage tanks and towers.

HYDICE Dataset: The HYDICE dataset is collected by HYDICE sen-
sors at the urban area in California, USA, with the spectral resolution is
10 m. The whole image has a total of 307 x 307 pixels with a total of 210
bands, and the wavelength is from 400 nm to 2500 nm. In the experi-
ment, we remove the band affected by dense water vapor and atmo-
sphere, and intercept the scene with size of 80 x 100 x 175 for
detection. Its pseudo-color image and corresponding ground truth map
are shown in Fig. 8 (a) and (b), including 21 target pixels of the types of
roofs and cars.

Cuprite Dataset: The Cuprite dataset was obtained by the AVIRIS
sensor, in the Cuprite mining district of Nevada in 1997 There are about
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14 kinds of minerals in this image, including buddingtonite, Na-
Montmorillonite, Nontronite (Fe clay), Kaolinite, etc. We use a 250 x
191 pixel subset of this image to conduct our experiment. After
removing the low SNR and water absorption bands, 188 bands are left to
conduct our experiment. The pseudo-color image and corresponding
ground truth are shown in Fig. 9 (a) and (b), including 39 target pixels.

3.2. Evaluation criteria

To evaluate the performance of the proposed method in comparison
with the state-of-the-art methods, quantitative analysis is performed
using the receiver operating characteristic curve (ROC) and its area
under the curve (AUC) [39]. The ROC curve has been widely used as an
evaluation tool for the target detection in HSIs. The ROC curve obtains
different detection probability Pp and false alarm probability Pr by
changing the threshold value 7. Detection probability Pp and false alarm
probability Pr can be calculated by the following equation:

Np.

P = 7
o(®) Np; + NN )
Np.
Py(t) = ———
#(7) Np; + Nne ®)

where np, ;, ngn, 1, Ny,  and nyy, ; represent the number of correctly
detected target pixels, the number of pixels that are targets but not
detected as targets, the number of background pixels that are detected as
target pixels, and the number of correctly detected background pixels
below the threshold, respectively.

Due to the interaction between the detection probability Pp and the
false alarm probability Pr, the ROC curve (Pp, Pr) with a higher AUC
value does not necessarily mean that the detector has a good background
suppression ability. Therefore, in order to evaluate the detector perfor-
mance more accurately, this paper uses 3D ROC curve [39] as the
evaluation standard, and three 2D ROC curves (Pp, Pg), (Pp, 7) and (P, 7)
are used to evaluate the detector’s effectiveness, detection ability and
background suppression ability, respectively.

The AUC is the value of area under the ROC curve, used to quanti-

(c) CEM

(g) SCL-HTD

(h) SN-HTD

Fig. 4. Detection maps for San Diegol dataset.
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(g) SCL-HTD (h) SN-HTD

Fig. 5. Detection maps for San Diego2 dataset.

(a) Pseudo-color image (b) Ground truth

(e) CSCR (f) BLTSC

(g) SCL-HTD (h) SN-HTD

Fig. 6. Detection maps for Beach dataset.

tatively evaluate the performance of the detector. For the 2D ROC curve
(Pp, Pp), AUC (Pp, Pp) value between 0.5 and 1 indicates that the detector
is effective, with closer values to 1 signifying better performance. AUC
(Pp, 7) is the area under the curve of the 2D ROC curve (Pp, 7), quanti-
tatively representing the target detection capability of the detector, with
the larger values indicating stronger detection ability. While AUC (P, 7)
is the area under the curve of the 2D ROC curve (Pg, 7), measuring the
ability of the background suppression, with smaller values indicating

better suppression of the background. Besides, a new quantitative
detection index designed in [39] takes the three AUC values as a whole
to measure the total performance, named as AUCqp, with a range of
[-1,2], which is defined as:

AUCOD = AUC(PD.PF) -+ AUC(PD, T) - AUC(PF, T) (9)
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(g) SCL-HTD
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Fig. 7. Detection maps for Segundo dataset.

(b) Ground truth

(e) CSCR (f) BLTSC

(c) CEM (d) ACE

(2) SCL-HTD (h) SN-HTD

Fig. 8. Detection maps for HYDICE dataset.

3.3. Experimental Setup

This section mainly introduces the parameter setting used of the SN-
HTD method, as well as the comparison methods.

3.3.1. Parameter settings of comparison methods

To evaluate the performance of the proposed SN-HTD method in the
experiments, the following detection methods are compared with the
proposed SN-HTD method: the classical detection method CEM [8] and
ACE [6], the representation-based target detectors CSCR [12], and two
deep learning-based methods the transfer learning-based BLTSC [21]
and the SCLHTD [24] only using the background training samples. CEM

and ACE do not have any parameters that need to be set artificially. For
the CSCR detector, the outer and inner windows sizes are (11, 5) for
SanDiegol and Segundo datasets. For SanDiego2, Beach, HYDICE and
Cuprite datasets, the outer and inner windows sizes are (11, 3). For the
contrastive learning-based SCLHTD detection method, the training of
the AAE is conducted in two stages. First, the encoder and decoder are
optimized using the Adam optimizer with a learning rate of 1e-3. Sub-
sequently, the generator and discriminator are trained separately: the
generator is optimized using SGD with a learning rate of 1e-4, while the
discriminator is trained with a learning rate of 1e-5. The AAE is trained
for 20 epochs in total. The batch sizes for the San Diego 1, San Diego 2,
Beach, Segundo, HYDICE, and Cuprite datasets are set to 240, 200, 180,
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(c) CEM (d) ACE

(e) CSCR

(f) BLTSC

(g) SCL-HTD (h) SN-HTD

Fig. 9. Detection maps for Cuprite dataset.

200, 250, and 250, respectively. The output dimensionality of the latent
code from the AAE encoder is set to 32, while the feature vector
extracted by the encoder is fixed at a dimensionality of 64. For spectral-
level contrastive learning, the number of training epochs, learning rate,
and temperature coefficient are uniformly set to 100, 0.05, and 0.1,
respectively, across all six datasets. The batch sizes for the San Diego A
and San Diego B datasets are set to 240, 200, 180, 200, 250, and 250,
respectively. For the final spectral-spatial joint target detection stage,
the filter parameters are configured following the original settings
described in the manuscript. For the BLTSC method only using the
background training samples, the coarse detection is performed using
the classical CEM method to gain sufficient background training data. It
uses a learning rate and epoch set to 1le-4 and 500, during training for
the five real datasets in this experiment, respectively.

3.3.2. Parameter settings of SN-HTD

The proposed SN-HTD method is implemented in four steps,
including pre-training of 1D-GAN, spectral data augmentation, deep
spectral metric learning and spectral-spatial target detection. The 1D-
GAN is pre-trained using the training data. For the six real HSI data-
sets, when pre-training the 1D-GAN, the network is optimized by the
Adam optimizer, and the learning rate is set to 1e-4. The batch sizes of
SanDiegol, SanDiego2, Beach, Segundo, HYDICE and Cuprite datasets
are set to 240, 200, 200, 240, 200 and 250, respectively. For spectral
data augmentation, the prior target spectra are modulated using
Gaussian white noise with random signal-to-noise ratios to gain a suf-
ficiently large number of target samples. And the training data for
target-background consists of these target samples and unlabeled pixels

considered as background samples. When 1D-GAN pre-training con-
verges, its discriminator is utilised to construct the spectral metric Sia-
mese network. The priori target spectra are then paired with the target
and background samples from the training data for target-background to
obtain the positive and negative sample pairs, respectively. During
spectral metric learning, the positive and negative sample pairs are fed
into the spectral metric Siamese network to learn the more robust
spectral difference characterization. The epoch, learning rate and batch
size are all set to 100, 1le-4 and 256 for all HSI datasets. Finally, the
spectral-spatial target detection is performed using the guide image
filter with the penalty value of 0.04.

3.4. Results and analysis

For performance evaluation of the proposed SN-HTD method, five
different state-of-the-art detection methods are used for comparison,
which are the classical detection method CEM and ACE, the
representation-based target detectors CSCR, and two deep learning-
based methods including the transfer learning-based BLTSC and
SCLHTD the only using the background training samples. Figs. 4-9 show
the detection maps by the above six methods for the SanDiegol, San-
Diego2, Beach, Segundo, HYDICE and Cuprite datasets.

It can be seen from the detection maps and ground truth maps that
CEM, ACE and BLTSC miss many target pixels. However, hyperspectral
data in real scenes exhibit usually show strong non-Gaussianity and
nonlinearity, leading to a decrease in target detection accuracy of CEM
and ACE. The CSCR can detect the most of targets, but there is poor
background suppression and small separation between target and
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background, resulting in the inability to visually identify targets, and the
detection performance decreases when the background of the detection
scene becomes complex. The SCLHTD method is inspired by self-
supervised learning and aims to reduce the HTD model’s dependence
on high-quality prior information. It achieves spectral similarity and
dissimilarity discrimination by constructing a spectral-level contrastive
learning task and extracting features via a backbone network. Specif-
ically, the original HSI is sampled into odd and even bands, each
augmented using an adversarial convolutional autoencoder with spec-
tral residual channel attention. Two augmented samples from the same
pixel form positive pairs, while samples from other pixels serve as
negative pairs for contrastive learning. To suppress background inter-
ference, an edge-preserving filter is applied. Although this approach
enhances spectral discrimination, the sample pair generation based on
band sampling and augmentation may cause some spectral detail loss,
and the edge filtering has limited ability to model complex backgrounds,
which may reduce detection performance on weak targets. The BLTSC
performs a coarse detection of the HSI to be detected through CEM and
finds reliable background samples for training AAE. After reconstructing
the original HSI using the trained AAE, the background of the recon-
structed HSI was reconstructed relatively accurately, and the target was
reconstructed poorly. The difference between the reconstructed and
original HSI was considered the target. The detection performance of
BLTSC will be affected when CEM is not good enough to detect HSI. The
proposed SN-HTD method shows excellent detection performance with
high target detection accuracy, and visually obvious identification of the
target in the detection maps obtained on real HSI datasets.

Subjective evaluation of the detection maps visually has limitations,
and to quantitatively evaluate the performance of the SN-HTD method,
3D ROC curves and their corresponding the 2D ROC curves (Pp, Pr), (Pp,
7), and (Pg, 7) with the AUC of 2D ROC curves are used for quantitative
evaluation. The 3D ROC curve is used to indicates the comprehensive
detection capability of detectors, as shown in Figs. 10-15(a). The 2D
ROC curve of (Pp, Pp) is used to demonstrate the effectiveness of de-
tectors, as shown in Figs. 10-15(b). For the six real HSI datasets in the
experiment, the ROC curve of the SN-HTD outperforms the curves of
other detectors. The 2D ROC curve of (Pp, 7) is used to evaluate the
preservation ability of the detector for the target, as shown in
Figs. 10-15(c). The SN-HTD outperforms CEM, ACE and BLTSC, but
CSCR and SCLHTD performs not weaker than SN-HTD on some of
datasets. However, for the 2-D ROC curve of (Pf, 7), which evaluates the
detector background suppression ability. The SN-HTD has relatively
weak performance, but better than CEM, CSCR and SCLHTD.

The specific values of AUC (Pp, Pr), AUC (Pp, 7), AUC (Pf, 7), and
AUCop for different detectors on the real datasets are given in
Tables 1-6. The optimal results are shown in bold, and the suboptimal
results are underlined. As can be seen from the tables, BLTSC performs
the best in background suppression but being worse in target preser-
vation. CSCR perform good in target preservation, but its background
suppression ability is much weaker than SN-HTD. The AUC (Pp, Pr) and
AUCop values of the proposed SN-HTD remain optimal on the HSI
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datasets in the experiment which exhibit better comprehensive detec-
tion ability. The AUC (Pp, 7) values remain suboptimal on the HYDICE
datasets, but there are the suboptimal results. The AUC (Pf, 7) values
remain inferior to ACE and BLTSC, but better than other methods.

To evaluate the effectiveness of SN-HTD in separating target from
background, the target-background separability boxplot is used to show
the separation degree of target and background. Fig. 16 shows the tar-
get-background separability boxplot for the six compared methods and
the proposed SN-HTD method on the real HSI datasets. The boxes in the
target-background separability boxplot represent pixels with statisti-
cally distributed values, removing the highest and lowest 10 % of data in
the target and background. The red box and green box represent the
target and background, respectively. The horizontal line in the middle of
each box indicates the median value, and the upper and lower horizontal
lines indicate the maximum and minimum values. Although the back-
ground suppression ability of SN-HTD is not the best among the com-
parison detection methods, it displays the excellent target-background
separability, which indicates that the spectral metric learning enables
the model to effectively learn the ability to discriminate spectral
differences.

3.5. Ablation Study

3.5.1. Impact of pre-training for 1D-GAN

To assess the role of the pre-training 1D-GAN during the spectral
metric learning, this subsection conducts a set of ablation experiments to
demonstrate the effect of the pre-training 1D-GAN on target detection
accuracy.

The first experiment uses a small amount of labeled data to fine-tune
the discriminator of the training convergence 1D-GAN to obtain a target
detector. The second experiment directly uses the main structure of the
discriminator to construct a spectral metric Siamese network, which
does not inherit the parameters of the discriminator obtained through
the pre-training. The positive and negative samples from the training of
target-background are then used for the spectral metric learning. And
the third experiment is the proposed SN-HTD method. Table 7 illustrates
the effect of the pre-training for 1D-GAN on the detection accuracy of
HTD. The AUC (Pp, Pp) values in Table 7 are a direct measure of the
similarity between the pixel spectrum to be detected and the prior target
spectrum. It can be seen from Table VII that the performance of the first
experiment is not weaker or even better than other ones on a few
datasets, which shows that the discriminator of the training convergence
1D-GAN is able to extract useful information for detection and quickly
adapt to the target detection task by fine-tuning. And the detection ac-
curacy of the third experiment is higher than other ones on almost all
datasets. It proves that without the pre-training or the spectral metric
learning, the SN-HTD method cannot achieve the optimal detection
performance.

3.5.2. Impact of proportion for target and background samples
To investigate the effect of proportion for target and background
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Fig. 10. ROC curves for San Diegol dataset. (a) 3D ROC curve. (b) 2D ROC of (Pp, Pr). (c) 2D ROC of (Pp, ). (d) 2D ROC of (P, 7).
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samples on the detection accuracy of HTD, different proportions are
used to conduct a series of repetitive experiments.

As illustrated in Fig. 17 (San Diegol), the blue, orange and yellow
bars represent the detection performance of the first, second and third

Fig. 11. ROC curves for San Diego2 dataset. (a) 3D ROC curve. (b) 2D ROC of (Pp, Pr). (c) 2D ROC of (Pp, 7). (d) 2D ROC of (P, 7).
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experiments, respectively. And the line with stars indicates the average
detection result of three experiments. Only the proportions are different
in three experiments, and the other conditions are the same. The
experimental results unequivocally demonstrate that when the
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Fig. 15. ROC curves for Cuprite dataset. (a) 3D ROC curve. (b) 2D ROC of (Pp, Pr). (c) 2D ROC of (Pp, 7). (d) 2D ROC of (Pg, 7).

Table 1 Table 6

Accuracy Comparison of Different Methods for San Diegol Dataset. Accuracy Comparison of Different Methods for Cuprite Dataset.
Method CEM ACE CSCR BLTSC SCLHTD Proposed Method CEM ACE CSCR BLTSC SCLHTD Proposed
AUC (Pp, Pp) 0.9457 0.9376 0.9779 0.9551 0.9960 0.9988 AUC (Pp, Pp) 0.9954 0.9961 0.8916 0.9937 0.9488 0.9973
AUC (Pp, 1) 0.4131 0.1817 0.5189 0.3602 0.7089 0.7566 AUC (Pp, 7) 0.4426 0.5051 0.4979 0.3322 0.2830 0.7561
AUC (P, 1) 0.0554 0.0068 0.3338 0.0042 0.0294 0.0193 AUC (P, 7) 0.0426 0.0138 0.4402 0.0136 0.0188 0.0289
AUCop 1.3034 1.1126 1.1630 1.3110 1.6755 1.7360 AUCop 1.3954 1.4874 0.9493 1.3123 1.2129 1.7245

*The best results are in bold, while the second-best results are underlined.

Table 2

Accuracy Comparison of Different Methods for San Diego2 Dataset.
Method CEM ACE CSCR BLTSC SCLHTD  Proposed
AUC (Pp, Pp) 0.9909 0.9818 0.9923 0.9891 0.9945 0.9963
AUC (Pp, 7) 0.3568 0.3387 0.5240 0.2870 0.5585 0.5824
AUC (P, 1) 0.0186 0.0043 0.3252 0.0026 0.0367 0.0176
AUCop 1.3291 13161 11911  1.2735  1.5163 1.5611

*The best results are in bold, while the second-best results are underlined.

Table 3

Accuracy Comparison of Different Methods for Beach Dataset.
Method CEM ACE CSCR BLTSC SCLHTD  Proposed
AUC (Pp, Pp)  0.9534  0.9026  0.9832  0.8418  0.9978 0.9991
AUC (Pp, 1) 0.2875 0.2411 0.7139 0.2160 0.5193 0.7694
AUC (P, 1) 0.0080 0.0028 0.1989 0.0015 0.0072 0.0051
AUCop 1.2330  1.1409  1.4981  1.0563  1.5098 1.7633

*The best results are in bold, while the second-best results are underlined.

Table 4

Accuracy Comparison of Different Methods for Segundo Dataset.
Method CEM ACE CSCR BLTSC SCLHTD Proposed
AUC (Pp, Pp) 0.9785 0.9359 0.9731 0.9813 0.9698 0.9974
AUC (Pp, 7) 0.4969 0.3692 0.5092 0.5067 0.5905 0.7892
AUC (Pf, 1) 0.0425 0.0153 0.3614 0.0093 0.0271 0.0234
AUCop 1.4330 1.2898 1.1209 1.4787 1.5333 1.7633

*The best results are in bold, while the second-best results are underlined.

Table 5

Accuracy Comparison of Different Methods for Hydice Dataset.
Method CEM ACE CSCR BLTSC SCLHTD  Proposed
AUC (Pp, Pp) 0.9425 0.9039 0.9661 0.9385 0.9637 0.9991
AUC (Pp, 7) 0.2675 0.2428 0.6645 0.2733 0.5399 0.6065
AUC (P, 1) 0.0210 0.0072 0.4261 0.0035 0.0727 0.0170
AUCop 1.1890 1.1395 1.2045 1.2083 1.4308 1.5886

*The best results are in bold, while the second-best results are underlined.
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*The best results are in bold, while the second-best results are underlined.

proportion reaches 1:6, the result reaches the peak and then begins to
gradually decline. This change proves that an excessive amount of
training data for deep networks can lead to performance degradation
due to the overfitting of the training. The three repeated experimental
results for the same conditions are due to the unstable training. This is a
common flaw of the HTD methods, which are through generating pixel
labels.

3.6. Time cost

Table 8. lists the time consumption of the comparison methods and
the proposed SN-HTD method. The time consumptions of the classical
HTD method and the machine learning-based HTD method are much
less than those of the deep learning-based HTD method. This is
reasonable since the deep learning-based methods need to be trained to
obtain the parameters of the networks. Among three deep learning-
based methods, the training time for BLTSC includes the time to find
reliable background samples using coarse detection and the time to train
the AAE using the background samples. And the time for SN-HTD in-
cludes the time for spectral data augmentation, pre-training and spectral
metric learning. In terms of training time of the deep learning-based
HTD method, SN-HTD consumes less training time than BLTSC and
SCLHTD. The training time for SN-HTD itself is approximately consistent
across different datasets used. This is because the experiments use the
same proportion of training data for target and background, with only
the size of spectral dimension varying. Once the model has been trained
well, the detective efficiency relies on the detection time. The detection
time of the deep learning-based detection methods starts with loading
the model and ends with the detection results. The detection time of the
proposed SN-HTD is less than that of the other two deep learning-based
methods (BLTSC and SCLHTD) using the same HSI datasets.

4. Conclusion

To address the problem of insufficient target samples in deep
learning, a deep spectral metric Siamese network for hyperspectral
target detection is proposed in this paper. For expanding the target
samples, spectral data augmentation is proposed to mine the supervision
information of HSIs to be detected, and spectral metric learning is then
designed to make the model learn the difference between spectra. Spe-
cifically, the 1D-GAN is firstly pre-trained through the hyperspectral
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Fig. 16. Target-background separability boxplots for different datasets. (a) San Diegol, (b) San Diego2, (c) Beach, (d) Segundo, (e) HYDICE, (f) Cuprite.

Table 7

The Effect of Ablation Experiments.
Options Ist 2nd 3rd
Pre-training \/ X \/
Spectral metric learning X \/ \/
San Diegol 0.9824 0.9818 0.9937
San Diego2 0.9906 0.9733 0.9932
Beach 0.9768 0.9864 0.9910
Segundo 0.9976 0.9982 0.9980
HYDICE 0.9548 0.9845 0.9923
Cuprite 0.8194 0.9896 0.9930

*The best results are in bold, while the second-best results are underlined.

image. Then, a spectral data augmentation method for hyperspectral
data is designed so as to simulate spectral aberrations due to different
environmental factors. Through this data augmentation, there is a suf-
ficiently large number of target samples. And these samples are com-
bined with unlabeled pixels considered as background samples to form
the training data of target-background. The binary classification prob-
lem for the HTD is then converted into the spectral similarity metric
problem. With the primary structure of the discriminator of 1D-GAN
obtained through pre-training, a spectral metric Siamese network is
constructed, and inherits the parameters of the discriminator for
adapting quickly to target detection. Next, the priori target spectra are
paired with the samples from the training data of target-background to
obtain positive and negative sample pairs, respectively. And these
sample pairs are fed into the metric Siamese network for the spectral
difference metric learning. The SN-HTD obtains detection result utiliz-
ing spectral information by measuring the difference between the
spectra to be detected and the priori target spectra. Finally, combining
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Fig. 17. Different proportion for target and background samples.

the spatial information, the spectral detection result is filtered by using
the first principal component of the to-be-detected HSI to obtain the
final target detection result. Comprehensive experiments show that the
SN-HTD method is superior to other comparison detectors.

Although the proposed SN-HTD demonstrates promising perfor-
mance in hyperspectral target detection, particularly in limited labeled
samples, it still has certain limitations. While guided image filtering is
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Table 8
Time Consumption of Different Methods.
Method AVIRIS 1 AVIRIS 2 Beach Segundo HYDICE Cuprite
CEM 0.1459 0.1112 0.0944 0.1184 0.9967 0.4859
ACE 0.3008 0.1861 0.1637 0.2116 0.1540 0.8824
CSCR 8.7746 4.9812 4.2521 5.4585 4.0291 26.5119
BLTSC Train 2190.0375 1460.1186 1299.2160 1344.4637 1228.7092 6277.6399
- Detect 9.6767 7.6201 7.4708 9.5323 7.5766 43.9728
SCLHTD Train 630.3452 579.4321 618.2576 674.3249 594.7715 2973.2121
Detect 4.9342 4.4521 4.1832 5.7219 3.7213 30.2132
Proposed Train 125.2423 119.4939 122.8407 134.1689 119.8846 122.8450
Detect 7.1359 3.6935 3.0481 4.5664 2.9522 27.0587
*The best training and testing time using deep learning-based methods are in bold.
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