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A B S T R A C T

Hyperspectral target detection (HTD) is a critical methodology characterized by its extensive applications, 
particularly noted for its efficacy in target identification based on limited prior spectral information, thereby 
reducing dependence on texture and geometric features. Although recent advancements in HTD have largely 
embraced deep learning-based approaches, they often hindered by the significant challenge of data scarcity, 
particularly in obtaining labeled datasets. To address this challenge, this paper proposes a novel approach 
employing spectral metric learning within a Siamese network framework, named as SN-HTD. Leveraging the 
metric learning capabilities of the Siamese network architecture, the proposed method strategically employs 
unlabeled samples to train a model with the ability of target and background spectral discrimination, aiming to 
minimize the distance between homogeneous features while maximizing the separation between heterogeneous 
features. Spectral data argumentation is firstly conducted by modulating the priori target spectra with Gaussian 
white noise to effectively address the issue of insufficient target samples. Then the training procedure of the 
proposed deep learning model is bifurcated into pre-training and spectral metric learning phases, aiming to 
optimize resource utilization and computational efficiency. The core of the proposed model is a spectral metric 
learning with Siamese network, constructed atop the discriminator of a pre-trained one-dimensional generative 
adversarial network (GAN), which is fed by positive and negative sample pairs derived from prior target spec
trum against the augmented data and unlabeled background samples, respectively. Additionally, a guided image 
filter is incorporated for spatial information exploitation, thereby improving the detection performance of the 
method. Comparative experiments have been conducted on real hyperspectral images captured by different 
sensors in various scenes, demonstrating the superiority of the proposed SN-HTD method against the state-of-the- 
art methods, positioning it as a notable advancement in the field of HTD.

1. Introduction

Hyperspectral imaging, distinct from traditional single-band and 
multi-spectral imaging systems, captures the reflectance of objects 
across hundreds of narrow and contiguous bands, yielding to three- 
dimensional hyperspectral images (HSIs) that exhibit rich spectral and 
spatial information. The exceptional spectral band resolution allows 
each pixel in HSIs to be represented as a spectral curve, providing 
detailed insights into substance properties. This characteristic positions 
hyperspectral target detection (HTD) as an advanced remote sensing 
technology with extensively applications in both civil and military do
mains, including urban target detection, mineral surveying, medical 
diagnostics, environment detection, and military camouflage target 

identification [1–5].
HTD, as an approach proficient in identifying targets independent of 

texture and geometric features, relies on the discernment of spectral 
differences for precise recognition of ground objects. Many hyper
spectral target detection methods have appeared in the past research 
literature. Among the traditional HTD methods, adaptive coherence 
estimation (ACE) [6,7] is a classical HTD method based on probability 
statistics by assuming that the background conforms to the multivariate 
Gaussian distribution. In signal filtering-based methods, constrained 
energy minimization (CEM) [8] is a notable approach, being instru
mental in highlighting targets while suppressing background through a 
custom-designed finite pulse filter. The CEM detector has attracted 
increasing attention owing to its outstanding performance, aligning with 
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the burgeoning development of CEM-based methodologies, exemplified 
by notable advancements such as the hierarchical CEM (hCEM) [9], the 
ensemble-based CEM (E-CEM) [10], and so on. In light of the extensive 
integration of sparsity theory, the HTD has been advanced by proposing 
the sparsity-based target detector (STD) (Chen et al.) [11] and the 
combined sparse and cooperative representation detector (CSCR) (Li 
et al.) [12]. Within the STD framework, the detection process involves 
computing the reconstruction error of a vector, linearly represented by 
atomic vectors in a complete dictionary, with respect to the pixel to be 
detected, while CSCR achieves detection by representing the image 
element to be detected by targets library and backgrounds library.

The ascent of artificial intelligence technology in recent years has 
propelled deep learning to the forefront of image analysis in remote 
sensing [13–16]. In the context of HTD, perceived as an image binary 
classification problem, the potency of deep learning in generalization 
and high-level semantic feature extraction has ignited novel research 
avenues. Given the inherent limitations of prior information, where only 
the target spectrum of interest is known, transfer learning has been 
proved an effective strategy for deep learning-based HTD. Examples 
include convolutional neural network-based target detection (CNND) 
[17], and meta-learning with Siamese network-based target detection 
(MLSN) [18]. CNND augments training samples for HTD by pairing and 
labeling pixels from hyperspectral datasets with known labels in the 
source domain, and then trains a binary classification multi-layer CNN 
network for HTD. However, the challenge of domain mismatch caused 
by different sensor poses a notable hindrance. In response, MLSN in
corporates meta-learning to enhance the adaptability of deep transfer 
learning models to HTD. Acknowledging the data-intensive nature of 
deep neural networks and the limited availability of training data for 
HTD, hyperspectral target detection based on deep network (HTD-Net) 
[19] adopts a U-net structure for generating potential target samples, 
and employs a linear prediction algorithm for identifying background 
samples significantly different from targets. Another approach is 
hyperspectral target detection method based on two-stream convolu
tional network proposed in [20], which employs the mixed sparse rep
resentation to acquire background pixels, and subsequently blends the 
prior target spectra and background pixels with selected typical back
ground pixels. This process aims to generate a substantial volume of 
training data, pairing them with prior spectra to construct positive and 
negative training samples, which are then fed into the two-stream 
convolutional network to accomplish the detection task. In the realm 
of unsupervised learning, Xie et al. introduce the background learning 
based on a target suppression constraint (BLTSC) detector [21], 
employing a rough detection method to identify background samples, 
and then feeding them into an adversarial auto encoder (AAE) with 
target suppression constraints to reconstruct the pure background, 
thereby achieving target detection by comparing the reconstructed 
image with the image to be detected. To leverage spatial information for 
the improvement of the detection performance, a 3-D macro–micro-re
sidual auto encoder is designed and used to extract macro- and micro- 
features, which are fused and sent to a hierarchical radial basis func
tion (hRBF) detector for background suppression and target preserva
tion [22]. From the perspective of self-supervised learning, a 
hyperspectral target detection method based on self-supervised spectral 
level contrast learning (SCLHTD) is proposed in [23,24]. SCLHTD uses 
the spectral data enhancement method based on odd and even band 
sampling to extract supervisory information from the image itself, fol
lowed with the learning of the spectral similarities and differences 
through spectral level contrast learning to achieve the target detection 
task.

This paper aims to address the performance bottleneck in hyper
spectral target detection caused by the scarcity of labeled samples, while 
leveraging limited prior target information to achieve high-quality 
detection. To this end, inspired by the principles of metric learning 
[25], a deep spectral metric learning framework is proposed based on a 
Siamese network (SN-HTD). The training process is divided into two 

stages: pre-training and metric learning. In the pre-training stage, a one- 
dimensional generative adversarial network (1D-GAN) is employed to 
model the hyperspectral image under test, enabling the extraction of 
supervisory signals inherent to the image itself and training a discrimi
nator with a certain level of spectral discrimination capability. In the 
metric learning stage, a Gaussian noise-based spectral data augmenta
tion strategy is firstly employed to expand the limited target samples. 
This strategy preserves the consistency of spectral features while simu
lating variations under different environmental conditions, thereby 
enhancing generalization without introducing significant distortions. 
The pre-trained discriminator is then transferred to a Siamese network 
to extract spectral features. Metric learning is performed using positive 
and negative sample pairs to model subtle spectral differences between 
targets and background, thereby enhancing the model’s sensitivity to 
fine-grained variations, improving generalization, and accelerating 
convergence. Finally, spatial information is integrated via a guided 
image filter to enhance spectral-spatial consistency and further improve 
detection performance. The main contributions of this paper are sum
marized as follows: 

1) A two-stage training strategy is proposed, involving pretraining and 
spectral metric learning. Specifically, a 1D-GAN is employed in the 
pretraining phase to extract discriminative spectral features, which 
are subsequently transferred to a Siamese network for efficient 
metric learning.

2) To address the challenge of limited annotated samples, a spectral 
data augmentation based on Gaussian noise is proposed, enhancing 
sample diversity while preserving spectral characteristics.

3) Hyperspectral target detection is reformulated as a spectral metric 
learning problem. A Siamese-based spectral metric network is 
designed to learn discriminative spectral difference features from 
positive and negative pairs, enabling accurate similarity measure
ment between pixels under test and the prior target spectra.

The remainder of this paper is organized as follows: Section 2 pro
vides a comprehensive description of the proposed SN-HTD method, and 
Section 3 presents experimental studies and analysis to validate the 
proposed method. Finally, conclusions are drawn in Section 4.

2. Proposed method

This section shows the details of the proposed deep spectral metric 
Siamese network for hyperspectral target detection (SN-HTD). The 
approach consists of three key stages: pre-training of the 1D-GAN, 
spectral metric learning with spectral metric Siamese network and 
spectral data augmentation, and spectral-spatial target detection, with 
the flowchart shown in Fig. 1.

2.1. Pre-training for 1D-Generative adversarial network

In the first stage of model training, the hyperspectral image under 
test is utilized to pretrain a 1D-GAN, as illustrated in the top of Fig. 1. 
The goal of this pre-training process is to enhance the spectral 
discrimination ability of the discriminator, which serves as a strong 
foundation for the subsequent spectral metric learning phase.

Generative Adversarial Networks (GANs), which combines genera
tive and adversarial principles, have been widely applied in natural 
image processing [27,28]. A typical GAN consists of two neural net
works: a generator G and a discriminator D. The generator attempts to 
produce synthetic (“fake”) samples that resemble real data, while the 
discriminator strives to distinguish between real and generated samples. 
Through adversarial training, both networks iteratively improve, with 
the generator learning to produce more realistic outputs and the 
discriminator learning more refined decision boundaries. This adversa
rial process can be mathematically expressed as follow: 
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min
G

max
D

V(D,G) = Ex∼pdata [logD(x) ] +Ez∼pz [log(1 − D(G(z) ) ) ] (1) 

where the generator G(⋅) builds a mapping pz : G(z)→pg, pg denotes the 
distribution of generated samples and pz denotes the distribution of 
radom noise. As for the discriminator, let D(x, θ) denote the probability 
of x from the distribution pdata of real data rather than pg. θ demotes 
whether the input of D is true or not. V (D, G) represents the process 
where the generator and the discriminator alternate and iteratively train 
during the training stage, which can be expressed as: 

min
G

V(D,G) = min
G

Ez∼pz [log(1 − D(G(z) ) ) ] (2) 

max
D

V(D,G) = max
D

(
Ex∼pdata [logD(x) ] + Ez∼pz [log(1 − D(G(z) ) ) ]

)
(3) 

In natural image processing, GANs typically use two-dimensional 
convolutional layers to act on the spatial dimensions of images. How
ever, hyperspectral target detection relies on the spectral dimension of 
hyperspectral images (HSIs). Therefore, two-dimensional convolutional 
layers are not directly applicable to the task of hyperspectral target 
detection. To address this, 1D-GAN is specifically designed for the 
spectral dimension, utilizing one-dimensional convolutional layers in 
place of two-dimensional convolutions. It is important to note that 
different criteria are followed in constructing both the structures of 
generator and discriminator. To further improve the stability of the 
generator in modeling the complex distributions of target and back
ground spectra, the spectral normalization (BN) layer [29] is added after 
each linear fully connected layer of the generator. This helps prevent 
training degradation due to poor initialization. For the discriminator, in 
order to make it more focused on extracting spectral feature 

information, it is primarily constructed using one-dimensional con
volutional layers. To prevent the loss of detailed spectral semantic fea
tures caused by pooling operation, a one-dimensional convolutional 
layer with a stride of 2 is used instead of the average pooling layer. This 
enables the discriminator to more effectively capture relevant spectral 
information and adapt quickly to the detection task. Additionally, to 
stabilize the training of the 1D-GAN, the generator employs a Tanh 
activation function.

Empirical observations show that the generator can effectively syn
thesize both target-like and background-like spectral samples, while the 
discriminator successfully learns to differentiate them. After conver
gence, the discriminator is fine-tuned using a small number of labeled 
samples, transforming it into a simple yet effective detector. This de
tector achieves performance comparable to, or even exceeding, that of 
traditional methods, demonstrating the strong spectral feature extrac
tion capability of the pretrained discriminator. Building upon this 
capability, the pretrained discriminator serves as the backbone of a 
spectral metric Siamese network in the subsequent learning stage, 
further enhancing detection performance.

2.2. Deep spectral metric learning with Siamese network

To efficiently assess the similarity between spectral pixels and the 
prior target spectra for hyperspectral target detection, the conventional 
binary classification problem of target detection is reformulated into a 
similarity metric learning problem. Metric learning is a well-established 
machine learning technique that aims to learn a distance function 
capable of distinguishing between similar and dissimilar samples. Its 
core objective is to minimize the distance between homogeneous 

Fig. 1. Flowchart of the proposed SN-HTD method.
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(similar) features while maximizing the separation between heteroge
neous (dissimilar) ones. In other words, metric learning seeks to bring 
similar samples closer together in feature space, while pushing dissim
ilar ones further apart. This principle enables models to generalize 
better, particularly when labeled data are scarce. Due to the success of 
Siamese network in various visual tasks [30–34], which a widely used 
method in metric learning, it has gained significant popularity. A Sia
mese network is composed of two or more identical subnetworks (with 
shared weights), which process input pairs to learn whether they are 
similar or not. This architecture has been widely applied in tasks such as 
detection, tracking, and face verification [35–37]. A key advantage of 
Siamese networks is their inductive bias toward invariance—meaning 
that two observations of the same class should yield the same output. 
This characteristic has contributed to its success in modeling complex 
transformations, similar to how convolution operations model trans
lational invariance.

In this section, the spectral data augmentation and spectral metric 
learning with Siamese network is introduced into hyperspectral target 
detection, transforming the target detection task into a deep spectral 
metric learning problem.

2.2.1. Spectral data augmentation
In hyperspectral target detection, it is common to have only one prior 

target spectrum, with no additional labeled data. This scarcity is com
pounded by the difficulty and cost of acquiring labeled hyperspectral 
samples. To address this issue, this paper proposes a new data 
augmentation approach aimed at overcoming the scarcity of labeled 
training data for hyperspectral target detection. The proposed data 
augmentation not only enhances the models’ generalization ability, but 
also acts as a regularization technique to avoid overfitting, thereby 
improving the quality of the learned representations.

Traditional data augmentation methods for RGB images typically 
include operations such as random flipping, random cropping, and 

random rotation, which enhance image symmetry, reduce positional 
dependence, and increase viewpoint diversity, respectively. However, in 
hyperspectral target detection, which relies primarily on the spectral 
information, applying these conventional image operations would 
significantly disrupt the spectral features. Currently, target sample 
augmentation methods mainly involve mixing the a priori target spectra 
with background spectra, which addresses issues related to subpixels in 
hyperspectral target detection.

To overcome the aforementioned challenges, this paper proposes a 
spectral data augmentation approach specifically designed for hyper
spectral data. In this approach, a sufficient number of target samples are 
generated by modulating the known priori target spectrum with 
Gaussian white noise at varying signal-to-noise ratios (SNRs). This 
strategy simulates the aberrant target spectra that arise from different 
environmental conditions. As shown in Fig. 2, the augmented spectra 
maintain the overall shape and trend of the original spectral curve at the 
global level, ensuring semantic consistency. At the local level, the added 
noise introduces moderate perturbations that reflect practical spectral 
variability. This augmentation strategy offers two main advantages: On 
one hand, it preserves spectral consistency, ensuring that augmented 
samples remain representative of the true target class; On the other 
hand, it introduces controlled variability, enhancing the model’s ability 
to generalize to real-world target conditions. It is evident that this 
strategy of spectral data augmentation has two advantages. This can, to 
some extent, alleviate the issue of spectral variability for the same 
object.

It should be noted that, the proposed model utilizes the unlabeled 
pixels, which are considered as background samples, along with the 
known prior target spectra to form negative sample pairs. While treating 
all unlabeled spectra as background may seem overly optimistic, 
particularly given the presence of target pixels within the image scence, 
the experimental results demonstrate that pre-training of generative 
adversarial network effectively mitigates this misallocation [26]. This 

Fig. 2. Different approaches for data augmentation.
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can be largely attributed to the fact that the target pixels in hyper
spectral images typically account for less than 1 % of the total pixels, 
making such a treatment feasible.

2.2.2. Spectral metric learning with Siamese network
As shown in Fig. 3, a spectral metric Siamese network is designed for 

extracting spectral feature difference. This network is constructed based 
on the discriminator pretrained via the 1D-GAN introduced in Section 
2.1. Both the upper and lower branches of the Siamese architecture are 
instantiated using the same structure as the discriminator, ensuring 
shared weights and identical feature extraction pathways. By trans
ferring the pretrained parameters from the GAN discriminator, the Si
amese network benefits from a strong initialization and can quickly 
adapt to the downstream detection task. At the end of the network, a 
spectral classification head—composed of a linear fully connected layer 
followed by a Sigmoid activation function—is appended to produce a 
similarity score.

Although the 1D-GAN discriminator is effective at extracting spectral 
features, it is not directly optimized for binary classification. Therefore, 
the Siamese network is fine-tuned using supervised sample pairs. In this 
process, positive sample pairs are formed by pairing target samples with 
the prior target spectra, while negative sample pairs are formed by 
pairing background samples with the prior target spectra. These pairs 
are used to train the network to distinguish between pixels that match 
the target signature and those that do not.

The output features from the twin branches are passed through the 
spectral classification head to produce a similarity score, which is 
interpreted as the probability that a given pixel belongs to either the 
“target” or the “background”. The final output of the spectral metric 
Siamese network is presented as a score or label. To optimize the 
training process, the Binary Cross Entropy (BCE) function is used as the 
loss function, which is defined as follows: 

LossBCE = −
1
B
∑B

i=1
[yi⋅logfi + (1 − yi)⋅log(1 − fi) ] (4) 

where fi is the output of the Sigmoid layer of the spectral metric Siamese 
network and yi denotes the label (1 or 0).

This loss function is well-suited to our binary target detection 
objective, enabling the Siamese network to learn a robust similarity 
metric that differentiates between target and background spectra based 
on pairwise spectral relationships.

2.3. Spectral-Spatial target detection

Following the spectral metric learning phase, each spectral pixel in 
the hyperspectral image (HSI) is paired with the prior target spectrum to 
form spectral pixel pairs. These pairs are then input into the trained 

spectral metric Siamese network to compute their similarity scores 
relative to the target, resulting in a spectral detection map.

Although the hyperspectral image is inherently a three-dimensional 
data cube containing both spatial and spectral information, the SN-HTD 
framework primarily focuses on spectral features during the detection 
phase. This may lead to suboptimal performance in complex scenes 
where spatial consistency is crucial. To address this limitation, a guide 
image filter [38] is incorporated to exploit the spatial information 
contained in the HSI. The guided image filter is an adaptive filtering 
technique that computes the filtering operation based on the content of a 
guiding image. Mathematically, the filter can be expressed as follows: 

Oi =
∑

j
Wij(I)Kj (5) 

In essence, the guide image filter assumes a linear model between the 
image K to be detected and the output O of filter. The filter weight can be 
mathematically expressed as: 

Wij(I) =
1
|e|2

∑

k: (i, j)∈ek

(

1 +
(Ii − μk)

(
Ij − μk

)

σ2
k + ε

)

(6) 

where ek represents the window centered on the kth pixel, with a window 
size of (2r + 1)× (2r + 2), and r represents the radius of the window. 
The mean and variance of the filter are represented by μk and σ2

k , 
respectively. The penalty value is represented by ε, and |e| represents the 
number of pixels in ek. Ii and Ij represent two neighboring pixels in the 
bootstrap image.

The guide image filter is a smoothing operator that preserves edges 
and is more efficient than bilateral filters, particularly near image 
boundaries. To integrate spatial information into the detection process, 
the spectral detection result in fed into the guide image filter, using the 
first principal component of the HSI as the guide image, so as to obtain 
the final spectral-spatial detection result, where the first principal 
component is obtained through the principal components analysis (PCA) 
of HSI.

3. Experimental results and analysis

In this section, a comprehensive set of experiments is conducted on 
five real hyperspectral datasets to validate the effectiveness of the pro
posed SN-HTD method in terms of target detection performance.

The experiments were performed on a system equipped with an Intel 
Core i5-8300H 8-core CPU and a NVIDIA GeForce RTX 1050ti GPU. The 
proposed SN-HTD, as well as the deep learning-based comparison 
methods, were implemented using Python 3.8.0 and PyTorch 1.12, with 
ROC analysis and result evaluation conducted in MATLAB R2022a, 
while other traditional comparison methods were implemented in 
MATLAB R2022a.

Fig. 3. The framework of spectral metric Siamese network.
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3.1. Hyperspectral datasets

San Diego Dataset: The San Diego dataset was collected by AVIRIS 
over the San Diego Airport area, California, USA. It has a spatial reso
lution of 3.5 m and image of size 120 × 120, with a total of 224 bands, 
spectral resolution of 10 nm and a wavelength range of 370–2510 nm. 
After removing low SNR and water absorption bands, a total of 189 
bands are retained for detection. Two images from this dataset were 
used for experiments: San Diego1 (120 × 120) and San Diego2 (100 ×
100), taken from the center and upper-left corner of the scene, respec
tively. The pseudo-color images and corresponding ground truth maps 
are shown in Fig. 4 (a)-(b) and Fig. 5 (a)-(b). The target, identified as 
aircraft in both images, contains 58 and 134 pixels, respectively.

Beach Dataset: The Beach dataset was captured by the AVIRIS 
sensor on Cat Island, with a spatial resolution of 17.2 m. The image used 
for the experiment has a size of 90 × 90 × 188 after removing the noise 
bands. The pseudo-color image and corresponding ground truth map, 
which includes 19 anomaly pixels, are shown in Fig. 6 (a) and (b).

Segundo Dataset: The Segundo dataset, also captured by the AVIRIS 
sensors in the EI Segundo region of California, USA, has a spatial reso
lution of 7.1 m and a wavelength range of 400–2500 nm. The whole 
image has 250 × 300 pixels, with a total of 224 bands. In the experiment, 
it is named the captured scene with the shape of 100 × 100 × 224 as 
Segundo. Its pseudo-color image and corresponding ground truth map 
are shown in Fig. 7 (a) and (b). There are 715 target pixels in the scene, 
including facilities such as oil storage tanks and towers.

HYDICE Dataset: The HYDICE dataset is collected by HYDICE sen
sors at the urban area in California, USA, with the spectral resolution is 
10 m. The whole image has a total of 307 × 307 pixels with a total of 210 
bands, and the wavelength is from 400 nm to 2500 nm. In the experi
ment, we remove the band affected by dense water vapor and atmo
sphere, and intercept the scene with size of 80 × 100 × 175 for 
detection. Its pseudo-color image and corresponding ground truth map 
are shown in Fig. 8 (a) and (b), including 21 target pixels of the types of 
roofs and cars.

Cuprite Dataset: The Cuprite dataset was obtained by the AVIRIS 
sensor, in the Cuprite mining district of Nevada in 1997 There are about 

14 kinds of minerals in this image, including buddingtonite, Na- 
Montmorillonite, Nontronite (Fe clay), Kaolinite, etc. We use a 250 ×
191 pixel subset of this image to conduct our experiment. After 
removing the low SNR and water absorption bands, 188 bands are left to 
conduct our experiment. The pseudo-color image and corresponding 
ground truth are shown in Fig. 9 (a) and (b), including 39 target pixels.

3.2. Evaluation criteria

To evaluate the performance of the proposed method in comparison 
with the state-of-the-art methods, quantitative analysis is performed 
using the receiver operating characteristic curve (ROC) and its area 
under the curve (AUC) [39]. The ROC curve has been widely used as an 
evaluation tool for the target detection in HSIs. The ROC curve obtains 
different detection probability PD and false alarm probability PF by 
changing the threshold value τ. Detection probability PD and false alarm 
probability PF can be calculated by the following equation: 

PD(τ) =
nD,τ

nD,τ + nFN,τ
(7) 

PF(τ) =
nF,τ

nF,τ + nTN,τ
(8) 

where nD, τ, nFN, τ, nF, τ and nTN, τ represent the number of correctly 
detected target pixels, the number of pixels that are targets but not 
detected as targets, the number of background pixels that are detected as 
target pixels, and the number of correctly detected background pixels 
below the threshold, respectively.

Due to the interaction between the detection probability PD and the 
false alarm probability PF, the ROC curve (PD, PF) with a higher AUC 
value does not necessarily mean that the detector has a good background 
suppression ability. Therefore, in order to evaluate the detector perfor
mance more accurately, this paper uses 3D ROC curve [39] as the 
evaluation standard, and three 2D ROC curves (PD, PF), (PD, τ) and (PF, τ) 
are used to evaluate the detector’s effectiveness, detection ability and 
background suppression ability, respectively.

The AUC is the value of area under the ROC curve, used to quanti

Fig. 4. Detection maps for San Diego1 dataset.
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tatively evaluate the performance of the detector. For the 2D ROC curve 
(PD, PF), AUC (PD, PF) value between 0.5 and 1 indicates that the detector 
is effective, with closer values to 1 signifying better performance. AUC 
(PD, τ) is the area under the curve of the 2D ROC curve (PD, τ), quanti
tatively representing the target detection capability of the detector, with 
the larger values indicating stronger detection ability. While AUC (PF, τ) 
is the area under the curve of the 2D ROC curve (PF, τ), measuring the 
ability of the background suppression, with smaller values indicating 

better suppression of the background. Besides, a new quantitative 
detection index designed in [39] takes the three AUC values as a whole 
to measure the total performance, named as AUCOD, with a range of 
[-1,2], which is defined as: 

AUCOD = AUC(PD,PF)+AUC(PD, τ) − AUC(PF, τ) (9) 

Fig. 5. Detection maps for San Diego2 dataset.

Fig. 6. Detection maps for Beach dataset.
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3.3. Experimental Setup

This section mainly introduces the parameter setting used of the SN- 
HTD method, as well as the comparison methods.

3.3.1. Parameter settings of comparison methods
To evaluate the performance of the proposed SN-HTD method in the 

experiments, the following detection methods are compared with the 
proposed SN-HTD method: the classical detection method CEM [8] and 
ACE [6], the representation-based target detectors CSCR [12], and two 
deep learning-based methods the transfer learning-based BLTSC [21] 
and the SCLHTD [24] only using the background training samples. CEM 

and ACE do not have any parameters that need to be set artificially. For 
the CSCR detector, the outer and inner windows sizes are (11, 5) for 
SanDiego1 and Segundo datasets. For SanDiego2, Beach, HYDICE and 
Cuprite datasets, the outer and inner windows sizes are (11, 3). For the 
contrastive learning-based SCLHTD detection method, the training of 
the AAE is conducted in two stages. First, the encoder and decoder are 
optimized using the Adam optimizer with a learning rate of 1e-3. Sub
sequently, the generator and discriminator are trained separately: the 
generator is optimized using SGD with a learning rate of 1e-4, while the 
discriminator is trained with a learning rate of 1e-5. The AAE is trained 
for 20 epochs in total. The batch sizes for the San Diego 1, San Diego 2, 
Beach, Segundo, HYDICE, and Cuprite datasets are set to 240, 200, 180, 

Fig. 7. Detection maps for Segundo dataset.

Fig. 8. Detection maps for HYDICE dataset.
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200, 250, and 250, respectively. The output dimensionality of the latent 
code from the AAE encoder is set to 32, while the feature vector 
extracted by the encoder is fixed at a dimensionality of 64. For spectral- 
level contrastive learning, the number of training epochs, learning rate, 
and temperature coefficient are uniformly set to 100, 0.05, and 0.1, 
respectively, across all six datasets. The batch sizes for the San Diego A 
and San Diego B datasets are set to 240, 200, 180, 200, 250, and 250, 
respectively. For the final spectral–spatial joint target detection stage, 
the filter parameters are configured following the original settings 
described in the manuscript. For the BLTSC method only using the 
background training samples, the coarse detection is performed using 
the classical CEM method to gain sufficient background training data. It 
uses a learning rate and epoch set to 1e-4 and 500, during training for 
the five real datasets in this experiment, respectively.

3.3.2. Parameter settings of SN-HTD
The proposed SN-HTD method is implemented in four steps, 

including pre-training of 1D-GAN, spectral data augmentation, deep 
spectral metric learning and spectral–spatial target detection. The 1D- 
GAN is pre-trained using the training data. For the six real HSI data
sets, when pre-training the 1D-GAN, the network is optimized by the 
Adam optimizer, and the learning rate is set to 1e-4. The batch sizes of 
SanDiego1, SanDiego2, Beach, Segundo, HYDICE and Cuprite datasets 
are set to 240, 200, 200, 240, 200 and 250, respectively. For spectral 
data augmentation, the prior target spectra are modulated using 
Gaussian white noise with random signal-to-noise ratios to gain a suf
ficiently large number of target samples. And the training data for 
target-background consists of these target samples and unlabeled pixels 

considered as background samples. When 1D-GAN pre-training con
verges, its discriminator is utilised to construct the spectral metric Sia
mese network. The priori target spectra are then paired with the target 
and background samples from the training data for target-background to 
obtain the positive and negative sample pairs, respectively. During 
spectral metric learning, the positive and negative sample pairs are fed 
into the spectral metric Siamese network to learn the more robust 
spectral difference characterization. The epoch, learning rate and batch 
size are all set to 100, 1e-4 and 256 for all HSI datasets. Finally, the 
spectral-spatial target detection is performed using the guide image 
filter with the penalty value of 0.04.

3.4. Results and analysis

For performance evaluation of the proposed SN-HTD method, five 
different state-of-the-art detection methods are used for comparison, 
which are the classical detection method CEM and ACE, the 
representation-based target detectors CSCR, and two deep learning- 
based methods including the transfer learning-based BLTSC and 
SCLHTD the only using the background training samples. Figs. 4–9 show 
the detection maps by the above six methods for the SanDiego1, San
Diego2, Beach, Segundo, HYDICE and Cuprite datasets.

It can be seen from the detection maps and ground truth maps that 
CEM, ACE and BLTSC miss many target pixels. However, hyperspectral 
data in real scenes exhibit usually show strong non-Gaussianity and 
nonlinearity, leading to a decrease in target detection accuracy of CEM 
and ACE. The CSCR can detect the most of targets, but there is poor 
background suppression and small separation between target and 

Fig. 9. Detection maps for Cuprite dataset.
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background, resulting in the inability to visually identify targets, and the 
detection performance decreases when the background of the detection 
scene becomes complex. The SCLHTD method is inspired by self- 
supervised learning and aims to reduce the HTD model’s dependence 
on high-quality prior information. It achieves spectral similarity and 
dissimilarity discrimination by constructing a spectral-level contrastive 
learning task and extracting features via a backbone network. Specif
ically, the original HSI is sampled into odd and even bands, each 
augmented using an adversarial convolutional autoencoder with spec
tral residual channel attention. Two augmented samples from the same 
pixel form positive pairs, while samples from other pixels serve as 
negative pairs for contrastive learning. To suppress background inter
ference, an edge-preserving filter is applied. Although this approach 
enhances spectral discrimination, the sample pair generation based on 
band sampling and augmentation may cause some spectral detail loss, 
and the edge filtering has limited ability to model complex backgrounds, 
which may reduce detection performance on weak targets. The BLTSC 
performs a coarse detection of the HSI to be detected through CEM and 
finds reliable background samples for training AAE. After reconstructing 
the original HSI using the trained AAE, the background of the recon
structed HSI was reconstructed relatively accurately, and the target was 
reconstructed poorly. The difference between the reconstructed and 
original HSI was considered the target. The detection performance of 
BLTSC will be affected when CEM is not good enough to detect HSI. The 
proposed SN-HTD method shows excellent detection performance with 
high target detection accuracy, and visually obvious identification of the 
target in the detection maps obtained on real HSI datasets.

Subjective evaluation of the detection maps visually has limitations, 
and to quantitatively evaluate the performance of the SN-HTD method, 
3D ROC curves and their corresponding the 2D ROC curves (PD, PF), (PD, 
τ), and (PF, τ) with the AUC of 2D ROC curves are used for quantitative 
evaluation. The 3D ROC curve is used to indicates the comprehensive 
detection capability of detectors, as shown in Figs. 10–15(a). The 2D 
ROC curve of (PD, PF) is used to demonstrate the effectiveness of de
tectors, as shown in Figs. 10–15(b). For the six real HSI datasets in the 
experiment, the ROC curve of the SN-HTD outperforms the curves of 
other detectors. The 2D ROC curve of (PD, τ) is used to evaluate the 
preservation ability of the detector for the target, as shown in 
Figs. 10–15(c). The SN-HTD outperforms CEM, ACE and BLTSC, but 
CSCR and SCLHTD performs not weaker than SN-HTD on some of 
datasets. However, for the 2-D ROC curve of (PF, τ), which evaluates the 
detector background suppression ability. The SN-HTD has relatively 
weak performance, but better than CEM, CSCR and SCLHTD.

The specific values of AUC (PD, PF), AUC (PD, τ), AUC (PF, τ), and 
AUCOD for different detectors on the real datasets are given in 
Tables 1–6. The optimal results are shown in bold, and the suboptimal 
results are underlined. As can be seen from the tables, BLTSC performs 
the best in background suppression but being worse in target preser
vation. CSCR perform good in target preservation, but its background 
suppression ability is much weaker than SN-HTD. The AUC (PD, PF) and 
AUCOD values of the proposed SN-HTD remain optimal on the HSI 

datasets in the experiment which exhibit better comprehensive detec
tion ability. The AUC (PD, τ) values remain suboptimal on the HYDICE 
datasets, but there are the suboptimal results. The AUC (PF, τ) values 
remain inferior to ACE and BLTSC, but better than other methods.

To evaluate the effectiveness of SN-HTD in separating target from 
background, the target–background separability boxplot is used to show 
the separation degree of target and background. Fig. 16 shows the tar
get–background separability boxplot for the six compared methods and 
the proposed SN-HTD method on the real HSI datasets. The boxes in the 
target–background separability boxplot represent pixels with statisti
cally distributed values, removing the highest and lowest 10 % of data in 
the target and background. The red box and green box represent the 
target and background, respectively. The horizontal line in the middle of 
each box indicates the median value, and the upper and lower horizontal 
lines indicate the maximum and minimum values. Although the back
ground suppression ability of SN-HTD is not the best among the com
parison detection methods, it displays the excellent target–background 
separability, which indicates that the spectral metric learning enables 
the model to effectively learn the ability to discriminate spectral 
differences.

3.5. Ablation Study

3.5.1. Impact of pre-training for 1D-GAN
To assess the role of the pre-training 1D-GAN during the spectral 

metric learning, this subsection conducts a set of ablation experiments to 
demonstrate the effect of the pre-training 1D-GAN on target detection 
accuracy.

The first experiment uses a small amount of labeled data to fine-tune 
the discriminator of the training convergence 1D-GAN to obtain a target 
detector. The second experiment directly uses the main structure of the 
discriminator to construct a spectral metric Siamese network, which 
does not inherit the parameters of the discriminator obtained through 
the pre-training. The positive and negative samples from the training of 
target-background are then used for the spectral metric learning. And 
the third experiment is the proposed SN-HTD method. Table 7 illustrates 
the effect of the pre-training for 1D-GAN on the detection accuracy of 
HTD. The AUC (PD, PF) values in Table 7 are a direct measure of the 
similarity between the pixel spectrum to be detected and the prior target 
spectrum. It can be seen from Table VII that the performance of the first 
experiment is not weaker or even better than other ones on a few 
datasets, which shows that the discriminator of the training convergence 
1D-GAN is able to extract useful information for detection and quickly 
adapt to the target detection task by fine-tuning. And the detection ac
curacy of the third experiment is higher than other ones on almost all 
datasets. It proves that without the pre-training or the spectral metric 
learning, the SN-HTD method cannot achieve the optimal detection 
performance.

3.5.2. Impact of proportion for target and background samples
To investigate the effect of proportion for target and background 

Fig. 10. ROC curves for San Diego1 dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).
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samples on the detection accuracy of HTD, different proportions are 
used to conduct a series of repetitive experiments.

As illustrated in Fig. 17 (San Diego1), the blue, orange and yellow 
bars represent the detection performance of the first, second and third 

experiments, respectively. And the line with stars indicates the average 
detection result of three experiments. Only the proportions are different 
in three experiments, and the other conditions are the same. The 
experimental results unequivocally demonstrate that when the 

Fig. 11. ROC curves for San Diego2 dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).

Fig. 12. ROC curves for Beach dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).

Fig. 13. ROC curves for Segundo dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).

Fig. 14. ROC curves for HYDICE dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).
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proportion reaches 1:6, the result reaches the peak and then begins to 
gradually decline. This change proves that an excessive amount of 
training data for deep networks can lead to performance degradation 
due to the overfitting of the training. The three repeated experimental 
results for the same conditions are due to the unstable training. This is a 
common flaw of the HTD methods, which are through generating pixel 
labels.

3.6. Time cost

Table 8. lists the time consumption of the comparison methods and 
the proposed SN-HTD method. The time consumptions of the classical 
HTD method and the machine learning-based HTD method are much 
less than those of the deep learning-based HTD method. This is 
reasonable since the deep learning-based methods need to be trained to 
obtain the parameters of the networks. Among three deep learning- 
based methods, the training time for BLTSC includes the time to find 
reliable background samples using coarse detection and the time to train 
the AAE using the background samples. And the time for SN-HTD in
cludes the time for spectral data augmentation, pre-training and spectral 
metric learning. In terms of training time of the deep learning-based 
HTD method, SN-HTD consumes less training time than BLTSC and 
SCLHTD. The training time for SN-HTD itself is approximately consistent 
across different datasets used. This is because the experiments use the 
same proportion of training data for target and background, with only 
the size of spectral dimension varying. Once the model has been trained 
well, the detective efficiency relies on the detection time. The detection 
time of the deep learning-based detection methods starts with loading 
the model and ends with the detection results. The detection time of the 
proposed SN-HTD is less than that of the other two deep learning-based 
methods (BLTSC and SCLHTD) using the same HSI datasets.

4. Conclusion

To address the problem of insufficient target samples in deep 
learning, a deep spectral metric Siamese network for hyperspectral 
target detection is proposed in this paper. For expanding the target 
samples, spectral data augmentation is proposed to mine the supervision 
information of HSIs to be detected, and spectral metric learning is then 
designed to make the model learn the difference between spectra. Spe
cifically, the 1D-GAN is firstly pre-trained through the hyperspectral 

Fig. 15. ROC curves for Cuprite dataset. (a) 3D ROC curve. (b) 2D ROC of (PD,PF). (c) 2D ROC of (PD, τ). (d) 2D ROC of (PF , τ).

Table 1 
Accuracy Comparison of Different Methods for San Diego1 Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9457 0.9376 0.9779 0.9551 0.9960 0.9988
AUC (PD, τ) 0.4131 0.1817 0.5189 0.3602 0.7089 0.7566
AUC (PF, τ) 0.0554 0.0068 0.3338 0.0042 0.0294 0.0193
AUCOD 1.3034 1.1126 1.1630 1.3110 1.6755 1.7360

*The best results are in bold, while the second-best results are underlined.

Table 2 
Accuracy Comparison of Different Methods for San Diego2 Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9909 0.9818 0.9923 0.9891 0.9945 0.9963
AUC (PD, τ) 0.3568 0.3387 0.5240 0.2870 0.5585 0.5824
AUC (PF, τ) 0.0186 0.0043 0.3252 0.0026 0.0367 0.0176
AUCOD 1.3291 1.3161 1.1911 1.2735 1.5163 1.5611

*The best results are in bold, while the second-best results are underlined.

Table 3 
Accuracy Comparison of Different Methods for Beach Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9534 0.9026 0.9832 0.8418 0.9978 0.9991
AUC (PD, τ) 0.2875 0.2411 0.7139 0.2160 0.5193 0.7694
AUC (PF, τ) 0.0080 0.0028 0.1989 0.0015 0.0072 0.0051
AUCOD 1.2330 1.1409 1.4981 1.0563 1.5098 1.7633

*The best results are in bold, while the second-best results are underlined.

Table 4 
Accuracy Comparison of Different Methods for Segundo Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9785 0.9359 0.9731 0.9813 0.9698 0.9974
AUC (PD, τ) 0.4969 0.3692 0.5092 0.5067 0.5905 0.7892
AUC (PF, τ) 0.0425 0.0153 0.3614 0.0093 0.0271 0.0234
AUCOD 1.4330 1.2898 1.1209 1.4787 1.5333 1.7633

*The best results are in bold, while the second-best results are underlined.

Table 5 
Accuracy Comparison of Different Methods for Hydice Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9425 0.9039 0.9661 0.9385 0.9637 0.9991
AUC (PD, τ) 0.2675 0.2428 0.6645 0.2733 0.5399 0.6065
AUC (PF, τ) 0.0210 0.0072 0.4261 0.0035 0.0727 0.0170
AUCOD 1.1890 1.1395 1.2045 1.2083 1.4308 1.5886

*The best results are in bold, while the second-best results are underlined.

Table 6 
Accuracy Comparison of Different Methods for Cuprite Dataset.

Method CEM ACE CSCR BLTSC SCLHTD Proposed

AUC (PD, PF) 0.9954 0.9961 0.8916 0.9937 0.9488 0.9973
AUC (PD, τ) 0.4426 0.5051 0.4979 0.3322 0.2830 0.7561
AUC (PF, τ) 0.0426 0.0138 0.4402 0.0136 0.0188 0.0289
AUCOD 1.3954 1.4874 0.9493 1.3123 1.2129 1.7245

*The best results are in bold, while the second-best results are underlined.
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image. Then, a spectral data augmentation method for hyperspectral 
data is designed so as to simulate spectral aberrations due to different 
environmental factors. Through this data augmentation, there is a suf
ficiently large number of target samples. And these samples are com
bined with unlabeled pixels considered as background samples to form 
the training data of target-background. The binary classification prob
lem for the HTD is then converted into the spectral similarity metric 
problem. With the primary structure of the discriminator of 1D-GAN 
obtained through pre-training, a spectral metric Siamese network is 
constructed, and inherits the parameters of the discriminator for 
adapting quickly to target detection. Next, the priori target spectra are 
paired with the samples from the training data of target-background to 
obtain positive and negative sample pairs, respectively. And these 
sample pairs are fed into the metric Siamese network for the spectral 
difference metric learning. The SN-HTD obtains detection result utiliz
ing spectral information by measuring the difference between the 
spectra to be detected and the priori target spectra. Finally, combining 

the spatial information, the spectral detection result is filtered by using 
the first principal component of the to-be-detected HSI to obtain the 
final target detection result. Comprehensive experiments show that the 
SN-HTD method is superior to other comparison detectors.

Although the proposed SN-HTD demonstrates promising perfor
mance in hyperspectral target detection, particularly in limited labeled 
samples, it still has certain limitations. While guided image filtering is 

Fig. 16. Target-background separability boxplots for different datasets. (a) San Diego1, (b) San Diego2, (c) Beach, (d) Segundo, (e) HYDICE, (f) Cuprite.

Table 7 
The Effect of Ablation Experiments.

Options 1st 2nd 3rd

Pre-training √ × √
Spectral metric learning × √ √
San Diego1 0.9824 0.9818 0.9937
San Diego2 0.9906 0.9733 0.9932
Beach 0.9768 0.9864 0.9910
Segundo 0.9976 0.9982 0.9980
HYDICE 0.9548 0.9845 0.9923
Cuprite 0.8194 0.9896 0.9930

*The best results are in bold, while the second-best results are underlined.

Fig. 17. Different proportion for target and background samples.
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used to incorporate spatial information and enhance detection accuracy, 
the overall framework lacks an explicit background suppression mech
anism. As a result, its ability to suppress interference from complex 
backgrounds remains limited. This limitation is particularly evident in 
the AUC (PF, τ) metric, which reflects the effectiveness of background 
suppression. To address this in future work, integrating explicit back
ground modeling or suppression modules into the current framework 
would be considered. For example, spatial weighting strategies based on 
attention mechanisms could be incorporated to improve robustness and 
generalization in complex scenes.
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