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Thermal infrared hyperspectral images (TIR-HSIs) provide unique spectral insights that are often unattainable
with visible imagery, making them invaluable for applications such as land cover classification and geological
mapping. However, the high spectral redundancy in TIR-HSIs often leads to increased computational complexity
and potential performance degradation. To address this issue, this paper proposed an unsupervised temper-
ature—emissivity—driven band selection method (TEBS) for TIR-HSIs classification, which integrated a structured
state-space model (SSM) and a gated attention mechanism (GAM). Specifically, a feature extraction (FE) module
is firstly designed to separate land surface temperature (LST) and land surface emissivity (LSE) information,
incorporating superpixel segmentation to extract multi-scale LST features. Subsequently, a weight computation
(WC) module, leveraging SSM and GAM, is developed to generate robust band weights by sequentially leveraging
multi-scale LST features. Finally, a band evaluation (BE) module is employed to assess the band selection results
and optimize the model parameters. Experimental comparisons conducted on two datasets using four classic
classifiers show that TEBS framework outperforms state-of-the-art (SOTA) methods in classification accuracy.
These results underscore the potential of TEBS to advance land cover classification in thermal infrared hyper-

spectral imaging. The data and code will be made publicly available at: https://github.com/Qu-NX/TEBS.

1. Introduction

Thermal infrared hyperspectral remote sensing technology facilitates
the acquisition of radiative information of objects within the emissivity
spectral range, which typically spans from 8 to 14 pm (Neinavaz et al.,
2016). In contrast to visible and near-infrared hyperspectral images,
thermal infrared hyperspectral images (TIR-HSIs) possess distinct
spectral characteristics that reflect the thermal radiation emitted by
objects, providing critical insights into both the temperature and ma-
terial composition of the observed entities (Gao et al., 2021; Manolakis
et al., 2019). Owing to their unique properties, TIR-HSIs have exhibited
significant potential for application across a diverse array of fields,
including military reconnaissance, medical diagnostics, land cover
classification, and object detection (Aslett et al., 2018; Zhu et al., 2021).

The methods of land cover classification from TIR-HSIs exhibit
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significant differences compared to those employed in the visible and
near-infrared imagery. In the thermal infrared spectrum, the key infor-
mation captured by sensors includes land surface temperature (LST) and
land surface emissivity (LSE) (Ren et al., 2018; Zhao et al., 2024a). LSE is
defined as the ratio of the radiation energy emitted by an object at a
specific wavelength to that emitted by a blackbody, thereby reflecting
the surface characteristics of the object. By analyzing the LSE in TIR-
HSIs, it becomes feasible to more accurately identify and distinguish
different land covers, including various mineral types, vegetation spe-
cies, or surface materials (Ermida et al., 2023; Rock et al., 2016; Bal-
dridge et al., 2009). Furthermore, TIR-HSIs exhibit sensitivity to the LST,
and the temperature information associated with different land covers is
often closely correlated with their material composition, thereby offer-
ing an additional pathway for land cover classification (Taspinar, 2023;
Batchuluun et al., 2022). Additionally, TIR-HSIs are capable of
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functioning effectively in night-time conditions, as their operational
principle relies on the inherent thermal radiation emitted by objects
rather than relying on external light sources. This characteristic enables
stable and reliable data acquisition even under low-light or night-time
conditions (Cui et al., 2022; Weng, 2009). However, since TIR-HSIs
are acquired by hundreds or even thousands of contiguous spectral
bands (Zhao et al., 2024b), each spectral band is able to uncover and
reveal subtle material substances. However, this is also traded for sig-
nificant correlation among bands. In particular, many of spectral bands
may convey similar information or contribute minimally to specific
classification tasks. This results in many spectral bands which are
actually redundant. So, finding an appropriate band subset not only can
preserve information integrity but also reduce computational
complexity, most importantly, can alleviate model training complexity
(Xu et al., 2021; Sui et al., 2020). Consequently, it is imperative to
develop effective band selection methods to eliminate redundant bands,
while ultimately enhancing both the efficiency and accuracy of classi-
fication processes.

Currently, dimensionality reduction techniques for hyperspectral
data can be broadly categorized into two main approaches: band feature
extraction and band selection (Wang et al., 2022; Wang et al., 2020).
Band feature extraction refers to a method that transforms the charac-
teristics of the original bands into new features within a lower-
dimensional space. Common methods for band feature extraction
include Principal Component Analysis (PCA) (Uddin et al., 2021), Linear
Discriminant Analysis (LDA) (Aved et al., 2017), and Independent
Component Analysis (ICA) (Johnson et al., 2013), among others. These
methods effectively reduce the dimensionality of data by mapping high-
dimensional data to a new feature space through either linear or
nonlinear transformations. A significant advantage of band feature
extraction lies in its ability to substantially decrease the dimensionality
of the dataset while preserving as much information as possible. How-
ever, a notable drawback is that the newly transformed features often
lack physical meaning, which complicates the interpretation of the
specific contributions of individual bands to the classification task (Sun
et al., 2022a). On the other hand, band selection methods focus on
retaining only the most representative or discriminative bands from
hyperspectral data while eliminating redundant bands (Ou et al., 2023).
A variety of band selection algorithms have been proposed, some of
which employ clustering techniques to group similar bands and select
representative bands from each cluster. These approaches effectively
reduce redundancy and enhance efficiency. For instance, Sun et al. (Sun
et al., 2022b) proposed a band selection method based on hyperbolic
clustering that leveraged geometric information for unsupervised band
selection in hyperspectral images. Another prevalent strategy involves
scoring and ranking the bands according to their significance, subse-
quently selecting those with the highest scores. Such methods are
straightforward, intuitive, and easy to interpret. For example, Chang
etal. (Chang et al., 1999) developed a band selection algorithm aimed at
image classification that prioritized bands through eigenvalue decom-
position while incorporating divergence information to identify the
most representative subset of bands. Additionally, certain methods
employ optimization algorithms to identify the optimal combination of
bands that maximizes classification performance. An example is pro-
vided by Wan et al. (Wan et al., 2023), who proposed an adaptive multi-
strategy particle swarm optimization technique designed to address
local optima stagnation issues in band selection by employing a multi-
strategy evolutionary model and dynamically adjusting motion param-
eters, thereby effectively minimizing redundant information within
hyperspectral images.

In recent years, deep learning methods have demonstrated signifi-
cant potential and advantages in hyperspectral band selection. Tradi-
tional band selection approaches typically rely on feature engineering or
criteria based on prior knowledge to evaluate and select bands, whereas
deep learning methods can automatically learn and optimize band se-
lection strategies. Deep learning approaches can be further categorized
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into supervised, unsupervised, and semi-supervised methods. Super-
vised methods leverage large amounts of labeled data to train models.
For example, Zhan et al. (Zhan et al., 2017) proposed a hyperspectral
band selection method based on deep convolutional neural networks
and distance density, which enhanced computational efficiency by
partitioning the distance density subspaces. However, obtaining data
labels is often challenging in real-world scenarios, prompting the
development of unsupervised methods. Unsupervised approaches can
automatically uncover intrinsic relationships within the data without
the need for labels, thereby exhibiting broad applicability. For instance,
Goel and Majumdar (Goel and Majumdar, 2022) introduced a deep
transformation learning method that integrated K-Means clustering to
achieve hyperspectral band selection by combining feature extraction
with clustering. Moreover, semi-supervised band selection algorithms
have emerged as a research hotspot, as these methods require only a
small amount of data for training. For example, Feng et al. (Feng et al.,
2021) proposed a deep reinforcement learning-based band selection
method that facilitated efficient band search and evaluation, thereby
improving the classification performance of hyperspectral images.

Although numerous advanced band selection algorithms have been
proposed, most of them are specifically designed for visible and near-
infrared hyperspectral images. When these algorithms are directly
applied to TIR-HSIs for classification tasks, performance degradation
may occur due to the differing physical interpretations of the data
involved. To address this issue, this paper introduces an unsupervised
temperature-emissivity—driven band selection method (TEBS) for TIR-
HSI classification. The model simultaneously computes spatial and
spectral dimensional features and employs structured state-space
models (SSMs) alongside gated attention mechanisms (GAMs) to
perform band selection for thermal infrared hyperspectral data. Specif-
ically, this study begins by decomposing TIR-HSIs into LSE and LST
images, extracting LSE features for each band through depthwise sepa-
rable convolutions. Subsequently, both LST and LSE features are fed into
a network model composed of multiple computational modules that
synergistically combine SSM and GAM. During this process, LST features
derived from various superpixel segmentation scales contribute to the
computation of band weights, thereby enhancing the spatial feature
extraction related to land covers and enabling more accurate weight
assignments for the bands. Finally, an unsupervised band evaluation
network is employed to assess the quality of the selected bands and
update the model parameters accordingly.

The main contributions of this paper can be summarized as follows:

1) An unsupervised band selection method is proposed for TIR-HSIs
classification: To address the challenge of limited labelled data in
remote sensing, this paper proposes a novel unsupervised band se-
lection framework. This method, validated across multiple datasets
and tested with various classifiers, effectively reduces spectral
redundancy and computational complexity while preserving high
classification accuracy, demonstrating its robustness and
generalizability.

2) A multi-modal band selection network is introduced leveraging
domain-specific features: This paper introduces a band selection
framework that integrates LST and LSE features. By employing
superpixel segmentation to extract multi-scale LST characteristics,
this methodology significantly improves the performance of band
selection algorithms. This highlights the value of incorporating
domain-specific physical properties in hyperspectral image
processing.

3) An innovative WC module is designed combining SSM and GAM:
This work provides a novel perspective on the relationship between
SSM and Transformer architectures, thereby providing valuable in-
sights into the application of SSM in the field of remote sensing.

The remainder of this paper is organized as follows. Section 2 re-
views the related researches on Transformers and SSMs. A
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Fig. 1. Structure of the temperature-emissivity—driven band selection (TEBS) model.

comprehensive explanation of the proposed methodology is presented in
Section 3. Section 4 provides a detailed account of the comparative
experiments, ablation studies, sensitivity analysis, and hyperparameter
analysis. Finally, Section 5 offers concluding remarks for the paper.

2. Related work

With the advancement of computational capabilities, deep learning
algorithms have been widely applied in the remote sensing field,
demonstrating superior performance. The method proposed in this
paper leverages Transformer for processing sequential data and employs
the SSM model for data control. An overview of Transformer and SSM is
provided below.

2.1. Transformer models

The Transformer model was proposed by Vaswani et al. in 2017,
originally designed for machine translation tasks within the realm of
natural language processing (NLP) (Vaswani et al., 2017). This model
replaces traditional recurrent neural networks with an attention mech-
anism, effectively capturing long-range dependencies among sequence
elements, which significantly enhances the performance of Trans-
formers across various NLP tasks. In the domain of computer vision,
Dosovitskiy et al. (Dosovitskiy et al., 2021) introduced the Vision
Transformer (ViT), marking a pioneering application of the Transformer
architecture to image classification. ViT segments an image into a series
of fixed-size patches and treats these patches as an input sequence that is
processed by a Transformer encoder akin to those utilized in NLP tasks.
By leveraging self-attention mechanisms, ViT captures global contextual
information and demonstrates remarkable performance on large-scale
datasets, thereby facilitating the widespread adoption of Transformers
in computer vision. In recent years, Transformers have gradually been
introduced into the remote sensing field, with applications spanning
image classification (Wang et al., 2023; Ni et al., 2024), object detection
(Wang et al., 2024a; Zhou et al., 2022), and super-resolution (Long et al.,
2023; Yang et al., 2024). When addressing the challenge of data
redundancy in hyperspectral images, Transformer architectures and
attention mechanisms exhibit exceptional performance. For example, Li
et al. (Li et al. 2021) proposed a non-local attention network to capture

long-range dependencies among spectral bands, achieving outstanding
results. Additionally, Cui et al. (Cui et al. 2024) developed a spatial-
spectral cross-dimensional attention network that effectively reduced
redundancy in hyperspectral images. In conclusion, Transformers
demonstrate significant research potential in tackling the issue of
hyperspectral data redundancy.

2.2. Structured State-Space models

SSM represents an emerging architecture for sequence modeling,
drawing inspiration from the principles of classical state-space models,
such as the Kalman filter (Gu et al., 2022). Dao and Gu (Dao and Gu,
2024) further refined the theoretical foundations of SSMs and intro-
duced the Mamba2 model. Leveraging the exceptional performance and
significant potential of Mamba2, SSMs have attracted increasing atten-
tion and have been applied in the field of remote sensing. For instance,
Zhao et al. (Zhao et al., 2024c) proposed a model specifically designed
for large-scale dense prediction tasks in remote sensing images. By
incorporating an all-directional selection scanning module, this model
achieves global modeling capabilities with linear complexity, thereby
enhancing performance in semantic segmentation and change detection
tasks. Zhang et al. (Zhang et al., 2024) developed a remote sensing
image segmentation network based on link aggregation jump connec-
tions that integrated multi-scale feature aggregation with a hybrid self-
attention mechanism to consolidate multi-dimensional information and
facilitate cross-scale semantic exchange, thus improving accuracy and
generalization in semantic segmentation tasks. Overall, SSMs are
increasingly finding applications in remote sensing and are gradually
demonstrating their research value.

3. Proposed method

To fully harness the LST information within TIR-HSIs, this study
introduces a band selection methodology that integrates both LST and
LSE, as illustrated in Fig. 1. In summary, the proposed method comprises
three modules: Feature Extraction (FE), Weight Computation (WC), and
Band Evaluation (BE). Initially, the LST and LSE features are extracted
from TIR-HSIs. Subsequently, the weights of each band are computed,
and a subset of bands to be retained is selected based on their respective
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Fig. 2. Structure of the Feature Extraction (FE) module.

weights. Finally, an evaluation network is employed to assess the out-
comes of the band selection process through band reconstruction.

3.1. Feature extraction (FE) module

Unlike hyperspectral images in the visible spectrum, TIR-HSIs not
only capture the spectral characteristics of terrestrial targets but also
their thermal properties. To decouple these two aspects, the Tempera-
ture and Emissivity Separation (TES) algorithm (Gillespie et al., 1998) is
employed. This algorithm estimates LST and LSE from multi-band
radiance data by utilizing the empirical relationship between spectral
contrast and minimum emissivity.

Due to variations in physical properties such as specific heat capacity
and thermal conductivity, different types of land cover typically exhibit
distinct temperature variations. This temperature differential is usually
closely associated with surface factors such as vegetation cover and soil
moisture (He et al., 2023; Liu et al., 2023a), and manifests itself through
texture features that are significant for research in target detection,
object classification, and related fields.

However, due to the continuous nature of temperature variations
between adjacent objects, quantifying or directly comparing these
temperature differences poses significant challenges. For example, the
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water temperature at the center of a lake may differ from that at the
edge-a phenomenon referred to as “the same material with different
temperatures”, which arises from factors such as energy exchange
among substances. Additionally, under specific thermal equilibrium
conditions, various land cover types within the same environment may
demonstrate the occurrence of “different materials with the same tem-
perature”. Consequently, while the LST images contain substantial
amounts of critical information, improper analysis can lead to dimin-
ished model accuracy.

To address this issue, the present study proposes a dedicated FE
module, as illustrated in Fig. 2. Specifically, given the input radiance
data RD € R**W*C  the TES algorithm is initially employed to obtain LST
data LTD € R™W and LSE data LED ¢ R?*"*C, Subsequently, the Simple
Linear Iterative Clustering (SLIC) algorithm (Achanta et al., 2012) is
applied to the LST image for superpixel segmentation. This process di-
vides the LST image into multiple superpixel regions composed of pixels
with similar temperature characteristics. By integrating both tempera-
ture values and spatial positions of pixels, SLIC effectively captures the
spatial variation patterns of LST. Following this step, a sliding window
method is adopted to extract local features from both LST and LSE data.
For each pixel within a fixed-size window measuring 10 x 10 pixels, this
approach enables the capture of spatial variation and texture
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Fig. 3. Structure of the SSM-Transformer Block (STB).
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information within its neighborhood. To fully leverage these spatial
features, positional encoding is integrated into both LST and LSE data
within the window context, allowing the model to perceive and utilize
pixel locations in relation to one another within the image. Ultimately,
one feature vector is generated per spectral channel resulting in C
feature vectors-where C represents the number of spectral channels.
Each feature vector not only retains the spectral information corre-
sponding to its respective channel but also integrates local spatial fea-
tures along with positional cues.

Overall, this methodology effectively addresses the challenges
associated with “the same material with different temperatures” as well
as “different materials with the same temperature”. Through multi-scale
clustering and superpixel segmentation techniques, it incrementally
extracts temperature information from micro- to macro-scales, thereby
revealing fundamental properties of surface materials in a more
comprehensive and nuanced manner.

3.2. Weight computation (WC) module

The WC module assigns weights to each spectral band based on LST
and LSE features. This module comprises several computational blocks,
referred to as SSM-Transformer Blocks (STBs), which integrate the
characteristics of SSM and Transformer. The operational mechanism
involves calculating band correlations utilizing LSE features while
introducing LST as an auxiliary feature, thereby progressively deter-
mining band weights across multiple scales. Within each STB, the
fundamental computational unit is a State-Gated Attention (SGA)
structure that synergizes SSM with a GAM, as shown in Fig. 3.

Specifically, the input data to the SGA comprises two components:
the LSE information X € R®*F and the state information. The state in-
formation encompasses the LST feature T € R and the band weight
feature BW € RC. Here, F denotes the dimensionality of the feature
mapping. The computation process can be interpreted from two per-
spectives. Focusing on a specific LST state, the SGA can be viewed as a
gated multi-head attention mechanism. For each attention head, the
query matrix Q, key matrix K, and value matrix V can be defined as
follows:

Q=WXX;K=Wx, v=w'x 1

where, W& WX, and W" are learnable parameter matrices. The input
data X encompasses the features across all bands. Q refers to the “query”
generated by a specific band within the entire sequence of bands, aimed
at assessing the correlation between that band and other bands. K rep-
resents the sequence data being queried. This computation can be rep-
resented as follows:

Score = QK" 2

where, the Score represents the attention matrix, which illustrates the
correlation between Q and K within the feature space. A larger value of
an element in the Score indicates a stronger correlation between the
corresponding bands. To mitigate excessively large values resulting from
the inner product, these values are typically transformed into weights
with the calculation performed as follows:

Score
Att = softmax 3
( vk )

K

where, Att represents the attention weights, dk is the dimension of the
keys for each attention head, and softmax(-) denotes a nonlinear acti-
vation function. Its primary purpose is to ensure that the sum of all
output values equals 1, thereby allowing the output to be interpreted as
a probability distribution and while enhancing numerical stability. For a
traditional attention mechanism, the output of a given attention head is:

O=AttxV (©)]
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where, O represents the output of the attention mechanism, which is the
weighted sum of V using the attention weights, yielding an output that
integrates the important band information.

Compared to the traditional attention mechanism, this approach
integrates a gating mechanism utilizing T and BW, effectively
combining LST and band weight information with LSE. The computa-
tional process can be articulated as follows:

Ve = (BW x W x T)V 5)

where, V¢ denotes the values obtained following the application of the
gating mechanism, and Wg is a trainable weight matrix designed to
aggregate the information from both LST and band weights. Therefore,
the output generated by the attention mechanism can be expressed as:

OG = Att x VG (6)

By incorporating the gating mechanism, the features derived from
LST are integrated with those from LSE. This approach effectively cou-
ples multiple data sources with physical significance, thereby enhancing
the model’s representational capacity. On the other hand, when
considering the entire module as a sequence, it can also be considered a
generalized SSM model. Specifically, within this module comprising
multiple SGAs, each SGA receives input consisting of the state h and the
data X. Let t represent the time scale that varies according to the multi-
scale superpixel segmentation of the LST image. Consequently, h={BW,
T} represents the state information of an SGA at time t, while X; signifies
the LSE information fed to that SGA at time t. If we concentrate on
examining the information flow between SGAs while disregarding re-
sidual connections and linear mappings, h¢;1 and X;,; can be articulated
as:

h = SPdown (ht) + O W, 7
X1 =X + Og: ®

where, Spgown(+) represents the superpixel segmentation applied to the
LST image in h for down-sampling. Og; denotes the output of the gated
attention operation applied to the input X; under the control of h
accordingly, Og; can be regarded as a function of h, and X;. W, signifies a
trainable matrix that facilitates the mapping of LSE features to weight
features. Based on (7) and (8), the multiple SGAs in the WC module can
be interpreted as a generalized SSM.

Overall, the integration of multiple STBs within the TEBS forms a
generalized SSM, which comprehensively extracts the spatial informa-
tion and variation patterns from LST images across various segmentation
scales. Meanwhile, the SGA embedded in each STB utilizes an LST image
at a specific segmentation scale as auxiliary information to participate in
the computation of the inter-band correlations. This structure facilitates
a more thorough extraction of surface spatial features and enhances the
calculation of correlations among thermal infrared hyperspectral bands.
Under the simplified assumption that linear mappings and activation
functions are ignored, the computation flow of the WC module proceeds
as follows:

Algorithm 1 Weight Computation module

Input:
Feature X, containing LSE information
State feature hy containing LST and band weight information
Output:
1 While Iterating over LST superpixel feature maps of all sizes:
Do
2 Advance to the next time step t and update the LST superpixel features.
3 Compute Q, K, V and Score at time step t using (1) and (2).
4 Calculate Att and Vg at time step ¢t using (3) and (5).
5 Compute the output of the gated attention mechanism, Og;, using (6).
6 Calculate X, and hy, using (7) and (8).
Return the band weight matrix BW from h;.;
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Fig. 4. Colorful ground-truth images used in this paper, with class O representing the background. (a) Ground-truth of Suburb dataset, divided into 16 classes. (b)

Ground-truth of Urban dataset, divided into 11 classes.

3.3. Band evaluation (BE) module

Hyperspectral data typically encompass hundreds or even thousands
of spectral bands; however, not all bands hold equal significance in
conveying information. Consequently, selecting a representative subset
of bands is crucial for reducing both data dimensionality and compu-
tational cost. This method introduces an unsupervised band evaluation
module designed to assess the representativeness of the selected band
subset by reconstructing spectral information. Specifically, the method
begins with the selection of a band subset based on predetermined band
weights, which serves as the input to the band evaluation module.
Subsequently, an unsupervised band evaluation module comprising an
encoder and a decoder is constructed. The encoder is responsible for
mapping the input band subset into a low-dimensional latent space,
while the decoder reconstructs the complete spectral data from this
latent space. During training, the discrepancy between the reconstructed
spectral data and the original full spectral data is utilized as the loss
function, which can be expressed as:

1 XTy;
Loss==—) — log< Ll > 9)
N Z gl

ieN

where, N represents the total number of pixels in the image, X; denotes
the predicted value of the pixel with index i, and Y; represents the
ground truth of the pixel with index i. By assessing the magnitude of the
reconstruction error, the representativeness of the selected band subset
can be determined. A minimal reconstruction error indicates that this
band subset encompasses sufficient critical information to effectively
represent the original high-dimensional data. Conversely, a larger error
implies that the chosen bands may be deficient in essential information,
thereby indicating inadequate representativeness.

4. Results and analysis

In this section, the two datasets utilized in the experiments are first
introduced. Subsequently, the proposed method is compared against
several SOTA methods to validate its effectiveness and computational
performance. An ablation study follows, demonstrating the beneficial
impact of incorporating LST information and the SGA structure. Next,
sensitivity analysis experiments are performed to assess the robustness
of the TEBS method against image noise. Finally, the impact of model
hyperparameter settings on TEBS is evaluated through hyperparameter
analysis.

4.1. Hyperspectral datasets

The datasets are acquired from two TIR-HSI images captured by an
airborne system, as illustrated in Fig. 4. The images are obtained in
Hengdian Town, Dongyang City, Zhejiang Province, China, on May 24,
2019. Both images have a spatial resolution of 1 m, cover a spectral
range from 8.061 to 11.217 pm, and contain 110 spectral bands with a
full width at half maximum of 38 nm. The original images represent
radiance measurements expressed in unit of W/(mz-sr-pm), and their
high spectral resolution enables the extraction of abundant surface in-
formation. Sample annotation was conducted using ENVI software.
Initially, labels were generated via the ENVI provided built-in classifi-
cation tool. Subsequently, three experienced annotators were invited to
join together to refine these initial annotations using two co-registered
visible-light hyperspectral images with 0.25 m spatial resolution as
reference images. Since the spatial resolution of the visible-light data is
four times greater than that of the thermal-infrared hyperspectral im-
agery and also provides detailed spectral signatures, the quality check
can be evaluated by visual inspection. Accordingly, this practice sub-
stantially mitigates subjectivity in the labeling process. The Suburb
dataset comprises 16 land cover types, including water bodies, vegeta-
tion, and buildings, and is suitable for land cover classification and
change detection. The Urban dataset is divided into 11 land cover types,
primarily encompassing roads, buildings, and other artificial structures,
with a focus on complex man-made surfaces.

4.2. Comparison experiments

To validate the effectiveness of TEBS, comparative experiments are
conducted against other SOTA methods, encompassing different
numbers of bands, with classification performance evaluated from four
distinct classifiers: CNN, SVM, KNN, and Transformer. The CNN classi-
fier is implemented as a three-layer one-dimensional convolutional
network; the SVM classifier utilizes an RBF kernel and the regularization
parameter is set to be 5; the KNN classifier is configured with 5 neigh-
bors and uniform weighting; The Transformer processes 3 x 3-pixel
patches as input and comprises 3 encoder layers, each containing 8
attention heads.

The classification overall accuracy (OA) of each method is recorded,
and the performance of TEBS is comprehensively assessed by analyzing
both the mean of OA. The comparison methods include: the deep rein-
forcement learning for band selection names as DRL (Mou et al., 2022),
the GCN and CNN for band selection named as GCN-CNN-BS (Yu et al.,
2022), the contrastive learning for band selection named as ContrastBS
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Table 1

Comparison of different band selection methods on Suburb dataset based on CNN classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —BS

Band BS
10 83.34 83.93 84.08 84.02 84.29 83.79 80.84 75.50 84.52 84.47
20 85.56 86.04 85.95 85.44 85.52 85.64 84.79 76.30 85.74 86.05
30 85.54 86.24 86.23 86.03 85.95 86.21 85.62 78.38 86.20 86.43
40 86.56 86.44 86.63 86.53 86.48 86.63 86.44 82.92 86.58 86.71
50 86.70 86.55 87.00 86.27 86.18 86.65 86.70 82.72 86.68 87.21
60 86.72 87.03 87.00 86.89 86.94 87.07 87.15 84.13 87.16 87.57
70 87.30 87.04 86.68 87.42 86.94 87.21 87.49 86.82 87.34 87.53
80 87.48 87.55 87.38 87.48 86.89 87.59 87.51 87.77 87.31 87.97
90 87.34 87.39 87.26 87.62 87.57 87.50 87.68 87.65 87.54 88.01
100 87.71 88.02 87.72 87.86 87.21 87.74 87.86 87.85 87.65 88.36

The best values are highlighted in bold, and the second-best values are underlined.

Table 2

Comparison of different band selection methods on Suburb dataset based on SVM classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —BS

Band BS
10 83.88 85.07 84.55 85.24 84.70 84.55 83.36 75.17 85.18 85.51
20 86.20 86.34 86.46 86.33 86.59 86.40 86.06 77.17 86.70 86.88
30 86.96 87.01 87.28 87.28 87.27 87.12 87.26 79.02 87.37 87.77
40 88.07 88.01 87.80 87.92 87.49 87.81 87.77 82.69 87.84 87.96
50 88.44 88.47 88.26 88.29 87.91 88.20 88.30 84.54 88.53 88.70
60 88.63 88.77 88.77 88.68 88.66 88.70 88.58 86.31 88.90 88.98
70 89.08 89.19 89.09 88.98 88.67 89.04 89.03 88.13 89.16 89.37
80 89.38 89.39 89.42 89.29 88.90 89.39 89.11 88.86 89.32 89.55
90 89.67 89.66 89.55 89.63 89.22 89.62 89.47 89.31 89.59 89.82
100 89.85 89.89 89.78 89.79 89.25 89.81 89.66 89.59 89.91 90.12

The best values are highlighted in bold, and the second-best values are underlined.

Table 3

Comparison of different band selection methods on Suburb dataset based on KNN classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC -BS

Band BS
10 85.39 85.85 85.39 85.77 85.82 85.51 84.42 76.21 86.19 86.30
20 86.68 86.65 86.90 86.64 87.00 86.80 86.42 78.93 87.06 87.37
30 87.06 87.06 87.26 87.22 87.45 87.24 87.39 80.61 87.38 87.47
40 87.61 87.63 87.49 87.57 87.40 87.55 87.44 83.09 87.59 87.65
50 87.65 87.75 87.59 87.65 87.29 87.53 87.60 84.16 87.65 88.06
60 87.53 87.76 87.74 87.72 87.86 87.71 87.62 85.37 87.68 88.16
70 87.75 87.90 87.84 87.77 87.74 87.81 87.78 86.76 87.76 88.12
80 88.01 87.86 87.81 87.79 87.75 87.95 87.80 87.36 87.88 88.02
90 87.97 87.94 87.92 87.87 87.61 87.84 87.80 87.58 87.89 88.13
100 88.08 87.91 88.05 87.94 87.87 87.78 87.88 87.63 87.94 88.12

The best values are highlighted in bold, and the second-best values are underlined.

Table 4

Comparison of different band selection methods on Suburb dataset based on Transformer classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —-BS

Band BS
10 86.03 86.28 86.71 86.24 86.48 86.34 86.22 77.20 86.19 86.82
20 88.67 89.50 89.53 86.97 87.27 87.88 83.77 77.57 89.37 89.64
30 86.31 86.95 89.23 89.17 88.35 88.76 87.96 77.90 88.81 89.97
40 89.19 86.93 86.72 87.02 87.23 89.08 88.52 80.05 89.10 89.74
50 89.55 87.04 88.75 88.58 88.91 87.08 85.80 84.82 88.72 89.92
60 86.67 88.27 88.83 88.21 87.53 88.02 88.09 85.77 88.10 90.28
70 86.81 89.76 88.17 85.44 89.46 89.00 89.52 86.46 89.34 89.91
80 89.53 89.38 89.80 87.53 88.28 87.81 88.86 87.58 88.32 90.24
90 89.92 89.41 89.28 88.31 87.51 87.91 89.57 86.95 90.22 90.79
100 88.05 88.37 89.63 90.45 88.32 87.69 88.27 88.18 89.72 90.56

The best values are highlighted in bold, and the second-best values are underlined.
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Fig. 5. Classification comparison from different band selection algorithms on the Suburb dataset when selecting 20 bands.

(Li et al., 2023), the transformer-based reconstruction network for band
selection named as BSFormer (Liu et al., 2023b), the multi-level repre-
sentation learning for band selection named as MLRLFMESC (Wang
et al., 2024b), the spectral-spatial cross-dimensional attention network
for band selection named as SSANet-BS (Cui et al., 2024), the genetic
algorithm named as GA (Patka et al., 2021), the successive projections

algorithm named as SPA (Aratjo et al., 2001), and the uniform band
selection names as UBS. Among these methods, DRL is based on deep
reinforcement learning; GCN-CNN-BS, ContrastBS, BSFormer,
MLRLFMESC, and SSANet-BS are deep learning-based approaches; GA,
SPA, and UBS are traditional methods. Additionally, during the training
process, TEBS employs a WC module composed of 6 STBs. The optimizer
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Fig. 6. Classification comparison from different band selection algorithms on the Urban dataset when selecting 20 bands.

employed is Adam, with a learning rate set to 1 x 10>, and the learning to other SOTA methods, the TEBS achieves the best performance in most
rate is dynamically reduced through a cosine annealing algorithm. of cases. Specifically, when classification is performed by CNN, SVM,
1) Suburb dataset: This study conducts comparative experiments on KNN, and Transformer methods, using TEBS for band selection results in
the Suburb dataset and performs a quantitative analysis, with the results optimal classification with accuracies of 88.36 %, 90.12 %, 88.16 %, and

presented in Tables 1-4 and Fig. 5. The findings indicate that, compared 90.79 %, respectively. Additionally, it is noteworthy that the
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Table 5

Comparison of different band selection methods on Urban dataset based on CNN classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —BS

Band BS
10 77.01 76.16 75.82 76.94 77.53 77.40 76.18 63.32 78.65 79.15
20 78.36 78.29 78.41 78.78 79.21 79.59 79.83 71.23 80.27 80.94
30 79.61 78.74 79.24 81.28 79.84 80.23 81.96 71.34 82.18 82.38
40 80.98 80.88 81.34 81.30 79.78 81.88 80.48 74.23 81.27 81.45
50 80.74 79.49 81.05 82.18 80.47 80.65 81.50 74.54 81.64 82.74
60 80.86 82.11 82.32 81.65 79.69 81.68 81.72 75.76 81.53 82.58
70 80.74 80.84 83.02 80.54 81.72 81.67 80.97 78.14 81.24 82.60
80 82.05 81.40 81.73 81.28 82.05 81.40 82.28 80.23 82.27 83.10
90 81.88 82.61 81.09 80.41 82.36 82.33 80.26 80.65 79.93 82.98
100 83.22 81.66 81.29 81.46 80.13 82.24 81.02 81.08 81.53 83.33

The best values are highlighted in bold, and the second-best values are underlined.

Table 6

Comparison of different band selection methods on Urban dataset based on SVM classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC -BS

Band BS
10 74.52 73.96 74.32 74.36 74.07 74.93 75.15 66.29 75.93 76.03
20 77.51 76.78 77.73 77.42 78.43 78.42 78.54 71.73 78.95 79.39
30 79.43 78.85 80.10 79.89 79.90 79.91 80.13 72.62 80.04 80.19
40 81.35 81.03 80.89 81.36 79.80 81.24 81.02 75.59 81.25 81.14
50 82.09 81.64 81.68 82.06 81.44 82.02 81.90 77.18 82.01 82.22
60 81.75 82.58 82.48 82.68 81.85 82.66 82.48 77.94 82.60 82.75
70 83.19 83.50 83.07 83.30 82.27 83.33 83.17 80.02 83.14 83.56
80 83.65 84.05 83.79 83.55 82.56 83.75 83.54 81.89 83.74 83.58
90 84.15 84.06 84.02 83.86 82.99 83.97 83.90 82.71 84.01 84.27
100 84.38 84.16 84.49 84.23 83.47 84.36 84.39 83.42 84.46 84.57

The best values are highlighted in bold, and the second-best values are underlined.

Table 7

Comparison of different band selection methods on Urban dataset based on KNN classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —BS

Band BS
10 77.33 77.94 77.16 77.86 77.66 77.99 78.04 69.16 79.39 79.40
20 79.09 78.67 79.38 78.98 79.90 79.69 79.76 73.56 80.13 80.22
30 79.78 79.71 80.33 80.30 80.50 80.06 80.47 74.83 80.63 80.67
40 80.43 80.59 80.52 80.52 80.14 80.64 80.38 76.72 80.67 80.71
50 80.86 80.74 80.56 80.50 80.62 80.58 80.69 77.29 80.59 81.23
60 80.49 81.01 80.87 80.80 80.56 80.67 80.53 77.64 80.94 81.01
70 80.82 81.11 80.99 80.78 80.69 80.85 80.69 78.82 80.78 81.26
80 81.18 81.13 81.00 80.85 80.76 81.00 80.89 79.90 80.88 80.92
90 81.13 81.12 81.03 80.98 80.60 80.91 80.96 79.99 80.76 81.42
100 81.09 81.12 81.05 81.00 80.86 80.94 80.70 80.42 80.98 81.46

The best values are highlighted in bold, and the second-best values are underlined.

Table 8

Comparison of different band selection methods on Urban dataset based on Transformer classifier.
Method DRL GCN- Contrast BS MLRLF SSANet GA SPA UBS TEBS

CNN- BS Former MESC —BS

Band BS
10 83.61 82.59 82.42 82.72 83.06 83.28 83.13 73.93 83.30 85.02
20 84.32 83.05 83.32 83.75 82.97 84.21 84.62 75.86 83.76 86.25
30 83.75 84.72 84.15 84.24 83.57 85.58 85.12 76.77 86.01 86.04
40 85.30 86.21 86.06 85.81 82.61 85.82 85.30 82.20 85.81 86.62
50 84.63 85.85 85.04 85.94 85.45 85.55 85.43 81.12 85.57 87.76
60 85.67 85.59 85.40 85.66 84.71 86.56 85.03 81.72 86.44 86.77
70 86.08 85.80 86.52 85.48 85.15 85.48 85.32 84.16 86.80 87.82
80 87.44 86.89 86.41 86.86 86.47 86.40 87.06 86.31 86.25 87.34
90 85.32 85.25 86.15 87.24 85.34 86.83 86.23 85.55 87.17 87.93
100 86.63 86.14 86.97 86.67 86.16 86.77 86.22 86.60 86.53 87.99

The best values are highlighted in bold, and the second-best values are underlined.
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Table 9
The runtime (s) of selecting 20 bands by different band selection methods on the Suburb dataset.
Method GCN-CNN-BS ContrastBS BSFormer MLRLFMESC SSANet-BS TEBS
Band
20 73.2 41.2 19.6 8.9 3961.7 8.7
The best values are highlighted in bold, and the second-best values are underlined.
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Fig. 7. Classification OA of TEBS and other ablation methods on the Suburb and Urban datasets using four classifiers.

classification accuracy does not exhibit a linear increase with the
number of bands utilized. The experimental results indicate that, while
increasing the number of bands significantly enhances classification
accuracy during the initial stages, this improvement gradually di-
minishes and eventually stabilizes once the number of bands reaches a
certain threshold (e.g., 20 bands). For instance, when employing the
CNN classifier, the accuracy of TEBS at 20 bands is 86.05 %, whereas at
100 bands, it only marginally increases to 88.36 %. This indicates that as
the number of bands increasing, the classification performance of the
algorithm approaches its upper limit, and further increments in band
count may not enhance the accuracy and could potentially lead to a
decline in performance. This phenomenon is closely associated with the
redundancy inherent in hyperspectral data and underscores the critical
importance of judicious band selection for improving classification ac-
curacy. Merely increasing the number of bands is not an effective
strategy for enhancing classification performance.

2) Urban dataset: To further validate the advantages of the TEBS,
comparative experiments are conducted using the Urban dataset, with
the results illustrated in Fig. 6 and Tables 5-8. The results indicate that
TEBS exhibits superior classification performance to other SOTA
methods. In particular, TEBS achieves the best classification accuracies
of 83.33 %, 84.57 %, 81.46 %, and 87.99 % for CNN, SVM, KNN, and
Transformer classifiers, respectively, which demonstrates high
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generalizability. Consistent with findings from the Suburb dataset, these
experiments indicate that classification accuracy does not exhibit a
linear increase relative to the number of bands utilized. In the initial
phases of increasing the band count, there is an improvement in clas-
sification accuracy; however, upon reaching a certain threshold, this
growth begins to decelerate gradually and even displays minor fluctu-
ations. This suggests inherent redundancy in hyperspectral data and
shows that indiscriminately increasing more bands does not improve
performance.

3) Computation Time: To evaluate the computational performance of
the TEBS, a comparative experiment on processing time is proposed.
Specifically, the computational time of TEBS is compared with that of
other deep learning-based methods when selecting 20 bands from the
Suburb dataset. The experiments utilize an NVIDIA RTX 4080 GPU and
an Intel Core i9-14900KF CPU. The training time per epoch for each
deep model is provided in Table 9. The results indicate that TEBS incurs
lower computational overhead, demonstrating its high practical
applicability.

4.3. Ablation experiments

To further verify the efficacy of TEBS, ablation experiments focusing
on LST information and the model structure are conducted. Specifically,
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Fig. 8. Classification OA on the Suburb and Urban datasets with varying levels of added noise using four classifiers.

three comparative approaches are designed. Firstly, all LST-related in-
formation and corresponding network structures in TEBS are entirely
removed, resulting in a simplified model that can be considered as a
standard Transformer model, abbreviated as TF. Secondly, while pre-
serving the LST information, the SGA module is eliminated. Alterna-
tively, the LST and LSE information is integrated through a
straightforward linear mapping, yielding a model designated as LM.
Lastly, the residual connections within the STB module are removed,
while only the SGA module is retained, and this variant is named as OS.
According to Fig. 7, the classification performance of both the TEBS and
OS are superior to that of the TF, thereby validating the beneficial
impact of incorporating LST information into the band selection process.
The land cover distribution features embedded in the LST images pro-
vide models with more comprehensive spatial semantic information,
which is crucial for enhancing classification accuracy. Conversely,
despite the integration of LST information into the LM, its classification
performance does not align with expectations. This indicates that not all
methods are capable of effectively extracting the information from LST
images; only through the application of suitable feature extraction
techniques can surface distribution features be more efficiently captured
and utilized. Additionally, a performance comparison between the TEBS
and OS reveals that the SGA module, as the core component of the
approach, plays a pivotal role in the overall feature extraction process,
ultimately enhancing classification performance. Finally, it is note-
worthy that when employing CNN or Transformer as the classifier, the
advantages of the TEBS become even more significant. This may be
attributed to the high data dependency inherent in deep learning
methods; compared with SVM and KNN, deep learning approaches rely
more heavily on an effective band selection strategy to fully exploit the
model’s potential.
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4.4. Sensitivity analysis experiment

Compared to the visible spectrum, the thermal infrared spectrum
generally exhibits lower spectral contrast and signal-to-noise ratio
(Zhu et al., 2021). This characteristic amplifies the impact of noise
during classification tasks. To investigate the robustness of the bands
selected by TEBS against noise interference, a sensitivity analysis
experiment is conducted. Specifically, Gaussian noise levels of 0.5 %
and 1 % are added to the emissivity data from both datasets, and the
classification accuracy of the bands selected by TEBS is evaluated using
four classifiers, with the results presented in Fig. 8. The experimental
findings indicate that for both datasets, there is a slight decrease in the
classification accuracy when the noise level is set at 0.5 %. However, a
more pronounced decline in accuracy occurs as the noise level in-
creases to 1 %. Additionally, it is observed that the effect of noise at
equivalent level differs between the two datasets. Overall, adding noise
has a relatively minor effect on the classification performance for
Suburb dataset, while Urban dataset experiences a more significant
reduction in classification accuracy. This phenomenon may be attrib-
uted to Suburb dataset containing land cover types with higher spectral
contrast, whereas Urban dataset comprises land cover types that are
inherently similar. Consequently, this similarity leads to further blur-
ring of spectral features due to noise interference, ultimately dimin-
ishing classification accuracy. In summary, although the band subset
selected by the TEBS demonstrates a certain level of robustness against
noise disturbances, its resistance appears relatively weak when clas-
sifying similar land cover types.

4.5. Hyperparameter analysis experiment

As hyperparameter settings can substantially affect deep learning
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Fig. 9. Classification OA on the Suburb and Urban datasets with different hyperparameter using four classifiers.

models, experiments are conducted to assess the influence of learning
rate and the number of attention heads. The results are presented in
Fig. 9. For instance, when TEBS is applied to select twenty spectral
bands, the learning rate is set to 0.0001, 0.0005, 0.001, 0.005, and 0.01,
band selection is carried out, and the overall accuracy of four classifiers
(CNN, SVM, KNN, and Transformer) is measured on the Suburb and
Urban datasets. The number of attention heads in TEBS’s multi-head
attention mechanism is also varied (4, 6, 8, 10, and 12), and the OA of
the same classifiers on both datasets is again evaluated. Fig. 9 shows that
as the learning rate increases, band-selection performance first improves
and then declines. A learning rate that is too low leads to sluggish
training and under-convergence, whereas a rate that is too high makes
the model prone to becoming trapped in local optima and prevents full
exploitation of its capacity. Similarly, increasing the number of attention
heads enhances TEBS’s band-selection effectiveness up to eight heads,
beyond which no further appreciable improvements can be observed.
This is likely because more attention heads may improve feature
extraction, but its excessive number of heads does increase training
complexity and may eventually degrade performance.

5. Conclusions and discussions

This paper presents a novel band selection method, named TEBS,
designed specifically for TIR-HSI classification. A key innovation of
TEBS lies in its ability to simultaneously extract spatial information from
LST and spatial-spectral information from LSE. The ablation study
demonstrates the superiority of this multimodal feature extraction
approach over state-of-the-art methods that rely exclusively on LSE
features. Within the proposed TEBS framework, a structured module
(named STB) is designed, integrating SSM and GAM, wherein the weight
information for each band is explicitly calculated in terms of states.
Comparative experiments performed on two datasets, utilizing four
classical classifiers, demonstrate that TEBS significantly reduces spectral
redundancy while preserving classification accuracy. Furthermore, the
proposed TEBS outperforms the state-of-the-art methods, highlighting
its effectiveness and robustness. Despite the promising results and con-
clusions, several issues remain that warrant further exploration. For
instance, due to labeling limitations in the datasets, this paper does not
investigate the performance of TEBS in other applications, such as land
surface temperature retrieval. In addition, the interpretability of deep
learning models is also worth further exploration. Addressing these
limitations will be an important focus of our future work to further
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improve the generalizability and versatility of the TEBS algorithm.
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