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A B S T R A C T

Thermal infrared hyperspectral images (TIR-HSIs) provide unique spectral insights that are often unattainable 
with visible imagery, making them invaluable for applications such as land cover classification and geological 
mapping. However, the high spectral redundancy in TIR-HSIs often leads to increased computational complexity 
and potential performance degradation. To address this issue, this paper proposed an unsupervised temper
ature–emissivity–driven band selection method (TEBS) for TIR-HSIs classification, which integrated a structured 
state-space model (SSM) and a gated attention mechanism (GAM). Specifically, a feature extraction (FE) module 
is firstly designed to separate land surface temperature (LST) and land surface emissivity (LSE) information, 
incorporating superpixel segmentation to extract multi-scale LST features. Subsequently, a weight computation 
(WC) module, leveraging SSM and GAM, is developed to generate robust band weights by sequentially leveraging 
multi-scale LST features. Finally, a band evaluation (BE) module is employed to assess the band selection results 
and optimize the model parameters. Experimental comparisons conducted on two datasets using four classic 
classifiers show that TEBS framework outperforms state-of-the-art (SOTA) methods in classification accuracy. 
These results underscore the potential of TEBS to advance land cover classification in thermal infrared hyper
spectral imaging. The data and code will be made publicly available at: https://github.com/Qu-NX/TEBS.

1. Introduction

Thermal infrared hyperspectral remote sensing technology facilitates 
the acquisition of radiative information of objects within the emissivity 
spectral range, which typically spans from 8 to 14 μm (Neinavaz et al., 
2016). In contrast to visible and near-infrared hyperspectral images, 
thermal infrared hyperspectral images (TIR-HSIs) possess distinct 
spectral characteristics that reflect the thermal radiation emitted by 
objects, providing critical insights into both the temperature and ma
terial composition of the observed entities (Gao et al., 2021; Manolakis 
et al., 2019). Owing to their unique properties, TIR-HSIs have exhibited 
significant potential for application across a diverse array of fields, 
including military reconnaissance, medical diagnostics, land cover 
classification, and object detection (Aslett et al., 2018; Zhu et al., 2021).

The methods of land cover classification from TIR-HSIs exhibit 

significant differences compared to those employed in the visible and 
near-infrared imagery. In the thermal infrared spectrum, the key infor
mation captured by sensors includes land surface temperature (LST) and 
land surface emissivity (LSE) (Ren et al., 2018; Zhao et al., 2024a). LSE is 
defined as the ratio of the radiation energy emitted by an object at a 
specific wavelength to that emitted by a blackbody, thereby reflecting 
the surface characteristics of the object. By analyzing the LSE in TIR- 
HSIs, it becomes feasible to more accurately identify and distinguish 
different land covers, including various mineral types, vegetation spe
cies, or surface materials (Ermida et al., 2023; Rock et al., 2016; Bal
dridge et al., 2009). Furthermore, TIR-HSIs exhibit sensitivity to the LST, 
and the temperature information associated with different land covers is 
often closely correlated with their material composition, thereby offer
ing an additional pathway for land cover classification (Taspinar, 2023; 
Batchuluun et al., 2022). Additionally, TIR-HSIs are capable of 
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functioning effectively in night-time conditions, as their operational 
principle relies on the inherent thermal radiation emitted by objects 
rather than relying on external light sources. This characteristic enables 
stable and reliable data acquisition even under low-light or night-time 
conditions (Cui et al., 2022; Weng, 2009). However, since TIR-HSIs 
are acquired by hundreds or even thousands of contiguous spectral 
bands (Zhao et al., 2024b), each spectral band is able to uncover and 
reveal subtle material substances. However, this is also traded for sig
nificant correlation among bands. In particular, many of spectral bands 
may convey similar information or contribute minimally to specific 
classification tasks. This results in many spectral bands which are 
actually redundant. So, finding an appropriate band subset not only can 
preserve information integrity but also reduce computational 
complexity, most importantly, can alleviate model training complexity 
(Xu et al., 2021; Sui et al., 2020). Consequently, it is imperative to 
develop effective band selection methods to eliminate redundant bands, 
while ultimately enhancing both the efficiency and accuracy of classi
fication processes.

Currently, dimensionality reduction techniques for hyperspectral 
data can be broadly categorized into two main approaches: band feature 
extraction and band selection (Wang et al., 2022; Wang et al., 2020). 
Band feature extraction refers to a method that transforms the charac
teristics of the original bands into new features within a lower- 
dimensional space. Common methods for band feature extraction 
include Principal Component Analysis (PCA) (Uddin et al., 2021), Linear 
Discriminant Analysis (LDA) (Aved et al., 2017), and Independent 
Component Analysis (ICA) (Johnson et al., 2013), among others. These 
methods effectively reduce the dimensionality of data by mapping high- 
dimensional data to a new feature space through either linear or 
nonlinear transformations. A significant advantage of band feature 
extraction lies in its ability to substantially decrease the dimensionality 
of the dataset while preserving as much information as possible. How
ever, a notable drawback is that the newly transformed features often 
lack physical meaning, which complicates the interpretation of the 
specific contributions of individual bands to the classification task (Sun 
et al., 2022a). On the other hand, band selection methods focus on 
retaining only the most representative or discriminative bands from 
hyperspectral data while eliminating redundant bands (Ou et al., 2023). 
A variety of band selection algorithms have been proposed, some of 
which employ clustering techniques to group similar bands and select 
representative bands from each cluster. These approaches effectively 
reduce redundancy and enhance efficiency. For instance, Sun et al. (Sun 
et al., 2022b) proposed a band selection method based on hyperbolic 
clustering that leveraged geometric information for unsupervised band 
selection in hyperspectral images. Another prevalent strategy involves 
scoring and ranking the bands according to their significance, subse
quently selecting those with the highest scores. Such methods are 
straightforward, intuitive, and easy to interpret. For example, Chang 
et al. (Chang et al., 1999) developed a band selection algorithm aimed at 
image classification that prioritized bands through eigenvalue decom
position while incorporating divergence information to identify the 
most representative subset of bands. Additionally, certain methods 
employ optimization algorithms to identify the optimal combination of 
bands that maximizes classification performance. An example is pro
vided by Wan et al. (Wan et al., 2023), who proposed an adaptive multi- 
strategy particle swarm optimization technique designed to address 
local optima stagnation issues in band selection by employing a multi- 
strategy evolutionary model and dynamically adjusting motion param
eters, thereby effectively minimizing redundant information within 
hyperspectral images.

In recent years, deep learning methods have demonstrated signifi
cant potential and advantages in hyperspectral band selection. Tradi
tional band selection approaches typically rely on feature engineering or 
criteria based on prior knowledge to evaluate and select bands, whereas 
deep learning methods can automatically learn and optimize band se
lection strategies. Deep learning approaches can be further categorized 

into supervised, unsupervised, and semi-supervised methods. Super
vised methods leverage large amounts of labeled data to train models. 
For example, Zhan et al. (Zhan et al., 2017) proposed a hyperspectral 
band selection method based on deep convolutional neural networks 
and distance density, which enhanced computational efficiency by 
partitioning the distance density subspaces. However, obtaining data 
labels is often challenging in real-world scenarios, prompting the 
development of unsupervised methods. Unsupervised approaches can 
automatically uncover intrinsic relationships within the data without 
the need for labels, thereby exhibiting broad applicability. For instance, 
Goel and Majumdar (Goel and Majumdar, 2022) introduced a deep 
transformation learning method that integrated K-Means clustering to 
achieve hyperspectral band selection by combining feature extraction 
with clustering. Moreover, semi-supervised band selection algorithms 
have emerged as a research hotspot, as these methods require only a 
small amount of data for training. For example, Feng et al. (Feng et al., 
2021) proposed a deep reinforcement learning-based band selection 
method that facilitated efficient band search and evaluation, thereby 
improving the classification performance of hyperspectral images.

Although numerous advanced band selection algorithms have been 
proposed, most of them are specifically designed for visible and near- 
infrared hyperspectral images. When these algorithms are directly 
applied to TIR-HSIs for classification tasks, performance degradation 
may occur due to the differing physical interpretations of the data 
involved. To address this issue, this paper introduces an unsupervised 
temperature–emissivity–driven band selection method (TEBS) for TIR- 
HSI classification. The model simultaneously computes spatial and 
spectral dimensional features and employs structured state-space 
models (SSMs) alongside gated attention mechanisms (GAMs) to 
perform band selection for thermal infrared hyperspectral data. Specif
ically, this study begins by decomposing TIR-HSIs into LSE and LST 
images, extracting LSE features for each band through depthwise sepa
rable convolutions. Subsequently, both LST and LSE features are fed into 
a network model composed of multiple computational modules that 
synergistically combine SSM and GAM. During this process, LST features 
derived from various superpixel segmentation scales contribute to the 
computation of band weights, thereby enhancing the spatial feature 
extraction related to land covers and enabling more accurate weight 
assignments for the bands. Finally, an unsupervised band evaluation 
network is employed to assess the quality of the selected bands and 
update the model parameters accordingly.

The main contributions of this paper can be summarized as follows: 

1) An unsupervised band selection method is proposed for TIR-HSIs 
classification: To address the challenge of limited labelled data in 
remote sensing, this paper proposes a novel unsupervised band se
lection framework. This method, validated across multiple datasets 
and tested with various classifiers, effectively reduces spectral 
redundancy and computational complexity while preserving high 
classification accuracy, demonstrating its robustness and 
generalizability.

2) A multi-modal band selection network is introduced leveraging 
domain-specific features: This paper introduces a band selection 
framework that integrates LST and LSE features. By employing 
superpixel segmentation to extract multi-scale LST characteristics, 
this methodology significantly improves the performance of band 
selection algorithms. This highlights the value of incorporating 
domain-specific physical properties in hyperspectral image 
processing.

3) An innovative WC module is designed combining SSM and GAM: 
This work provides a novel perspective on the relationship between 
SSM and Transformer architectures, thereby providing valuable in
sights into the application of SSM in the field of remote sensing.

The remainder of this paper is organized as follows. Section 2 re
views the related researches on Transformers and SSMs. A 
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comprehensive explanation of the proposed methodology is presented in 
Section 3. Section 4 provides a detailed account of the comparative 
experiments, ablation studies, sensitivity analysis, and hyperparameter 
analysis. Finally, Section 5 offers concluding remarks for the paper.

2. Related work

With the advancement of computational capabilities, deep learning 
algorithms have been widely applied in the remote sensing field, 
demonstrating superior performance. The method proposed in this 
paper leverages Transformer for processing sequential data and employs 
the SSM model for data control. An overview of Transformer and SSM is 
provided below.

2.1. Transformer models

The Transformer model was proposed by Vaswani et al. in 2017, 
originally designed for machine translation tasks within the realm of 
natural language processing (NLP) (Vaswani et al., 2017). This model 
replaces traditional recurrent neural networks with an attention mech
anism, effectively capturing long-range dependencies among sequence 
elements, which significantly enhances the performance of Trans
formers across various NLP tasks. In the domain of computer vision, 
Dosovitskiy et al. (Dosovitskiy et al., 2021) introduced the Vision 
Transformer (ViT), marking a pioneering application of the Transformer 
architecture to image classification. ViT segments an image into a series 
of fixed-size patches and treats these patches as an input sequence that is 
processed by a Transformer encoder akin to those utilized in NLP tasks. 
By leveraging self-attention mechanisms, ViT captures global contextual 
information and demonstrates remarkable performance on large-scale 
datasets, thereby facilitating the widespread adoption of Transformers 
in computer vision. In recent years, Transformers have gradually been 
introduced into the remote sensing field, with applications spanning 
image classification (Wang et al., 2023; Ni et al., 2024), object detection 
(Wang et al., 2024a; Zhou et al., 2022), and super-resolution (Long et al., 
2023; Yang et al., 2024). When addressing the challenge of data 
redundancy in hyperspectral images, Transformer architectures and 
attention mechanisms exhibit exceptional performance. For example, Li 
et al. (Li et al. 2021) proposed a non-local attention network to capture 

long-range dependencies among spectral bands, achieving outstanding 
results. Additionally, Cui et al. (Cui et al. 2024) developed a spatial- 
spectral cross-dimensional attention network that effectively reduced 
redundancy in hyperspectral images. In conclusion, Transformers 
demonstrate significant research potential in tackling the issue of 
hyperspectral data redundancy.

2.2. Structured State-Space models

SSM represents an emerging architecture for sequence modeling, 
drawing inspiration from the principles of classical state-space models, 
such as the Kalman filter (Gu et al., 2022). Dao and Gu (Dao and Gu, 
2024) further refined the theoretical foundations of SSMs and intro
duced the Mamba2 model. Leveraging the exceptional performance and 
significant potential of Mamba2, SSMs have attracted increasing atten
tion and have been applied in the field of remote sensing. For instance, 
Zhao et al. (Zhao et al., 2024c) proposed a model specifically designed 
for large-scale dense prediction tasks in remote sensing images. By 
incorporating an all-directional selection scanning module, this model 
achieves global modeling capabilities with linear complexity, thereby 
enhancing performance in semantic segmentation and change detection 
tasks. Zhang et al. (Zhang et al., 2024) developed a remote sensing 
image segmentation network based on link aggregation jump connec
tions that integrated multi-scale feature aggregation with a hybrid self- 
attention mechanism to consolidate multi-dimensional information and 
facilitate cross-scale semantic exchange, thus improving accuracy and 
generalization in semantic segmentation tasks. Overall, SSMs are 
increasingly finding applications in remote sensing and are gradually 
demonstrating their research value.

3. Proposed method

To fully harness the LST information within TIR-HSIs, this study 
introduces a band selection methodology that integrates both LST and 
LSE, as illustrated in Fig. 1. In summary, the proposed method comprises 
three modules: Feature Extraction (FE), Weight Computation (WC), and 
Band Evaluation (BE). Initially, the LST and LSE features are extracted 
from TIR-HSIs. Subsequently, the weights of each band are computed, 
and a subset of bands to be retained is selected based on their respective 

Fig. 1. Structure of the temperature–emissivity–driven band selection (TEBS) model.
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weights. Finally, an evaluation network is employed to assess the out
comes of the band selection process through band reconstruction.

3.1. Feature extraction (FE) module

Unlike hyperspectral images in the visible spectrum, TIR-HSIs not 
only capture the spectral characteristics of terrestrial targets but also 
their thermal properties. To decouple these two aspects, the Tempera
ture and Emissivity Separation (TES) algorithm (Gillespie et al., 1998) is 
employed. This algorithm estimates LST and LSE from multi-band 
radiance data by utilizing the empirical relationship between spectral 
contrast and minimum emissivity.

Due to variations in physical properties such as specific heat capacity 
and thermal conductivity, different types of land cover typically exhibit 
distinct temperature variations. This temperature differential is usually 
closely associated with surface factors such as vegetation cover and soil 
moisture (He et al., 2023; Liu et al., 2023a), and manifests itself through 
texture features that are significant for research in target detection, 
object classification, and related fields.

However, due to the continuous nature of temperature variations 
between adjacent objects, quantifying or directly comparing these 
temperature differences poses significant challenges. For example, the 

water temperature at the center of a lake may differ from that at the 
edge–a phenomenon referred to as “the same material with different 
temperatures”, which arises from factors such as energy exchange 
among substances. Additionally, under specific thermal equilibrium 
conditions, various land cover types within the same environment may 
demonstrate the occurrence of “different materials with the same tem
perature”. Consequently, while the LST images contain substantial 
amounts of critical information, improper analysis can lead to dimin
ished model accuracy.

To address this issue, the present study proposes a dedicated FE 
module, as illustrated in Fig. 2. Specifically, given the input radiance 
data RD ∈ RH×W×C, the TES algorithm is initially employed to obtain LST 
data LTD ∈ RH×W and LSE data LED ∈ RH×W×C. Subsequently, the Simple 
Linear Iterative Clustering (SLIC) algorithm (Achanta et al., 2012) is 
applied to the LST image for superpixel segmentation. This process di
vides the LST image into multiple superpixel regions composed of pixels 
with similar temperature characteristics. By integrating both tempera
ture values and spatial positions of pixels, SLIC effectively captures the 
spatial variation patterns of LST. Following this step, a sliding window 
method is adopted to extract local features from both LST and LSE data. 
For each pixel within a fixed-size window measuring 10 × 10 pixels, this 
approach enables the capture of spatial variation and texture 

Fig. 2. Structure of the Feature Extraction (FE) module.

Fig. 3. Structure of the SSM-Transformer Block (STB).
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information within its neighborhood. To fully leverage these spatial 
features, positional encoding is integrated into both LST and LSE data 
within the window context, allowing the model to perceive and utilize 
pixel locations in relation to one another within the image. Ultimately, 
one feature vector is generated per spectral channel resulting in C 
feature vectors–where C represents the number of spectral channels. 
Each feature vector not only retains the spectral information corre
sponding to its respective channel but also integrates local spatial fea
tures along with positional cues.

Overall, this methodology effectively addresses the challenges 
associated with “the same material with different temperatures” as well 
as “different materials with the same temperature”. Through multi-scale 
clustering and superpixel segmentation techniques, it incrementally 
extracts temperature information from micro- to macro-scales, thereby 
revealing fundamental properties of surface materials in a more 
comprehensive and nuanced manner.

3.2. Weight computation (WC) module

The WC module assigns weights to each spectral band based on LST 
and LSE features. This module comprises several computational blocks, 
referred to as SSM-Transformer Blocks (STBs), which integrate the 
characteristics of SSM and Transformer. The operational mechanism 
involves calculating band correlations utilizing LSE features while 
introducing LST as an auxiliary feature, thereby progressively deter
mining band weights across multiple scales. Within each STB, the 
fundamental computational unit is a State-Gated Attention (SGA) 
structure that synergizes SSM with a GAM, as shown in Fig. 3.

Specifically, the input data to the SGA comprises two components: 
the LSE information X ∈ RC×F and the state information. The state in
formation encompasses the LST feature T ∈ RF and the band weight 
feature BW ∈ RC. Here, F denotes the dimensionality of the feature 
mapping. The computation process can be interpreted from two per
spectives. Focusing on a specific LST state, the SGA can be viewed as a 
gated multi-head attention mechanism. For each attention head, the 
query matrix Q, key matrix K, and value matrix V can be defined as 
follows: 

Q = WQX;K = WKX;V = WVX (1) 

where, WQ, WK, and WV are learnable parameter matrices. The input 
data X encompasses the features across all bands. Q refers to the “query” 
generated by a specific band within the entire sequence of bands, aimed 
at assessing the correlation between that band and other bands. K rep
resents the sequence data being queried. This computation can be rep
resented as follows: 

Score = QKT (2) 

where, the Score represents the attention matrix, which illustrates the 
correlation between Q and K within the feature space. A larger value of 
an element in the Score indicates a stronger correlation between the 
corresponding bands. To mitigate excessively large values resulting from 
the inner product, these values are typically transformed into weights 
with the calculation performed as follows: 

Att = softmax

(
Score
̅̅̅̅̅̅
dK

√

)

(3) 

where, Att represents the attention weights, dK is the dimension of the 
keys for each attention head, and softmax(⋅) denotes a nonlinear acti
vation function. Its primary purpose is to ensure that the sum of all 
output values equals 1, thereby allowing the output to be interpreted as 
a probability distribution and while enhancing numerical stability. For a 
traditional attention mechanism, the output of a given attention head is: 

O = Att × V (4) 

where, O represents the output of the attention mechanism, which is the 
weighted sum of V using the attention weights, yielding an output that 
integrates the important band information.

Compared to the traditional attention mechanism, this approach 
integrates a gating mechanism utilizing T and BW, effectively 
combining LST and band weight information with LSE. The computa
tional process can be articulated as follows: 

VG = (BW × WG × T)V (5) 

where, VG denotes the values obtained following the application of the 
gating mechanism, and WG is a trainable weight matrix designed to 
aggregate the information from both LST and band weights. Therefore, 
the output generated by the attention mechanism can be expressed as: 

OG = Att × VG (6) 

By incorporating the gating mechanism, the features derived from 
LST are integrated with those from LSE. This approach effectively cou
ples multiple data sources with physical significance, thereby enhancing 
the model’s representational capacity. On the other hand, when 
considering the entire module as a sequence, it can also be considered a 
generalized SSM model. Specifically, within this module comprising 
multiple SGAs, each SGA receives input consisting of the state h and the 
data X. Let t represent the time scale that varies according to the multi- 
scale superpixel segmentation of the LST image. Consequently, ht={BW, 
T} represents the state information of an SGA at time t, while Xt signifies 
the LSE information fed to that SGA at time t. If we concentrate on 
examining the information flow between SGAs while disregarding re
sidual connections and linear mappings, ht+1 and Xt+1 can be articulated 
as: 

ht+1 = Spdown(ht) + OGtWt (7) 

Xt+1 = Xt + OGt (8) 

where, Spdown(⋅) represents the superpixel segmentation applied to the 
LST image in h for down-sampling. OGt denotes the output of the gated 
attention operation applied to the input Xt under the control of ht; 
accordingly, OGt can be regarded as a function of ht and Xt. Wt signifies a 
trainable matrix that facilitates the mapping of LSE features to weight 
features. Based on (7) and (8), the multiple SGAs in the WC module can 
be interpreted as a generalized SSM.

Overall, the integration of multiple STBs within the TEBS forms a 
generalized SSM, which comprehensively extracts the spatial informa
tion and variation patterns from LST images across various segmentation 
scales. Meanwhile, the SGA embedded in each STB utilizes an LST image 
at a specific segmentation scale as auxiliary information to participate in 
the computation of the inter-band correlations. This structure facilitates 
a more thorough extraction of surface spatial features and enhances the 
calculation of correlations among thermal infrared hyperspectral bands. 
Under the simplified assumption that linear mappings and activation 
functions are ignored, the computation flow of the WC module proceeds 
as follows:

Algorithm 1 Weight Computation module

Input: 
Feature X0 containing LSE information 
State feature h0 containing LST and band weight information

Output: 
1 While Iterating over LST superpixel feature maps of all sizes: 
Do 
2 Advance to the next time step t and update the LST superpixel features. 
3 Compute Q, K, V and Score at time step t using (1) and (2). 
4 Calculate Att and VG at time step t using (3) and (5). 
5 Compute the output of the gated attention mechanism, OGt, using (6). 
6 Calculate Xt+1 and ht+1 using (7) and (8).

Return the band weight matrix BW from ht+1
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3.3. Band evaluation (BE) module

Hyperspectral data typically encompass hundreds or even thousands 
of spectral bands; however, not all bands hold equal significance in 
conveying information. Consequently, selecting a representative subset 
of bands is crucial for reducing both data dimensionality and compu
tational cost. This method introduces an unsupervised band evaluation 
module designed to assess the representativeness of the selected band 
subset by reconstructing spectral information. Specifically, the method 
begins with the selection of a band subset based on predetermined band 
weights, which serves as the input to the band evaluation module. 
Subsequently, an unsupervised band evaluation module comprising an 
encoder and a decoder is constructed. The encoder is responsible for 
mapping the input band subset into a low-dimensional latent space, 
while the decoder reconstructs the complete spectral data from this 
latent space. During training, the discrepancy between the reconstructed 
spectral data and the original full spectral data is utilized as the loss 
function, which can be expressed as: 

Loss =
1
N
∑

i∈N
− log

(
XT

i Yi

|Xi||Yi|

)

(9) 

where, N represents the total number of pixels in the image, Xi denotes 
the predicted value of the pixel with index i, and Yi represents the 
ground truth of the pixel with index i. By assessing the magnitude of the 
reconstruction error, the representativeness of the selected band subset 
can be determined. A minimal reconstruction error indicates that this 
band subset encompasses sufficient critical information to effectively 
represent the original high-dimensional data. Conversely, a larger error 
implies that the chosen bands may be deficient in essential information, 
thereby indicating inadequate representativeness.

4. Results and analysis

In this section, the two datasets utilized in the experiments are first 
introduced. Subsequently, the proposed method is compared against 
several SOTA methods to validate its effectiveness and computational 
performance. An ablation study follows, demonstrating the beneficial 
impact of incorporating LST information and the SGA structure. Next, 
sensitivity analysis experiments are performed to assess the robustness 
of the TEBS method against image noise. Finally, the impact of model 
hyperparameter settings on TEBS is evaluated through hyperparameter 
analysis.

4.1. Hyperspectral datasets

The datasets are acquired from two TIR-HSI images captured by an 
airborne system, as illustrated in Fig. 4. The images are obtained in 
Hengdian Town, Dongyang City, Zhejiang Province, China, on May 24, 
2019. Both images have a spatial resolution of 1 m, cover a spectral 
range from 8.061 to 11.217 μm, and contain 110 spectral bands with a 
full width at half maximum of 38 nm. The original images represent 
radiance measurements expressed in unit of W/(m2⋅sr⋅μm), and their 
high spectral resolution enables the extraction of abundant surface in
formation. Sample annotation was conducted using ENVI software. 
Initially, labels were generated via the ENVI provided built-in classifi
cation tool. Subsequently, three experienced annotators were invited to 
join together to refine these initial annotations using two co-registered 
visible-light hyperspectral images with 0.25 m spatial resolution as 
reference images. Since the spatial resolution of the visible-light data is 
four times greater than that of the thermal-infrared hyperspectral im
agery and also provides detailed spectral signatures, the quality check 
can be evaluated by visual inspection. Accordingly, this practice sub
stantially mitigates subjectivity in the labeling process. The Suburb 
dataset comprises 16 land cover types, including water bodies, vegeta
tion, and buildings, and is suitable for land cover classification and 
change detection. The Urban dataset is divided into 11 land cover types, 
primarily encompassing roads, buildings, and other artificial structures, 
with a focus on complex man-made surfaces.

4.2. Comparison experiments

To validate the effectiveness of TEBS, comparative experiments are 
conducted against other SOTA methods, encompassing different 
numbers of bands, with classification performance evaluated from four 
distinct classifiers: CNN, SVM, KNN, and Transformer. The CNN classi
fier is implemented as a three-layer one-dimensional convolutional 
network; the SVM classifier utilizes an RBF kernel and the regularization 
parameter is set to be 5; the KNN classifier is configured with 5 neigh
bors and uniform weighting; The Transformer processes 3 × 3-pixel 
patches as input and comprises 3 encoder layers, each containing 8 
attention heads.

The classification overall accuracy (OA) of each method is recorded, 
and the performance of TEBS is comprehensively assessed by analyzing 
both the mean of OA. The comparison methods include: the deep rein
forcement learning for band selection names as DRL (Mou et al., 2022), 
the GCN and CNN for band selection named as GCN-CNN-BS (Yu et al., 
2022), the contrastive learning for band selection named as ContrastBS 

Fig. 4. Colorful ground-truth images used in this paper, with class 0 representing the background. (a) Ground-truth of Suburb dataset, divided into 16 classes. (b) 
Ground-truth of Urban dataset, divided into 11 classes.
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Table 1 
Comparison of different band selection methods on Suburb dataset based on CNN classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 83.34 83.93 84.08 84.02 84.29 83.79 80.84 75.50 84.52 84.47
20 85.56 86.04 85.95 85.44 85.52 85.64 84.79 76.30 85.74 86.05
30 85.54 86.24 86.23 86.03 85.95 86.21 85.62 78.38 86.20 86.43
40 86.56 86.44 86.63 86.53 86.48 86.63 86.44 82.92 86.58 86.71
50 86.70 86.55 87.00 86.27 86.18 86.65 86.70 82.72 86.68 87.21
60 86.72 87.03 87.00 86.89 86.94 87.07 87.15 84.13 87.16 87.57
70 87.30 87.04 86.68 87.42 86.94 87.21 87.49 86.82 87.34 87.53
80 87.48 87.55 87.38 87.48 86.89 87.59 87.51 87.77 87.31 87.97
90 87.34 87.39 87.26 87.62 87.57 87.50 87.68 87.65 87.54 88.01
100 87.71 88.02 87.72 87.86 87.21 87.74 87.86 87.85 87.65 88.36

The best values are highlighted in bold, and the second-best values are underlined.

Table 2 
Comparison of different band selection methods on Suburb dataset based on SVM classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 83.88 85.07 84.55 85.24 84.70 84.55 83.36 75.17 85.18 85.51
20 86.20 86.34 86.46 86.33 86.59 86.40 86.06 77.17 86.70 86.88
30 86.96 87.01 87.28 87.28 87.27 87.12 87.26 79.02 87.37 87.77
40 88.07 88.01 87.80 87.92 87.49 87.81 87.77 82.69 87.84 87.96
50 88.44 88.47 88.26 88.29 87.91 88.20 88.30 84.54 88.53 88.70
60 88.63 88.77 88.77 88.68 88.66 88.70 88.58 86.31 88.90 88.98
70 89.08 89.19 89.09 88.98 88.67 89.04 89.03 88.13 89.16 89.37
80 89.38 89.39 89.42 89.29 88.90 89.39 89.11 88.86 89.32 89.55
90 89.67 89.66 89.55 89.63 89.22 89.62 89.47 89.31 89.59 89.82
100 89.85 89.89 89.78 89.79 89.25 89.81 89.66 89.59 89.91 90.12

The best values are highlighted in bold, and the second-best values are underlined.

Table 3 
Comparison of different band selection methods on Suburb dataset based on KNN classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 85.39 85.85 85.39 85.77 85.82 85.51 84.42 76.21 86.19 86.30
20 86.68 86.65 86.90 86.64 87.00 86.80 86.42 78.93 87.06 87.37
30 87.06 87.06 87.26 87.22 87.45 87.24 87.39 80.61 87.38 87.47
40 87.61 87.63 87.49 87.57 87.40 87.55 87.44 83.09 87.59 87.65
50 87.65 87.75 87.59 87.65 87.29 87.53 87.60 84.16 87.65 88.06
60 87.53 87.76 87.74 87.72 87.86 87.71 87.62 85.37 87.68 88.16
70 87.75 87.90 87.84 87.77 87.74 87.81 87.78 86.76 87.76 88.12
80 88.01 87.86 87.81 87.79 87.75 87.95 87.80 87.36 87.88 88.02
90 87.97 87.94 87.92 87.87 87.61 87.84 87.80 87.58 87.89 88.13
100 88.08 87.91 88.05 87.94 87.87 87.78 87.88 87.63 87.94 88.12

The best values are highlighted in bold, and the second-best values are underlined.

Table 4 
Comparison of different band selection methods on Suburb dataset based on Transformer classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 86.03 86.28 86.71 86.24 86.48 86.34 86.22 77.20 86.19 86.82
20 88.67 89.50 89.53 86.97 87.27 87.88 83.77 77.57 89.37 89.64
30 86.31 86.95 89.23 89.17 88.35 88.76 87.96 77.90 88.81 89.97
40 89.19 86.93 86.72 87.02 87.23 89.08 88.52 80.05 89.10 89.74
50 89.55 87.04 88.75 88.58 88.91 87.08 85.80 84.82 88.72 89.92
60 86.67 88.27 88.83 88.21 87.53 88.02 88.09 85.77 88.10 90.28
70 86.81 89.76 88.17 85.44 89.46 89.00 89.52 86.46 89.34 89.91
80 89.53 89.38 89.80 87.53 88.28 87.81 88.86 87.58 88.32 90.24
90 89.92 89.41 89.28 88.31 87.51 87.91 89.57 86.95 90.22 90.79
100 88.05 88.37 89.63 90.45 88.32 87.69 88.27 88.18 89.72 90.56

The best values are highlighted in bold, and the second-best values are underlined.
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(Li et al., 2023), the transformer-based reconstruction network for band 
selection named as BSFormer (Liu et al., 2023b), the multi-level repre
sentation learning for band selection named as MLRLFMESC (Wang 
et al., 2024b), the spectral–spatial cross-dimensional attention network 
for band selection named as SSANet-BS (Cui et al., 2024), the genetic 
algorithm named as GA (Pałka et al., 2021), the successive projections 

algorithm named as SPA (Araújo et al., 2001), and the uniform band 
selection names as UBS. Among these methods, DRL is based on deep 
reinforcement learning; GCN-CNN-BS, ContrastBS, BSFormer, 
MLRLFMESC, and SSANet-BS are deep learning-based approaches; GA, 
SPA, and UBS are traditional methods. Additionally, during the training 
process, TEBS employs a WC module composed of 6 STBs. The optimizer 

Fig. 5. Classification comparison from different band selection algorithms on the Suburb dataset when selecting 20 bands.
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employed is Adam, with a learning rate set to 1 × 10− 3, and the learning 
rate is dynamically reduced through a cosine annealing algorithm.

1) Suburb dataset: This study conducts comparative experiments on 
the Suburb dataset and performs a quantitative analysis, with the results 
presented in Tables 1-4 and Fig. 5. The findings indicate that, compared 

to other SOTA methods, the TEBS achieves the best performance in most 
of cases. Specifically, when classification is performed by CNN, SVM, 
KNN, and Transformer methods, using TEBS for band selection results in 
optimal classification with accuracies of 88.36 %, 90.12 %, 88.16 %, and 
90.79 %, respectively. Additionally, it is noteworthy that the 

Fig. 6. Classification comparison from different band selection algorithms on the Urban dataset when selecting 20 bands.
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Table 5 
Comparison of different band selection methods on Urban dataset based on CNN classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 77.01 76.16 75.82 76.94 77.53 77.40 76.18 63.32 78.65 79.15
20 78.36 78.29 78.41 78.78 79.21 79.59 79.83 71.23 80.27 80.94
30 79.61 78.74 79.24 81.28 79.84 80.23 81.96 71.34 82.18 82.38
40 80.98 80.88 81.34 81.30 79.78 81.88 80.48 74.23 81.27 81.45
50 80.74 79.49 81.05 82.18 80.47 80.65 81.50 74.54 81.64 82.74
60 80.86 82.11 82.32 81.65 79.69 81.68 81.72 75.76 81.53 82.58
70 80.74 80.84 83.02 80.54 81.72 81.67 80.97 78.14 81.24 82.60
80 82.05 81.40 81.73 81.28 82.05 81.40 82.28 80.23 82.27 83.10
90 81.88 82.61 81.09 80.41 82.36 82.33 80.26 80.65 79.93 82.98
100 83.22 81.66 81.29 81.46 80.13 82.24 81.02 81.08 81.53 83.33

The best values are highlighted in bold, and the second-best values are underlined.

Table 6 
Comparison of different band selection methods on Urban dataset based on SVM classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 74.52 73.96 74.32 74.36 74.07 74.93 75.15 66.29 75.93 76.03
20 77.51 76.78 77.73 77.42 78.43 78.42 78.54 71.73 78.95 79.39
30 79.43 78.85 80.10 79.89 79.90 79.91 80.13 72.62 80.04 80.19
40 81.35 81.03 80.89 81.36 79.80 81.24 81.02 75.59 81.25 81.14
50 82.09 81.64 81.68 82.06 81.44 82.02 81.90 77.18 82.01 82.22
60 81.75 82.58 82.48 82.68 81.85 82.66 82.48 77.94 82.60 82.75
70 83.19 83.50 83.07 83.30 82.27 83.33 83.17 80.02 83.14 83.56
80 83.65 84.05 83.79 83.55 82.56 83.75 83.54 81.89 83.74 83.58
90 84.15 84.06 84.02 83.86 82.99 83.97 83.90 82.71 84.01 84.27
100 84.38 84.16 84.49 84.23 83.47 84.36 84.39 83.42 84.46 84.57

The best values are highlighted in bold, and the second-best values are underlined.

Table 7 
Comparison of different band selection methods on Urban dataset based on KNN classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 77.33 77.94 77.16 77.86 77.66 77.99 78.04 69.16 79.39 79.40
20 79.09 78.67 79.38 78.98 79.90 79.69 79.76 73.56 80.13 80.22
30 79.78 79.71 80.33 80.30 80.50 80.06 80.47 74.83 80.63 80.67
40 80.43 80.59 80.52 80.52 80.14 80.64 80.38 76.72 80.67 80.71
50 80.86 80.74 80.56 80.50 80.62 80.58 80.69 77.29 80.59 81.23
60 80.49 81.01 80.87 80.80 80.56 80.67 80.53 77.64 80.94 81.01
70 80.82 81.11 80.99 80.78 80.69 80.85 80.69 78.82 80.78 81.26
80 81.18 81.13 81.00 80.85 80.76 81.00 80.89 79.90 80.88 80.92
90 81.13 81.12 81.03 80.98 80.60 80.91 80.96 79.99 80.76 81.42
100 81.09 81.12 81.05 81.00 80.86 80.94 80.70 80.42 80.98 81.46

The best values are highlighted in bold, and the second-best values are underlined.

Table 8 
Comparison of different band selection methods on Urban dataset based on Transformer classifier.

Method  

Band

DRL GCN- 
CNN– 
BS

Contrast 
BS

BS 
Former

MLRLF 
MESC

SSANet 
− BS

GA SPA UBS TEBS

10 83.61 82.59 82.42 82.72 83.06 83.28 83.13 73.93 83.30 85.02
20 84.32 83.05 83.32 83.75 82.97 84.21 84.62 75.86 83.76 86.25
30 83.75 84.72 84.15 84.24 83.57 85.58 85.12 76.77 86.01 86.04
40 85.30 86.21 86.06 85.81 82.61 85.82 85.30 82.20 85.81 86.62
50 84.63 85.85 85.04 85.94 85.45 85.55 85.43 81.12 85.57 87.76
60 85.67 85.59 85.40 85.66 84.71 86.56 85.03 81.72 86.44 86.77
70 86.08 85.80 86.52 85.48 85.15 85.48 85.32 84.16 86.80 87.82
80 87.44 86.89 86.41 86.86 86.47 86.40 87.06 86.31 86.25 87.34
90 85.32 85.25 86.15 87.24 85.34 86.83 86.23 85.55 87.17 87.93
100 86.63 86.14 86.97 86.67 86.16 86.77 86.22 86.60 86.53 87.99

The best values are highlighted in bold, and the second-best values are underlined.
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classification accuracy does not exhibit a linear increase with the 
number of bands utilized. The experimental results indicate that, while 
increasing the number of bands significantly enhances classification 
accuracy during the initial stages, this improvement gradually di
minishes and eventually stabilizes once the number of bands reaches a 
certain threshold (e.g., 20 bands). For instance, when employing the 
CNN classifier, the accuracy of TEBS at 20 bands is 86.05 %, whereas at 
100 bands, it only marginally increases to 88.36 %. This indicates that as 
the number of bands increasing, the classification performance of the 
algorithm approaches its upper limit, and further increments in band 
count may not enhance the accuracy and could potentially lead to a 
decline in performance. This phenomenon is closely associated with the 
redundancy inherent in hyperspectral data and underscores the critical 
importance of judicious band selection for improving classification ac
curacy. Merely increasing the number of bands is not an effective 
strategy for enhancing classification performance.

2) Urban dataset: To further validate the advantages of the TEBS, 
comparative experiments are conducted using the Urban dataset, with 
the results illustrated in Fig. 6 and Tables 5-8. The results indicate that 
TEBS exhibits superior classification performance to other SOTA 
methods. In particular, TEBS achieves the best classification accuracies 
of 83.33 %, 84.57 %, 81.46 %, and 87.99 % for CNN, SVM, KNN, and 
Transformer classifiers, respectively, which demonstrates high 

generalizability. Consistent with findings from the Suburb dataset, these 
experiments indicate that classification accuracy does not exhibit a 
linear increase relative to the number of bands utilized. In the initial 
phases of increasing the band count, there is an improvement in clas
sification accuracy; however, upon reaching a certain threshold, this 
growth begins to decelerate gradually and even displays minor fluctu
ations. This suggests inherent redundancy in hyperspectral data and 
shows that indiscriminately increasing more bands does not improve 
performance.

3) Computation Time: To evaluate the computational performance of 
the TEBS, a comparative experiment on processing time is proposed. 
Specifically, the computational time of TEBS is compared with that of 
other deep learning-based methods when selecting 20 bands from the 
Suburb dataset. The experiments utilize an NVIDIA RTX 4080 GPU and 
an Intel Core i9-14900KF CPU. The training time per epoch for each 
deep model is provided in Table 9. The results indicate that TEBS incurs 
lower computational overhead, demonstrating its high practical 
applicability.

4.3. Ablation experiments

To further verify the efficacy of TEBS, ablation experiments focusing 
on LST information and the model structure are conducted. Specifically, 

Table 9 
The runtime (s) of selecting 20 bands by different band selection methods on the Suburb dataset.

Method 
Band

GCN-CNN-BS ContrastBS BSFormer MLRLFMESC SSANet-BS TEBS

20 73.2 41.2 19.6 8.9 3961.7 8.7

The best values are highlighted in bold, and the second-best values are underlined.

Fig. 7. Classification OA of TEBS and other ablation methods on the Suburb and Urban datasets using four classifiers.
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three comparative approaches are designed. Firstly, all LST-related in
formation and corresponding network structures in TEBS are entirely 
removed, resulting in a simplified model that can be considered as a 
standard Transformer model, abbreviated as TF. Secondly, while pre
serving the LST information, the SGA module is eliminated. Alterna
tively, the LST and LSE information is integrated through a 
straightforward linear mapping, yielding a model designated as LM. 
Lastly, the residual connections within the STB module are removed, 
while only the SGA module is retained, and this variant is named as OS. 
According to Fig. 7, the classification performance of both the TEBS and 
OS are superior to that of the TF, thereby validating the beneficial 
impact of incorporating LST information into the band selection process. 
The land cover distribution features embedded in the LST images pro
vide models with more comprehensive spatial semantic information, 
which is crucial for enhancing classification accuracy. Conversely, 
despite the integration of LST information into the LM, its classification 
performance does not align with expectations. This indicates that not all 
methods are capable of effectively extracting the information from LST 
images; only through the application of suitable feature extraction 
techniques can surface distribution features be more efficiently captured 
and utilized. Additionally, a performance comparison between the TEBS 
and OS reveals that the SGA module, as the core component of the 
approach, plays a pivotal role in the overall feature extraction process, 
ultimately enhancing classification performance. Finally, it is note
worthy that when employing CNN or Transformer as the classifier, the 
advantages of the TEBS become even more significant. This may be 
attributed to the high data dependency inherent in deep learning 
methods; compared with SVM and KNN, deep learning approaches rely 
more heavily on an effective band selection strategy to fully exploit the 
model’s potential.

4.4. Sensitivity analysis experiment

Compared to the visible spectrum, the thermal infrared spectrum 
generally exhibits lower spectral contrast and signal-to-noise ratio 
(Zhu et al., 2021). This characteristic amplifies the impact of noise 
during classification tasks. To investigate the robustness of the bands 
selected by TEBS against noise interference, a sensitivity analysis 
experiment is conducted. Specifically, Gaussian noise levels of 0.5 % 
and 1 % are added to the emissivity data from both datasets, and the 
classification accuracy of the bands selected by TEBS is evaluated using 
four classifiers, with the results presented in Fig. 8. The experimental 
findings indicate that for both datasets, there is a slight decrease in the 
classification accuracy when the noise level is set at 0.5 %. However, a 
more pronounced decline in accuracy occurs as the noise level in
creases to 1 %. Additionally, it is observed that the effect of noise at 
equivalent level differs between the two datasets. Overall, adding noise 
has a relatively minor effect on the classification performance for 
Suburb dataset, while Urban dataset experiences a more significant 
reduction in classification accuracy. This phenomenon may be attrib
uted to Suburb dataset containing land cover types with higher spectral 
contrast, whereas Urban dataset comprises land cover types that are 
inherently similar. Consequently, this similarity leads to further blur
ring of spectral features due to noise interference, ultimately dimin
ishing classification accuracy. In summary, although the band subset 
selected by the TEBS demonstrates a certain level of robustness against 
noise disturbances, its resistance appears relatively weak when clas
sifying similar land cover types.

4.5. Hyperparameter analysis experiment

As hyperparameter settings can substantially affect deep learning 

Fig. 8. Classification OA on the Suburb and Urban datasets with varying levels of added noise using four classifiers.
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models, experiments are conducted to assess the influence of learning 
rate and the number of attention heads. The results are presented in 
Fig. 9. For instance, when TEBS is applied to select twenty spectral 
bands, the learning rate is set to 0.0001, 0.0005, 0.001, 0.005, and 0.01, 
band selection is carried out, and the overall accuracy of four classifiers 
(CNN, SVM, KNN, and Transformer) is measured on the Suburb and 
Urban datasets. The number of attention heads in TEBS’s multi-head 
attention mechanism is also varied (4, 6, 8, 10, and 12), and the OA of 
the same classifiers on both datasets is again evaluated. Fig. 9 shows that 
as the learning rate increases, band-selection performance first improves 
and then declines. A learning rate that is too low leads to sluggish 
training and under-convergence, whereas a rate that is too high makes 
the model prone to becoming trapped in local optima and prevents full 
exploitation of its capacity. Similarly, increasing the number of attention 
heads enhances TEBS’s band-selection effectiveness up to eight heads, 
beyond which no further appreciable improvements can be observed. 
This is likely because more attention heads may improve feature 
extraction, but its excessive number of heads does increase training 
complexity and may eventually degrade performance.

5. Conclusions and discussions

This paper presents a novel band selection method, named TEBS, 
designed specifically for TIR-HSI classification. A key innovation of 
TEBS lies in its ability to simultaneously extract spatial information from 
LST and spatial-spectral information from LSE. The ablation study 
demonstrates the superiority of this multimodal feature extraction 
approach over state-of-the-art methods that rely exclusively on LSE 
features. Within the proposed TEBS framework, a structured module 
(named STB) is designed, integrating SSM and GAM, wherein the weight 
information for each band is explicitly calculated in terms of states. 
Comparative experiments performed on two datasets, utilizing four 
classical classifiers, demonstrate that TEBS significantly reduces spectral 
redundancy while preserving classification accuracy. Furthermore, the 
proposed TEBS outperforms the state-of-the-art methods, highlighting 
its effectiveness and robustness. Despite the promising results and con
clusions, several issues remain that warrant further exploration. For 
instance, due to labeling limitations in the datasets, this paper does not 
investigate the performance of TEBS in other applications, such as land 
surface temperature retrieval. In addition, the interpretability of deep 
learning models is also worth further exploration. Addressing these 
limitations will be an important focus of our future work to further 

improve the generalizability and versatility of the TEBS algorithm.
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