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A Posteriori Hyperspectral Anomaly Detection
for Unlabeled Classification
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Abstract— Anomaly detection (AD) generally finds targets that
are spectrally distinct from their surrounding neighborhoods
but cannot discriminate its detected targets one from another.
It cannot even perform classification because there is no prior
knowledge about the data. This paper presents a new approach
to AD, to be called a posteriori AD for unlabeled anomaly clas-
sification where a posteriori indicates that information obtained
directly from processing data is used as new information for
subsequent data processing. In particular, a posteriori AD uses
a Gaussian filter to capture spatial correlation of detected
anomalies as a posteriori information which is included as
new information for further AD. In doing so, a posteriori AD
develops an iterative version of AD, referred to as iterative
anomaly detection (IAD), which implements AD by feeding back
Gaussian-filtered AD maps in an iterative manner. It then uses
an unsupervised target detection algorithm to identify spectrally
distinct anomalies that can be used to specify particular anomaly
classes. To terminate IAD, an automatic stopping rule is also
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derived. Finally, it uses identified distinct anomalies as desired
target signatures to implement constrained energy minimization
(CEM) to classify all detected anomalies into unlabeled classes.
The experimental results show that a posteriori AD is indeed very
effective in unlabeled anomaly classification.

Index Terms— A posteriori anomaly detection (AD), anomaly
discrimination, automatic target generation process (ATGP), con-
strained energy minimization (CEM), iterative AD (IAD), K-AD,
Otsu’s method, R-AD, unlabeled anomaly classification (UAC).

I. INTRODUCTION

ANOMALY detection (AD) has received considerable
interest in recent years due to advances of hyperspectral

imaging technology which enables to uncover many unknown
subtle targets that cannot be inspected visually or detected
by prior knowledge [1]. One of the early approaches was
developed by Reed and Yu [2], referred to RX detector (RXD).
Since then, many techniques have been developed [3]–[37].
However, due to unavailability of prior knowledge, several
challenging issues remain unresolved and need to be addressed
for AD. First of all, what types of targets can be considered
as anomalies? This issue was discussed in detail for anomaly
characterization in [16] and [37]. Another issue is how to
discern among anomalies once targets are declared to be
anomalies. One solution was developed in [37] and [38]
where a particular unsupervised target detection, called auto-
matic target generation process (ATGP) developed in [10],
was implemented in conjunction with AD to discriminate
detected anomalies one from another. However, according
to [39, Ch. 18], the presence of anomalies is closely related to
spatial correlation of anomalies with their surrounding pixels.
The anomaly categorization developed in [37] and [38] was
pixel-based and did not take into account such surround-
ing spatial correlation. This paper extends the work in [37]
and [38] to an approach, to be called a posteriori AD for
unlabeled anomaly classification (UAC). The term of a pos-
teriori is used to reflect the fact that the information used
by a posteriori AD is obtained directly from processing data
(i.e., after observing the data) as opposed to the commonly
used AD which can be considered as a priori AD that only
uses the original data sample information including windows
to perform AD. A posteriori AD explores spatial information
among detected anomalies as a posteriori information which
is further used as new information to perform UAC without
any prior knowledge, specifically, no need of knowing how
many classes into which anomalies should be classified. Due
to the fact that no prior knowledge can be used to label classes,
the classes produced by UAC are unknown and, thus, referred
to as unlabeled classes.
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In general, AD is performed in a completely blind envi-
ronment. Two main issues must be addressed: 1) how to find
anomalies without using any prior knowledge and 2) how to
discriminate one anomaly from another once anomalies are
detected. As for the first issue, many efforts have been reported
in [8], [20], and [37] such as RXD originally developed in [2]
along with its variants developed in [8]. However, all these
anomaly detectors suffer from a common issue that requires an
appropriate threshold value to segment anomalies out from the
background (BKG) because AD-detection maps are generally
real valued. To address the second issue, a recent work
on anomaly discrimination and categorization was developed
in [37] and [38]. But it stopped short on how to classify
anomalies using spatial information among anomalies. The a
posteriori AD presented in this paper is developed to fill in
this missing piece.

Before moving on, it is important to clarify several ter-
minologies used in this paper. AD detects targets which are
generally spectrally distinct from their surroundings. Anomaly
discrimination discerns detected anomalies one from another
using some discrimination measure such as spectral angle
mapper (SAM) or spectral information divergence (SID) [1].
A general terminology widely used in remote sensing com-
munity is anomaly clustering, which groups detected anom-
alies according to a certain clustering rule such as k-nearest
neighboring rule, Euclidean distance, and SAM or SID into
different clusters. The concept of anomaly categorization was
originally developed in [37] and [38], which groups detected
anomalies into different categories. Here, we would like to
point out that there is a distinction between “category” and
“cluster.” A “cluster” is a set of data sample vectors being
grouped by comparing one data sample vector to another data
sample vector using a specific clustering rule. A category is
a set of data sample vectors being specified by a particular
means such as an algorithm, but not grouped by comparisons
as clustering does. In addition, it should be also noted that
a category is different from a class. A class is a set of
data sample vectors being grouped by a rule which takes the
advantage of spatial information among data sample vectors.
When there is a class label assigned to it, it is called a
labeled class. Otherwise, it is called an unlabeled class. UAC
classifies detected anomalies using their surrounding spatial
information without prior knowledge where each classified
anomaly class is unlabeled. Fig. 1 depicts their relationships.
However, we would like to point out that the taxonomy
provided in Fig. 1 is simply based on the authors’ personal
preference and clarification, and the definitions in Fig. 1 are
by no means standard terminologies.

To illustrate Fig. 1, the following example should suffice to
illustrate differences among the definitions given in Fig. 1.
Suppose that in a battle field, there have various vehicles
of different types, such as tracked vehicles and wheeled
vehicles. AD is to detect vehicles regardless of the types
of vehicles. Anomaly discrimination differentiates one type
of vehicles from another. Anomaly clustering groups vehicles
according to tracked or wheeled vehicles. Anomaly cate-
gorization further separates tracked vehicles into different
categories of tracked vehicles into trucks, tanks, etc., and

Fig. 1. Taxonomy of anomaly functionality.

different categories of wheeled vehicles into ten-wheel trucks,
four-wheel cars, etc. UAC divides tanks into Russian-made
tanks and U.S.-made tanks into different classes without
specifically labeling either Russian-made or U.S.-made tanks
due to unavailability of prior knowledge. It can also divide
four-wheel cars into humvees and jeeps into different classes
without class label assignment. Because of no prior knowledge
being available, the classes are not labeled, referred to as
unlabeled classes.

Using spatial information is crucial to classification. This
is generally accomplished by using local windows which
processes the original data samples falling in the windows to
capture the spatial correlation. This type of AD is referred to as
a priori AD. The proposed a posteriori AD looks into spatial
information after processing data to produce anomalies i.e., the
spatial information captured from neighboring data sample
vectors surrounding detected anomalies. It is quite different
from a priori AD using local windows simultaneously at the
same time where the local spatial information is captured while
AD is taking place. A major advantage of a posteriori AD over
a priori AD is its use of spatial information obtained directly
from AD maps to capture spatial information of detected
anomalies rather than spatial information provided by original
data samples a priori, but not necessarily detected anomalies.

The key idea of a posteriori AD is to introduce an iterative
version of AD, called iterative anomaly detection (IAD), which
is designed to capture a posteriori spatial correlation among
detected anomalies right after AD. In doing so, IAD applies a
spatial Gaussian filter to an AD map. The resulting Gaussian-
filtered AD map contains crucial spatial information among
detected anomalies and can be considered as a new band image
added to the currently being processed hyperspectral image
to create a new image cube to be used for reprocessing AD.
Such a process forms a feedback loop that can be implemented
iteratively to update a posteriori anomaly spatial information.
That is, the more the feedbacks, the more is the a posteriori
spatial information about detected anomalies. In other words,
IAD uses a Gaussian filter to capture spatial correlation among
detected anomalies in an AD map. Then, the Gaussian-filtered
AD map is further fed back as a new hyperspectral band image
to expand the current hyperspectral image cube by one spectral
dimension for the next round process of AD. This additional
band image provides crucial spatial correlation of detected
anomalies that are missed in the original hyperspectral image
cube. To further differentiate detected anomalies, ATGP is
implemented in conjunction with AD at each iteration to
identify spectrally distinct anomalies among detected anom-
alies. In order to terminate the iterative process carried out by
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IAD, an automatic stopping rule is also introduced. At this
terminal stage, the final set of distinct anomalies generated
by IAD is used to specify particular anomaly classes without
a label. These distinct anomalies are then used as desired
target signatures for a follow-up subpixel target detection tech-
nique, constrained energy minimization (CEM) in [40]–[42] to
produce real-valued abundance fractions of spectrally distinct
anomalies. Finally, unlabeled anomaly classes are obtained by
Otsu’s method [43].

Several new ideas proposed in this paper have never been
investigated in the past, even not in [37] and [39]. First
and foremost is the introduction of a posteriori AD which
captures a posteriori spatial information surrounding detected
anomalies not from original data samples using local windows.
Second is developing IAD to be implemented as an itera-
tive process to update a posteriori spatial information about
detected anomalies. It is believed that IAD is the first work
ever reported in the literature. Third, it takes advantage of an
unsupervised target detection algorithm such as ATGP [10] to
identify spectrally distinct anomalies, each of which specifies
without labeling a particular anomaly class. Fourth, it uses
the identified distinct anomalies as desired target signatures
to implement CEM to generate abundance fractional maps of
unlabeled anomalies. Last but not least, the last piece of UAC
is to implement Otsu’s method to threshold the real-valued
CEM-detected anomaly abundance fractional maps to produce
final unlabeled anomaly classes.

II. ANOMALY DETECTION

This section briefly reviews two major anomaly detectors
commonly used in the literature. One is RXD. Since it takes
advantage of the inverse of the global data sample covariance
matrix K to perform BKG suppression, it is referred to as
K-AD, denoted by δK-AD(r) and specified by

δK-AD(r) = (r − µ)T K−1(r − µ) (1)

where r is a vector of a data sample, μ is the mean vector of
data samples, and K is the global sample covariance matrix.
Equation (1) is actually the well-known Mahalanobis distance.

Another type of anomaly detector is developed in [1]
and [8]. It is different from K-AD in the sense that the global
sample data covariance matrix K in (1) is replaced by the
global sample data correlation matrix R. It is defined by

δR-AD(r) = rT R−1r (2)

where the superscript of R-AD is used to indicate that AD
is performed by R−1 to suppress BKG to differentiate K-AD
used in (1).

According to (1) and (2), K-/R-AD produces real-valued
AD map. It does not provide any means of how to discrim-
inate anomalies one way or another. As a matter of fact,
this issue poses a great challenge because of several major
reasons. First of all, we need to determine what anomalies
are because an AD map is generally real valued and requires
an appropriate threshold to segment anomalies out from the
BKG. Second, once anomalies are found, how to tell them
apart. Third, with no availability of prior knowledge, there is
no way to know how many types of anomalies needed to be

discriminated. Fourth, since anomalies distinguish themselves
from their surroundings, their presence is closely related to
spatial correlation with their neighboring pixels. Apparently,
addressing this issue is not trivial. This is because K-AD
and R-AD are performed on a pixel basis without taking into
account sample correlation among anomalies. In Section III,
we will develop an approach to UAC to resolve all the above
issues where anomalies can be classified into unlabeled classes
without prior knowledge.

III. FINDING SPECTRALLY DISTINCT ANOMALY CLASSES

As noted above, the detection maps produced by anomaly
detectors specified by (1) and (2) are real valued. In order to
detect anomalies, an appropriate threshold is needed to deter-
mine whether the data sample vector is an anomalous pixel or a
BKG pixel. Unfortunately, finding such a threshold is very
challenging, and up to now there are no guideline or automatic
methods provided for this purpose. This section deviates from
the idea of finding a threshold. Instead, it looks into an
approach that can automatically determine and generate a set
of spectrally distinct anomalies.

Let L be the total number of spectral bands used to acquire
a hyperspectral image. According to the concept of virtual
dimensionality (VD) introduced in [1] and [44], a spectrally
distinct signature can be accommodated by a particular spec-
tral band. With this interpretation, there are only L distinct
types of anomalies that can be differentiated by an L-band
hyperspectral image. In this case, the only data sample vectors
of interest for anomaly classification would be those with the
first L largest magnitudes produced by anomaly detectors.

A. ATGP for Finding Spectrally Distinct Detected
Anomalies for R-AD

Theoretically, the information provided by two distinct data
sample vectors should be mutually orthogonal. This implies
that two data sample vectors should be orthogonal. Using this
fact, one best criterion to measure two different data sample
vectors is orthogonal projection (OP). An algorithm designed
based on OP is ATGP (Algorithm 1) which can be used for
this purpose. It is an OP-based unsupervised target detection
which repeatedly finds maximal residuals from a successive
OP subspace.

Algorithm 1 ATGP
1. Initialization of ATGP: find the first target vector with

largest energy:
tATGP
1 = arg

{
max

r
rT r

}
(3)

2. For each 2 ≤ l ≤ L, find the target pixels as follows:

tATGP
l = arg

{
max

r
rT P⊥

Ul−1
r
}

(4)

where Ul−1 = [
tATGP
1 tATGP

2 · · · tATGP
l−1

]
and

P⊥
Ul−1

= I − Ul−1

(
UT

l−1Ul−1

)−1
UT

l−1. (5)
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B. Eigenvectors for Finding Spectrally Distinct Detected
Anomalies for K-AD

Since K-AD algorithm removes the global sample mean,
it is a second-order statistics anomaly detector. In this case,
an unsupervised target distinction algorithm to determine if
K-AD-found targets are anomalies should not rely on the
sample mean. One way to solve this problem is to use
eigenvectors (EVs) as a means of finding unsupervised target
vectors in a similar manner that ATGP is selected for R-AD
because EVs are also mutually orthogonal.

Assume that {vl}L
l=1 is a set of EVs corresponding to a

set of L eigenvalues {λl}L
l=1 calculated from the sample auto-

covariance matrix K. Since distinct eigenvalues will produce
orthogonal EVs, these EVs can be used to identify spectrally
distinct data sample vectors. We then use EVs to find data
sample vectors yielding the maximal projections along each
of EVs {vl}L

l=1 as follows:

tEV
l = arg

{
max

r
|(r − µ)T vl |

}
for each 1 ≤ l ≤ L (6)

which plays a similar role as tATGP
l in (4) does for R-AD.

IV. ITERATIVE ANOMALY DETECTION

As noted, anomalies are generally spatially correlated with
their surrounding data sample vectors. It would be beneficial
to include spatial information into finding anomalies. Unfor-
tunately, K-AD in (1) and R-AD in (2) do not take into
account local spatial correlation and neither does anomaly
categorization in [37] and [38]. To capture such local spatial
properties, this section develops an iterative version of AD,
to be called IAD, which includes Gaussian filters to smooth
AD-generated detection maps and further feed the Gaussian-
filtered detection maps back to form a new hyperspectral
image cube for AD to be reimplemented over again in an
iterative manner. Algorithm 2 details its ideas where AD can
be either R-AD or K-AD.

Algorithm 2 Iterative Anomaly Detection (IAD)
1. Initial condition:

Let �(0) = {Bl}L
l=1 be the original hyperspectral image

cube. Let
{

r(0)
i = (ri1, · · · , ri L )T

}N

i=1
be data sample

vectors in �(0). Let δAD
0 be an AD (K-AD/R-AD) oper-

ating on �(0) and k = 0.
2. Let k = k + 1. At the kth iteration, use a Gaussian

filter to blur |B|(k)
AD, where |B|(k)

AD is the absolute value of
the detection map produced by δAD

k−1, B(k)
AD. The resulting

image is denoted by Gaussian-filter |B|(k)
GFAD.

3. Form �(k) = �(k−1) ∪
{

|B|(k)
GFAD

}
. Find representatives

for anomaly classes T(k) using the algorithms proposed
in Section III.

4. Check if T(k) satisfies a given stopping rule. If no, back
to step 2. Otherwise, go to step 5.

5. T(k) is the data set with desired target signatures and IAD
is terminated.

V. AUTOMATIC STOPPING RULE FOR IAD

In order to terminate IAD, it will require a stopping rule.
This section derives an idea which takes advantage of ATGP
for R-AD (or EV for K-AD) to identify spectrally distinct
anomalies from Gaussian-filter AD-detection maps generated
iteratively by IAD until the number of such identified spec-
trally distinct anomalies converges. The details of step-by-
step implementations of the stopping rule are described in
Algorithm 3.

Algorithm 3 Stopping Rule for IAD

1. Use δAD
k in IAD to find L maximum gray-scales detec-

tion values in descending order in terms of vector
length from the corresponded hyperspectral image �(k),
i.e., ||tAD(k)

1 || ≥ ||tAD(k)
2 || ≥ · · · ≥ ||tAD(k)

L ||
2. Apply ATGP for R-AD to �(k) (or find EV for K-AD) to

generate L target pixels, denoted by
{

tATGP/EV(k)
l

}L

l=1
.

3. Find T (k) =
{

tAD(k)
l

}L

l=1
∩

{
tATGP/EV(k)
l

}L

l=1
=

{
tA(k)

j

}L̃

j=1
where L̃ ≤ L is the number of different

classes of anomalies.
4. If T (k+1) = T (k), then the algorithm is terminated.

Otherwise, go to step 1.

VI. UNLABELED ANOMALY CLASSIFICATION BY IAD

The idea of UAC is to process IAD which feeds back
spatial information of anomalies to account for local properties
of anomalies. The stopping rule is to produce a final set
of spectrally distinct anomalies, each of which represents a
particular target class. Implementing IAD in Section IV in
conjunction with the stopping rule proposed in Section V gives
rise to UAC as described in Algorithm 4.

Algorithm 4 Unlabeled Anomaly Classification (UAC)
1. Implement IAD in Section IV.
2. Use the stopping rule in Section V to produce a final

target set T(k), denoted by T (k) =
{

tA(k)
j

}L̃

j=1

3. For each tA(k)
j in T(k), constrained energy minimization

(CEM) developed in [40-42] uses it as a desired target
signature to produce a detection map to classify tA(k)

j ,

denoted by B( j )
CEM.

4. For each B( j )
CEM for j = 1 to L̃, use Otsu’s method for

thresholding and get the final target classification maps.

A flowchart of implementing a posteriori AD with details is
diagramed in Fig. 2, where the functionalities of AD, anomaly
discrimination, anomaly categorization, and UAC are clearly
indicated. Fig. 3 also provides a graphical representation to
illustrate the implementation of UAC.

VII. SYNTHETIC IMAGE EXPERIMENTS

This section conducts synthetic image experiments using
an airborne visible infrared imaging spectrometer (AVIRIS)
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Fig. 2. Flowchart of a posteriori AD.

Cuprite image data shown in Fig. 4(a), which is available
on the NASA website http://aviris.jpl.nasa.gov/ with found
in [37], [38], and [45]. There are five minerals: Alunite (A),
Buddingtonite (B), Calcite (C), Kaolinite (K), and Mus-
covite (M) labeled A, B, C, K, and M, respectively, specified
by five pixels shown in Fig. 3(a) with their spectra shown
in Fig. 4(b) to be used to simulate 25 panels shown in Fig. 4(c)
according to the legends described. The sample mean of an
area marked by “BKG” at the top right corner of Fig. 4(a),
denoted by b and plotted in Fig. 3(b), is used to simulate BKG
for image scene in Fig. 4(c). This b-simulated image BKG is
further corrupted by an additive noise to achieve a certain
signal-to-noise ratio (SNR) which is defined as 50% signature
(i.e., reflectance/radiance) divided by the standard deviation of
the noise in [46]. Once target and BKG pixels are simulated,
two types of target insertion, referred to as target implan-
tation (TI) and target embeddedness (TE), are designed to
simulate experiments for various applications.

A. TI Experiments
TI is simulated by inserting clean target panels into a noisy

image BKG by replacing their corresponding BKG pixels
where the SNR is set to 20:1. That is, TI implants clean
target panel pixels into noise-corrupted image BKG with SNR
= 20:1. UAC is first initialized by implementing R-AD and
ATGP on TI where Fig. 5(a) and (b) shows the anomalous
pixels with the first 189 largest magnitudes found by δR-AD

0 ,
{tR-AD(0)

j }189
j=1, and the 189 target pixels found by ATGP,

TABLE I

NUMBER OF TARGETS GENERATED AT EACH ITERATION BY ATGP VIA

UAC FOR TI

{tATGP(0)
j }189

j=1, respectively, and intersection of target pixels

found in Fig. 5(a) and (b) T (0) = {tA(0)
j }37

j=1 = {tR-AD(0)
j }189

j=1 ∩
{tATGP(0)

j }189
j=1 is shown in Fig. 5(c) with L̃ = 37.

Now let B(1)
R-AD be the R-AD detection map produced by

δR-AD
0 , where superscript “(1)” in B(1)

R-AD indicates the detection
map produced by applying R-AD to original hyperspectral data
set δR-AD

0 to TI as an initial AD map. Then, a Gaussian filter
with a window size of 11 × 11 and σ = 0.1 was applied to
|B|(1)

R-AD which is the absolute values of B(1)
R-AD to produce a

new band image |B|(1)
GFR-AD which includes Gaussian-filtered

spatial information. This |B|(1)
GFR-AD is then included into the

original hyperspectral image cube �(0) as a new band image
to create a new hyperspectral image cube �(1) formed by
�(1) = �(0)∪{|B|(1)

GFR-AD} to be used as a hyperspectral image
cube for the next iteration carried out by δR-AD

1 . The same
process was repeated over again until it satisfied the stopping
rule described in Section V. Table I tabulates the number of
iterations and the number of anomalous targets identified by
ATGP via a posteriori AD for TI which was terminated at the
fifth iteration, and a total of 17 target pixels are determined
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Fig. 3. Graphical representation for illustration of target classification by UAC.

Fig. 4. (a) Cuprite image scene of AVIRIS. (b) Five mineral reflectance spectra signatures and BKG signature obtained using the average of top right region
in (a). (c) The distribution of 25 panels simulated by A, B, C, K, and M.

and shown in Fig. 6 where the iteration #0 indicates the initial
number of anomalous targets identified by δR-AD

0 and ATGP
in Fig. 5(a).

As shown in Fig. 6, the first five UAC-found anomalous
targets were all at the top left corners of the 4 × 4 panels in
the first column, each of which corresponds one of the five
minerals, while the remaining 12 pixels seemed to be BKG
pixels. The 17 target pixels in Fig. 6 were then used as desired
signatures for CEM to produce 17-real-valued CEM-detection
maps in Fig. 7. In order to perform target classification, Otsu’s
method was further used to separate targets out from BKG as
shown in Fig. 8.

From the classification maps in Fig. 8, it is clearly shown
that the first five detection maps corresponded to five minerals
in different rows and the remaining 12 detection maps were

actually BKG classes. It should be noted that the pure panels
in the first and second columns and mixed pixels in the third
column were classified as anomalous pixels in the first five
detection maps. Interestingly, all the subpixel targets located
in the fourth column were classified as anomalies seperately,
but none of subpixel targets in the fifth column were detected
as anomalies since the target signatures in the fifth column are
too weak to be detected.

To further conduct a detailed analysis on how UAC performs
anomaly unlabeled classification on the 130 inserted panel
pixels, Fig. 9 fuses the results of the first five classification
maps in Fig. 8 into one classification map using five diffferent
colors, each of which corresponds to one particular unlabeled
anomaly class. Since there is no prior knowledge provided
regarding class label information, the anomaly classes were
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Fig. 5. Initialization of a posteriori AD by R-AD coupled with ATGP for TI.
(a) {tR-AD(0)

j }189
j=1. (b) {tATGP(0)

j }189
j=1. (c) {tA(0)

j }37
j=1.

Fig. 6. Seventeen targets found by UAC using ATGP.

identified and assigned to the orders that the target pixels
were generated by ATGP to find their corresponding anomaly
classes. According to Fig. 9, all the 100 pure panel pixels
in the first and second columns and five panel subpixels in
the fourth column were detected as anomalies and assigned
to their correct respective anomaly classes. Most interestingly,
due to the fact that the 20 panel pixels in the third column were
mixed by different mineral signatures according to the legends
described in Fig. 4(c), as expected, most of these mixed panel
pixels were identified and assigned to two classes as shown
in Fig. 9 where a mixed panel pixel marked by a pair of x , y
indicated that this mixed pixel was detected as an anomaly
but assigend to two anomaly classes specified by x and y. For
example, four mixed panel pixels in row 1 and column 3 were
simulated by 50% of the mineral signature A and identified as
anomaly class 1. So, it is natural to note that all the four mixed
pixels were identified as anomalies and assigned to class 1. But
due to the other 50% of mixture with other mineral signatures,
these four mixed pixels would also be assigned to a second
anomaly class with the pixels at the top left corner assigned to
classes 1 and 2, bottom left corner assigned to classes 1 and 4,
top right corner assigned to a single class 1, and bottom right
corner assigned to classes 1 and 5. In addition, the panel
subpixels in the fifth column were not detected as anomalies
due to their weak energies.

The results in Fig. 9 show that UAC was able to correctly
classify 125 out of 130 simulated panel pixels but only
missed five panel subpixels in the fifth column because their
abundance fractions were simulated by only 25% of mineral
signatures which were too weak to be detected as anomalies.

TABLE II

NUMBER OF TARGETS GENERATED AT EACH ITERATION BY ATGP VIA
UAC FOR TE

B. TE Experiments

TE is simulated by embedding clean target panels into
a noisy image BKG with superimposing target panel pixels
over the BKG pixels where the SNR is set to 20:1. Similar
experiments conducted for TI were also performed for TE.
Fig. 10(a) and (b) shows the initial results of UAC produced
by δR-AD

0 and ATGP, where the 189 anomalous pixels found
by δR-AD

0 and 189 target pixels found by ATGP, respectively,
and their intersection is shown in Fig. 10(c) with L̃ = 38.

Assume that B(1)
R-AD is the detection map produced by δR-AD

0 ,
where “0” means R-AD operated on the original data set.
Then, a Gaussian filter with a window size of 11 × 11
and σ = 0.1 was applied to the absolute values of B(1)

R-AD
in Fig. 10(a), |B|(1)

R-AD to produce a new Gaussian-filtered band
image |B|(1)

GFR-AD which is further included into the original
hyperspectral image cube �(0) to create a new hyperspectral
image cube �(1) = �(0) ∪{|B|(1)

GFR-AD}. The same process was
then repeated over again until it satisfied the stopping rule
described in Section V.

Table II tabulates the number of iterations and the number of
anomalous targets identified by ATGP via UAC for TE which
was terminated at the fifth iteration, and a total of 20 target
pixels are determined and shown in Fig. 11.

As shown in Fig. 11, the first UAC-found target pixel
seemed to be BKG pixel and the second–sixth IAD-found
target pixels were all the top left corners of the 4 × 4 panels
in the first column, each of which corresponds one of the five
minerals, while the remaining 14 pixels were all BKG pixels.
The 20 target pixels in Fig. 11 were then used as desired
signatures for CEM to produce 20 real-valued CEM-detection
maps in Fig. 12. In order to perform target classification,
Otsu’s method was further used to extract targets from BKG
as shown in Fig. 12.

From the 20 target classification maps in Fig. 13, it is
obvious that only the second–sixth classification maps were
meangingful, each of which correspnded to one of the five
minerals in five different rows, while the others were BKG
pixels. Similar conclusion drawn by TI experiments can also
be applied where the pure and mix panel pixels in the
first–third columns of TE were classified correctly. Subpixels
with strong target energy in the fourth column were also
classified correctly, while weak subpixels in the fifth column
were overwhelmed by BKG and could not be detected as target
pixels.

Following a treatment similar to that used to discuss the
TI experiments, a detailed analysis on how UAC performs
anomaly unlabeled classification on the 130 inserted panel
piexls was also conducted. Fig. 14 fuses the results from
the second classification map up to sixth classification map
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Fig. 7. Seventeen CEM-detection maps using the 17 signatures found in Fig. 6.

Fig. 8. Seventeen target-class classification maps by applying Otsu’s method to 17 CEM-detection maps in Fig. 7.

in Fig. 13 into one classification map using five diffferent
colors, each of which corresponds to one particular unlabeled
anomaly class. Once again, since there is no prior knowl-
edge provided regarding class label information, the anomaly
classes were identified and assigned to the orders that the target
pixels were generated by ATGP to find their corresponding
anomaly classes.

In analogy with the 20 mixed panel pixels in the TI scenario,
the 20 panel pixels in the third column in the TE scenario
were also mixed by different mineral signatures according to
the legends described in Fig. 4(c). As a consequence, most of
these mixed panel pixels were identified and assigned to two
classes as shown in Fig. 14 where a mixed panel pixel marked
by a pair of x , y indicated that this mixed pixel was detected

as an anomaly but assigend to two anomaly classes specified
by x and y.

Comparing Fig. 14 with Fig. 9, both results were very
similar. That is, all the 100 pure panel pixels in the first
and second columns and five panel subpixels in the fourth
column were detected as anomalies and assigned to their
correct respective anomaly classes, and the panel subpixels
in the fifth column were not detected as anomalies due
to their weak energies. In other words, UAC was able to
correctly classify 125 out of 130 simulated panel pixels
and only missed five panel subpixels in the fifth column
because their abundance fraction were simulated by only
25% mineral signatures which were too weak to be detected as
anomalies.
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Fig. 9. Anomaly classes identified by UAC for TI.

Fig. 10. Initialization of a posteriori AD by R-AD coupled with ATGP
for TE. (a) {tR-AD(0)

j }189
j=1. (b) {tATGP(0)

j }189
j=1. (c) {tA(0)

j }38
j=1.

Fig. 11. Twenty targets found by UAC using ATGP.

VIII. REAL IMAGE EXPERIMENTS

In this section, we further conduct real hyperspectral image
experiments to demonstrate the utility of the developed UAC
in real applications. In particular, we consider two types
of AD, R-AD coupled with ATGP in Section III-A and
K-AD coupled with EVs in Section III-B to be implemented
in UAC, respectively.

The image scene shown in Fig. 15(a) is an airborne hyper-
spectral digital imagery collection experiment (HYDICE) data
collected in August 1995 from a flight altitude of 10 000 ft
with the ground sampling distance approximately 1.56 m. This
scene has been studied extensively by many reports such as [1]

TABLE III

NUMBER OF TARGETS GENERATED BY EACH ITERATION USING ATGP VIA
UAC FOR HYDICE DATA

and [17]. It has a total of 169 bands which were used for
the experiments with low-signal/high-noise bands: bands 1–3
and bands 202–210, and water vapor absorption bands:
bands 101–112 and bands 137–153 removed. There are
15 panels with three different sizes 3 m×3 m, 2 m×2 m, and
1 m×1 m with its ground truth provided in Fig. 15(b), where
the center and boundary pixels of objects are highlighted in
red and yellow, respectively. In particular, R panel pixels are
denoted by pi j with rows indexed by i = 1, . . . , 5 and columns
indexed by j = 1, 2, 3 except that the panels in the first
column with the second–fifth rows which are two-pixel panels,
denoted by p211, p221, p311, p312, p411, p412, p511, and p521.
The 1.56-m-spatial resolution of the image scene suggests that
most of the 15 panels are one pixel in size. As a result,
there are a total of 19 R panel pixels. Fig. 15(b) shows the
precise spatial locations of these 19 R panel pixels, where red
pixels (R pixels) are the panel center pixels and the pixels
in yellow (Y pixels) are the panel pixels mixed with the
BKG.

A. UAC Using R-AD Coupled With ATGP
Fig. 16(a) and (b) shows the results of the first iteration

of UAC carried out by δR-AD
0 and ATGP, where 169 anom-

alous pixels {tR-AD(1)
j }169

j=1 found by δR-AD
0 in Fig. 16(a) and

169 target pixels {tATGP(1)
j }169

j=1 found by ATGP in Fig. 16(b),

respectively, and their intersection T (0) = {tA(0)
j }64

j=1 =
{tR-AD(0)

j }169
j=1 ∩ {tATGP(0)

j }169
j=1 is shown in Fig. 16(c) with

64 target pixels L̃ = 64.
Let B(1)

R-AD be the detection map produced by δR-AD
0 at the

first iteration and the original hyperspectral image cube be
denoted by �(0). A Gaussian filter with a window size of
11 × 11 and σ = 0.1 was applied to the absolute values
of B(1)

R-AD, |B|(1)
R-AD, to produce a new Gaussian-filtered band

image |B|(1)
GFR-AD which is further included into �(1) to create

a new hyperspectral image cube �(1) = �(0) ∪ {|B|(1)
GFR-AD}

for the next iteration carried by δR-AD
1 . The same process

was repeated over again until it satisfied the stopping rule
described in Section V. Table III tabulates the number of
iterations and the number of anomalous targets in the HYDICE
data identified by ATGP at each iteration via UAC which was
terminated at the seventh iteration.

A total of 19 target pixels are determined and shown
in Fig. 17, among which 7 R panel pixels, p11, p12, p212,
p221, p312, p411, and p521, were found as 16th, 17th, 15th,
13th, 14th, 11th, and 12th target pixels, respectively.

The 19 target pixels found in Fig. 17 were further used
as desired signatures for CEM to produce 19 real-valued
CEM-detection maps shown in Fig. 18. In order to perform
target classification, Otsu’s method was then used to segment
targets out from BKG as shown in Fig. 19.
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Fig. 12. Original gray-scale detection results of CEM algorithm using 20 signatures found in Fig. 11.

Fig. 13. Otsu’s segmentation results for CEM results in Fig. 12.

According to Fig. 19, it is very obvious that the panel
pixels in five rows were classified where panel pixels in the
fourth, fifth, second, third, and first rows were classified in
the 11th, 12th, 13th, 14th, and 16th in separate and individual
classification maps in Fig. 19(k)–(q). It is interesting to note
that the panel pixels in row 2 were classified in 13th and
15th classification maps in Fig. 19(m) and (o) because the
13th and 15th target pixels found by R-AD and ATGP were
p221 and p212 in the same row 2. Similarly, the 16th and
17th target pixels were found to be p11 and p12 belonging
to the same row 1. As a result, the 16th and 17th classifi-
cation maps were used to classify panel pixels in row 1 in
Fig. 19(p) and (q). In addition, the two interferes were also
found in Fig. 19(d) and (e).

In order to further see how many panel pixels
detected by UAC as anomalies, Fig. 20 fuses the results
in Fig. 19(d) and (e) to find interfers identified as anomaly
class 4, the results in Fig. 19(p) and (q) to find panel pixels in
row 1 identified as anomaly class 16, the results in Fig. 19(m)
and (o) to find panel pixels in row 2 identified as anomaly
class 13, the result in Fig. 19(n) to find panel pixels in row 3
identified as anomaly class 14, the result in Fig. 19(k) to find
panel pixels in row 4 identified as anomaly class 11, and the
result in Fig. 19(l) to find panel pixels in row 5 identified as
anomaly class 12. Since there is no provided prior knowledge
about class labels, the anomaly class numbers were labeled
by the orders that the target pixels were generated by ATGP
to find anomaly classes. Interestingly, the two interferers were
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Fig. 14. Anomaly classes identified by UAC for TI.

Fig. 15. (a) HYDICE panel scene which contains 15 panels. (b) Ground-truth
map of spatial locations of the 15 panels.

Fig. 16. Results of the first iteration of UAC for HYDICE. (a) {tR-AD(0)
j }169

j=1.

(b) {tATGP(0)
j }169

j=1. (c) {tA(0)
j }64

j=1.

the first meaningful targets identified by UAC as an anomaly
class labeled 4 shown in Fig. 19(d) and (e).

Specifically, Table IV tabulates the number of panel pixels
in five rows in Fig. 15(b) detected as anomalies where a pair
of (x , y) in Table IV indicates that there are x panel pixels
in the first column and y panel pixles in the second column
detected as anomalies. The last column in Table IV lists the
anomaly classes to which panel pixels were assigned. Appar-
ently, all panel subpixels in the third column of Fig. 15(b)
were not detected as anomalies due to their weak appearance
caused by small energies.

B. UAC Using K-AD Coupled With Eigenvectors

Since K-AD removes the global sample mean and only
uses second-order statistics, ATGP is not applicable to K-AD.

Fig. 17. Nineteen targets found by UAC using ATGP.

TABLE IV

NUMBER OF PANEL PIXELS DETECTED AS ANOMALIES IN FIG. 20

As described in Section III-B, EVs were used to replace ATGP
to do what ATGP does for R-AD.

Fig. 21(a) and (b) shows the results of the first iteration
of UAC carried out by δK-AD

0 and EV, where 169 anomalous
pixels {tK-AD(1)

j }169
j=1 found by δK-AD

0 in Fig. 21(a) and 169 tar-

get pixels {tEV(1)
j }169

j=1 found by EV in Fig. 21(b), and their

intersection T (0) = {tA(0)
j }64

j=1 = {tK-AD(0)
j }169

j=1 ∩{tEV(0)
j }169

j=1 is
shown in Fig. 21(c) with 64 target pixels.

Assume that B(1)
K-AD is the detection map produced by δK-AD

0
at the first iteration. Then, a Gaussian filter with a window size
of 11 × 11 and σ = 0.1 was applied to the absolute values
of B(1)

K-AD in Fig. 21(a), |B|(1)
K-AD, to produce a new Gaussian-

filtered band image |B|(1)
GFK-AD which is further included into

the original hyperspectral image cube �(1) to create a new
hyperspectral image cube �(1) = �(0) ∪ {|B|(1)

GFK-AD} for the
next iteration carried by δK-AD

1 . Then, the same process was
repeated over again until it satisfied the stopping rule described
in Section V. Unfortunately, IAD–K-AD was terminated at
the second iteration which means that the target pixels found
at the first iteration in Fig. 21(c) were the final target pixels.
This implied that the spatial information captured by B(1)

K-AD
did not help K-AD in target classification.

IX. PARAMETER ANALYSIS FOR GAUSSIAN FILTERS

Finally, it is expected that the two parameters of a Gaussian
filter, standard deviation σ , and window size used by UAC
generally have impact on its performance. When these para-
meters vary, the results will also be different. These two
issues were investigated in both synthetic data experiments and
real HYDICE experiments where the Gaussian filter window
size and σ were changed each time for comparison. Table V
tabulates the number of anomalous targets found by UAC with
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Fig. 18. Original gray-scale detection results of CEM algorithm using 19 signatures found in Fig. 17. (a) 1st target detection. (b) 2nd target detection.
(c) 3rd target detection. (d) 4th target detection. (e) 5th target detection. (f) 6th target detection. (g) 7th target detection. (h) 8th target detection. (i) 9th
target detection. (j) 10th target detection. (k) 11th target detection. (l) 12th target detection. (m) 13th target detection. (n) 14th target detection. (o) 15th target
detection. (p) 16th target detection. (q) 17th target detection. (r) 18th target detection. (s) 19th target detection.

TABLE V

NUMBER OF ITERATIONS AND NUMBER OF ANOMALOUS TARGETS FOUND BY UAC USING VARIOUS VALUES OF σ

different values of σ where the number of found anomalous
targets tended to be stable as the value of σ becomes small.
On the other hand, the window size of Gaussian filter seemed
to have little effect on the experimental results according to
our extensive experiments.

Based on the results in Table IV, the proposed a posteriori
AD is indeed robust to the used spatial Gaussian filter as long
as the standard deviation σ is sufficiently small, for example,
σ ≤ 0.3.

As a final remark, a note on the noise issue in AD is
worthwhile. According to our experience with the data sets
used for experiments, the proposed UAC works effectively in
the existence of noise since the SNR in hyperspectral imagery
is generally very high in which case noise effect is not a
problem. However, a more serious problem encountered in AD
is not noise but rather unknown interference. This is something
which needs to be addressed in hyperspectral target detection.
Unfortunately, in practical applications, finding such unknown
interferers and removing them is a very challenging issue.

X. DISCUSSION

In this section, the following several issues arising from AD
are addressed:

1) how to determine anomalies;
2) how to discriminate detected anomalies;

3) how to classify discriminated anomalies without
labeling.

The first issue was previously investigated in [16]. A general
approach is to use a threshold value to segment anomalies
out from a detection map. However, this requires selecting an
appropriate threshold. Since AD is generally carried out in a
blind environment, finding such a threshold nearly impossible
without prior knowledge. Even though a threshold is believed
to be properly selected, the issue of whether or not the found
anomalies are true anomalies still remains because the results
cannot be verified and validated without ground truth which
is generally not available in real-world applications. It is also
noted that an effective anomaly detector does not imply that it
can also determine anomalies. This is because the AD map
generated by an anomaly detector is generally real valued
and requires a threshold value to extract anomalies from the
detection map.

Once anomalies are assumed to be found, the second
issue is how to discriminate detected anomalies from one
another. It seems that the recent work in [37] and [38] is
the only approach to address the first and second issues all
together. Unfortunately, this approach stopped short and did
not address the third issue. The UAC proposed in this paper is
developed to extend [37], [38] to resolve the issue of anomaly
classification. Due to the fact that AD does not have any prior
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Fig. 19. Otsu’s segmentation results for CEM results in Fig. 18. (a) 1st target classification. (b) 2nd target classification. (c) 3rd target classification. (d) 4th
target classification(e) 5th target classification. (f) 6th target classification. (g) 7th target classification. (h) 8th target classification. (i) 9th target classification.
(j) 10th target classification(k) 11th target classification. (l) 12th target classification. (m) 13th target classification. (n) 14th target classification. (o) 15th target
classification. (p) 16th target classification(q) 17th target classification. (r) 18th target classification. (s) 19th target classification.

Fig. 20. Unlabeled anomaly classes identified by UAC.

knowledge with respect to targets of interest, anomaly classi-
fication cannot perform as traditional supervised membership-
based classification. The UAC offers a bypass approach which
can classify detected anomalies without actually labeling the
classes it detected. As a result, the above three issues described
in the beginning of this section can be solved by UAC using
the following:

1) ATGP to determine anomalies;
2) CEM to discriminate detected anomalies;
3) IAD to classify discriminated anomalies.
The reason that a target is called an anomaly is because there

is no provided prior knowledge of knowing whether or not
it is an anomaly. This is one of the main issues in AD.
Therefore, it is true that many targets detected in detection
maps may not be anomalies by visual inspection as shown in
Figs. 8, 13, and 19. But in reality, what we see as anomalies by

Fig. 21. AD, discrimination, and categorization by K-AD coupled with EV

for HYDICE. (a) {tK-AD(0)
j }169

j=1. (b) {tEV(0)
j }169

j=1. (c) {tA(0)
j }43

j=1.

visual inspection may actually be not anomalies and vice versa.
This is because we simply do not have the ground truth to
verify what we found. As an example, the experiments shown
in Fig. 17, the first seven target pixels were identified by UAC
as anomalies but only two pixels in Fig. 20 were actually
considered as anomalies by UAC. These two anomalous pixels
are indeed rocks hidden in the tree. By visual inspection of
Fig. 13(a), there is no way that we knew this fact unless
a ground crew was sent to verify what it was exactly the
case. So, this experiment provides hard evidence that visual
inspection is somewhat subjective and generally cannot be
used as a means of determining if a found target pixel is
an anomalous pixel. Nevertheless, the greatest advantage of
UAC is to offer an objective approach, which automatically
determines and classifies anomalies in a set of unlabeled
classes with no human manipulations.

Finally, a remark on the data sets used in this paper is
noteworthy. As mentioned above, true anomalies can only
be identified by ground truth. The TI and TE scenarios and
HYDICE provide precise knowledge of targets of interest for
verification and validation. Although there are many real data
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sets that can be used for experiments, a major issue in using
these data sets is no availability of complete ground truth
for fact validation. For example, three well-known data sets,
Purdue’s Indian Pines, Salinas, and University of Pavia [47],
have been widely used for hyperspectral image classification
but not AD. It is our belief that most anomalies will be in
the BKG not the classes provided by ground truth [48]. Since
no knowledge is provided about the BKG, there is no way
to verify anomaly findings. This may be one of the major
reasons that these three scenes have not been used for AD in
the literature.

XI. CONCLUSION

AD has been widely studied in the literature, but how
to use AD to perform classification has not been explored.
This paper presents a new approach, called a posteriori AD,
which makes use of a posteriori anomaly spatial information
obtained directly from processing data to uncover crucial
spatial correlation of detected anomalies for UAC. To accom-
plish this goal, it develops an IAD which takes advantage
of a Gaussian filter to obtain spatial correlation surround-
ing detected anomalies. It then incorporates such Gaussian-
filtered spatial information iteratively via feedback loops to
update anomaly spatial information. In order to distinguish
detected anomalies, it uses ATGP to identify spectrally distinct
anomalies among detected anomalies which are further used
as desired target signatures for CEM to perform UAC.

The main contributions of this paper can be summarized as
follows. First of all, it introduces a new approach, a posteri-
ori AD, which uses a posteriori anomaly spatial information
to perform UAC. Second, it includes IAD in a posteriori
AD to capture anomaly spatial information. Third, it develops
an automatic stopping rule for IAD to determine when the
feedback loop should be stopped. This step is crucial because
no prior knowledge is available to be used to terminate IAD.
Fourth, it uses ATGP or EVs to identify spectrally distinct
anomalies from detected anomalies in IAD-detection maps.
Fifth, it makes use of CEM in conjunction with Otsu’s method
to perform UAC. Finally and most importantly, since no prior
knowledge is available to determine the number of unlabeled
classes, this issue is resolved by implementing IAD coupled
with ATGP. To the best of the authors’ knowledge, this idea is
new and no work is reported on how to determine the number
of anomaly classes.
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