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A Subpixel Target Detection Approach to
Hyperspectral Image Classification
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Abstract— Hyperspectral image classification faces various lev-
els of difficulty due to the use of different types of hyperspectral
image data. Recently, spectral–spatial approaches have been
developed by jointly taking care of spectral and spatial informa-
tion. This paper presents a completely different approach from
a subpixel target detection view point. It implements four stage
processes, a preprocessing stage, which uses band selection (BS)
and nonlinear band expansion, referred to as BS-then-nonlinear
expansion (BSNE), a detection stage, which implements con-
strained energy minimization (CEM) to produce subpixel target
maps, and an iterative stage, which develops an iterative CEM
(ICEM) by applying Gaussian filters to capture spatial informa-
tion, and then feeding the Gaussian-filtered CEM-detection maps
back to BSNE band images to reprocess CEM in an iterative
manner. Finally, in the last stage Otsu’s method is applied to
converting ICEM-detected real-valued maps to discrete values for
classification. The entire process is called BSNE-ICEM. Experi-
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mental results demonstrate BSNE-ICEM, which has advantages
over support vector machine-based approaches in many aspects,
such as easy implementation, fewer parameters to be used, and
better false classification and precision rates.

Index Terms— Band expansion (BE), band ratio expansion
process (BREP), band selection (BS), BS-then-nonlinear
expansion (BSNE), constrained energy minimization (CEM),
correlation BE process (CBEP), hyperspectral image classifi-
cation, iterative CEM (ICEM), nonlinear BE process (NBEP),
Otsu’s method, overall accuracy (OA), precision rate, support
vector machine (SVM).

I. INTRODUCTION

HYPERSPECTRAL image classification has received
considerable interest in recent years, e.g., see [1]–

[13]. A general approach is spectral–spatial-based approaches,
which use a pixel-based spectral classifier, such as support vec-
tor machine (SVM), to perform spectral classification coupled
with spatial domain-based techniques to capture spatial con-
textual information, such as extended morphological profiles
[2], to take care of both spectral and spatial correlation. While
such a spectral–spatial approach seems promising, there are
also some issues needed to be addressed. First of all, a pure-
pixel-based spectral classifier does not take full advantage of
mixing properties of a single pixel. Second, the used perfor-
mance evaluation criterion, overall accuracy (OA) or average
accuracy (AA), or kappa coefficient (κ) cannot sufficiently
address classification issues, such as background (BKG) issue.
Third, misclassification was not considered for performance
analysis. Finally and most importantly, the classification per-
formance is done by cross validation with the training and
test samples being selected from the same class in different
percentiles. As a result, no misclassified data samples from
other classes are considered as falsely classified data samples.
This leads to an issue that falsely misclassified rate is not
included for classification evaluation.

This paper takes an approach from a subpixel target
detection point of view, which is completely different from
SVM-based approaches in [1], [5], [11], and [12]. In subpixel
target detection, a detector makes soft decisions by finding
real-valued abundance fractions of material substances present
in a pixel, which can be used for target detection. As a
result, such a subpixel target detection requires a threshold
parameter τ to determine if a detected data sample is con-
sidered to be a target pixel. This property allows a detector
to be used for binary classification. More specifically, if we
consider a class of interest as a desired target to be detected
which can be represented by the alternative hypothesis, H1,
and all other classes as an undesired class, referred to as

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 13,2023 at 12:03:20 UTC from IEEE Xplore.  Restrictions apply. 



5094 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 9, SEPTEMBER 2017

BKG class which can be represented by the null hypothesis,
H0, then a detector designed for binary hypothesis testing
problem becomes a binary classifier, which determines if a
data sample belongs to either signal class or BKG class. The
key difference is that a detector finds a boundary between
two classes compared to a binary classifier, which assigns
class membership to each of data samples. From an image
processing point of view, a detector is actually an edge
detector, while a binary classifier is essentially a thresholding
technique, which partitions an image into foreground and BKG
classes. With this interpretation, a detector can be performed
as a binary classification to do what a two-class SVM does.
It has been shown in [14]–[18] that the constrained energy
minimization (CEM) is a promising and effective subpixel
target detector for hyperspectral imagery. So, this suggests that
CEM can also be considered as a binary classifier with only
difference in that CEM is a soft detector while SVM is a hard
classifier. Furthermore, to cope with nonlinear separability
problems, SVM uses nonlinear kernels. Since CEM is also
a linear filter, in order for CEM to do the same, we introduce
a new concept of band selection-then-nonlinear expansion
(BSNE), which first selects a set of appropriate bands, and
then nonlinearly expands the selected band subset to form
a new hyperspectral image. This BSNE plays a similar role
as a kernel does for SVM. Additionally, due to the fact
that SVM is a pixel-based spectral classifier, a spectral–
spatial approach generally employs a follow-up spatial filter
to obtain spatial contextual information. Following a similar
idea CEM also applies Gaussian filters to CEM-detection
maps to capture spatial information, and then feeds back
the Gaussian-filtered images to BSNE band-expanded images
repeatedly. The more feedbacks the Gaussian filter images to
be added to BSNE band-expanded images, the more the spatial
information included. The type of CEM using feedback loops
to include spatial information via Gaussian-filtered images
is called iterative CEM (ICEM). Also ICEM using BSNE
to generate nonlinear band images is called BSNE-ICEM.
Accordingly, BSNE-ICEM can accomplish what a spectral–
spatial approach can for hyperspectral image classification.

In general, to evaluate a spectral–spatial approach,
OA/AA/κ coefficient is used for performance measure.
However, as noted earlier, CEM is a soft detector, which
contains continuous spectral information as well as BKG infor-
mation under hypothesis H0. The measure of OA/AA/κ cannot
sufficiently take advantage of these pieces of information.
Therefore, in addition to OA/AA/κ , we also introduce several
objective quantitative measures, detection rate (recall rate),
false alarm rate (i.e., false classification rate), precision rate,
and accuracy rate to deal with the BKG issue. These rates can
be calculated from a confusion matrix obtained by threshold-
ing CEM-detection maps using Otsu’s method [19].

In summary, the BSNE-ICEM presented in this paper has
several contributions, which have never been explored in the
past. First of all, it implements a hyperspectral subpixel target
detector, CEM, to perform hyperspectral image classification,
which has not been done in the past. Second, it uses BSNE to
obtain nonlinear information from the data rather than using
kernels to operate on the data as an SVM does. This is a new

concept that has not been investigated in hyperspectral image
classification. Third, it further develops ICEM by repeatedly
feeding back Gaussian-filtered CEM detection maps to gather
spatial information to reprocess CEM in an iterative manner.
The novelty of ICEM is introduction of an iterative feedback
process to capture spatial information. No such work ever
reported in the literature. Fourth, since CEM is a soft detector,
Otsu’s method is implemented in conjunction with CEM to
make CEM a binary classifier where a confusion matrix can
be constructed for performance evaluation. The use of Otsu’s
method is new. It converts a subpixel detection to pure-pixel
classification. Finally, unlike testing samples being selected
from the same class trained by training samples, such as [12],
the test samples used to evaluate BSNE-ICEM are selected
from all data samples, including training samples, samples
from other classes and BKG samples. Since no misclassified
data samples from other classes and BKG are considered for
classification in [11] and [12]. To address this issue, several
new objective measures from detection theory, which have
never considered in hyperspectral image classification, are
introduced for quantitative analysis of the hyperspectral image
classification.

II. BAND SELECTION

BS is a commonly used approach and has received consid-
erable interest lately [14]. It can be performed in a super-
vised or an unsupervised manner. When it is implemented
as a supervised BS method, it generally specifies its applica-
tion first, such as target detection, classification, endmember
extraction, and spectral unmixing, which determine features
for BS via prior knowledge, for example, training samples. It is
then followed by a feature extraction algorithm to prioritize
features to select desired bands. Consequently, the selected
bands generally vary with different applications. On the other
hand, when it comes to an unsupervised BS method, no
prior knowledge is available to be used for BS. A general
approach is to design band prioritization criteria on the basis
of data characteristics or statistics, such as variance, signal-to-
noise ratio, entropy, and information divergence to calculate
a priority score of each of individual bands for their ranking.
The bands are then selected according to their calculated
priority scores. Since such BS has nothing to do with appli-
cations, the same selected bands are applied to all different
applications. Regardless of whether a BS method is supervised
and unsupervised uniform BS (UBS), based on our extensive
experiments and reported in the literature [14], has been shown
to be a reasonably good BS technique. So, in this paper, UBS is
chosen for BSNE. The advantages of choosing UBS are: 1) its
simplicity and easy implementation; 2) no requirement of prior
knowledge or BS criteria; 3) uniform interband decorrelation,
which is a best option when no prior knowledge is available
according to maximum entropy in information theory; and 4)
UBS allows users to select bands as sparse as possible, so
that the inter-band correlation can be minimized as much as
possible with a hope that the UBS-selected bands can achieve
least inter-band correlation.

In this paper, we take advantage of BS to select a partial
band set by UBS to avoid redundant bands being used for
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classification due to highly correlated bands acquired by a
hyperspectral imaging sensor. Using this small partial UBS-
selected band set, we can further expand it to a large band
set via nonlinear functions as described in Section III that
includes nonlinear spectral information, which cannot be
obtained by original full band set. Such BS coupled with
nonlinear band expansion (NBE) is one of key ideas proposed
in BSNE-ICEM.

III. NONLINEAR BAND DIMENSIONALITY EXPANSION

An early attempt to expand the original set of band images
is to utilize nonlinear functions, for example, autocorrelation
and cross correlation, an idea derived from [14] and [20]. This
type of NBE process (NBEP) is referred to as correlation BE
process (CBEP). Combining these new NBEP generated band
images with the original set of band images provides us with
sufficient band images. While NBEP may have proved to be
effective to some extent, three other issues also arise. First of
all, the nonlinear band images generated by CBEP may not
effectively capture nonlinearity caused by other factors, such
as terrain and geographical changes. To better take advan-
tage of nonlinear spectral information among band images,
a new approach, called band ratio expansion process (BREP),
is further developed by finding band ratioed images, which are
ratios of one band to another band for band expansion.

A. Correlation Band Expansion Process
The CBEP) presented in this section is an NBE using

correlation functions to generate new band images from the
original set of multispectral images. Its original idea was
developed in [20].

1) CBEP:
Step 1: First-order band image: {Bl}Ll=1 = set of original

band images.
Step 2: Second-order correlated band images.

1) {B2
l }Ll=1 = set of autocorrelated band images.

2) {BkBl}L ,L
k=1,l=1,k �=l = set of cross-correlated

band images.
In case, a rescaling is needed, autocorrelated or
cross-correlated band images can be normalized by
the variances of band images, such as (σ 2

Bl
)−1{B2

l }
and (σBk σBl )

−1{BkBl}.
Step 3: Third-order correlated band images.

1) {B3
l }Ll=1 = set of autocorrelated band images.

2) {B2
kBl}L ,L

k=1,l=1,l �=k = set of two cross-correlated
band images.

3) {BkBlBm}L ,L ,L
k=1,l=1,m=1,k �=l �=m = set of three

cross-correlated band images.
Similarly, like step 2, if a rescaling is needed,
autocorrelated or cross-correlated band images
can be normalized by the variances of band
images, such as (σ 3

Bl
)−1{B3

l }, (σ 2
Bk

σBl )
−1{B2

kBl },
and (σBk σBl σBm )−1{BkBlBm}.

Step 4: Nonlinear correlated band images.
1) {√Bl}Ll=1 = set of band images stretched out by

the square root.
2) {log (Bl)}Ll=1 = set of band images stretched

out by the logarithmic function.

It is worth noting that all the band images generated by
NBEP are produced nonlinearly. These band images should
offer useful information for data analysis, because they provide
nonlinear spectral information to help to improve performance.
However, we should also point out that according to our
experience, using the cross-correlated band images generated
by 2) in step 2 is generally sufficient to accommodate the
need of NBEP. Additionally, using the set of autocorrelated
band images produced by 1) in step 2 may sometimes cause
nonsingularity problems in matrix computation, because they
are self-correlated and usually very close to the original
images. It is suggested that they should not be used alone
and can be only used in conjunction with cross-correlated
band images. This can be well explained by the fact that
a covariance matrix, including variances and covariances,
provides more information than a diagonal matrix, which only
includes variances.

B. Band Ratio Expansion Process
The BREP is another NBE using different ratios of one band

to another. The use of BR comes from the idea to enhance
the spectral differences between bands as well as to reduce
the effects of topography. It is performed by dividing one
spectral band by another to produce an image that is supposed
to provide relative band intensities. Such band ratioed image
generally enhances the spectral differences between bands.

BR has been commonly used for multispectral data to
reduce the effects caused by topological slope and aspects or to
eliminate differential illumination effects caused by shad-
ows [21], particularly, normalized difference vegetation index
(NDVI) defined as the ratio of two bands to remove much of
the effect of illumination in the analysis of spectral differences.
For example, from a general spectral reflectance, BR with
near-infrared/red (NIR/R) � 1, NIR/R < 1, and NIR/R > 1
indicates vegetation, water, and soil, respectively. Such
NIR/R-ratioed images can be used as a crude indicator in agri-
culture classification. Therefore, this ratio has been developed
for a range of different vegetation indices. In hyperspectral
data exploitation, BR was also used to detect concealed targets
in hyperspectral imagery in [22].

Band ratioed images are generally obtained by dividing
the pixels in one band image by the corresponding pixels
in another band image to bring out differences between
the spectral reflectance curves of surface types, such as the
NIR/R BR.

1) Band Ratioed Expansion Process:

Step 1: Let B j and Bk be the j th and kth band image
vectors.

Step 2: A band image vector obtained by taking the ratio of
B j to Bk , denoted by BR j k , is defined as follows:

BR j k = B j /Bk . (1)

Assume that the gray level range for all band image vectors
is given by {g1, g2, . . . , gT } in an ascending order. In case
there is a pixel in Bk taking gray level value 0, the gray level
of the corresponding pixel in the BR image vector BR j k of (1)
will be simply set to B j to prevent the denominator of (1)
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from taking 0. As a result, the gray level range of the BR j k

is between 1/gT and gT .
The goal of BSNE is to explore nonlinearity of data

structure via NBE, which is similar to the task that a non-
linear kernel used by SVM. However, since a hyperspectral
image is generally highly correlated, BS is used to select
effective decorrelated bands that will be further used for NBE.
UBS seems to be a good option for this purpose. That is,
let the original set of hyperspectral images be denoted by
� = {Bl}Ll=1. Then, BSNE combines a set of selected bands,
{BBS

i }nBS
i=1, by BS with a new set of nonlinearly expanded

bands, {BNB
i }nNB

i=1 , to produce a new set of band images,
denoted by �BSNE = {BBS

i }nBS
i=1 ∪ {BNB

i }nNB
i=1 , where nBS and

nNB are the number of selected bands and the number of bands
nonlinearly expanded from {BBS

i }nBS
i=1, respectively.

IV. ITERATIVE CEM

This section presents an iterative version of CEM, to be
called ICEM, which is implemented in conjunction with BSNE
in an iterative manner. More specifically, it utilizes BSNE to
create new nonlinear band images via an NBEP. Once BSNE
process is completed, a new set of hyperspectral images,
�BSNE, is generated. This is then followed by CEM to perform
subpixel target detection in the same way that SVM is used
to perform pure-pixel classification. It further feeds back
its CEM-detected band images to be added to the current
expanded set of band images to create another new expanded
set of band images. Such feedback loop is continued on until
a stopping rule is met. In order to obtain class spatial infor-
mation, a Gaussian filter is introduced in the CEM-detected
maps, so that spatial contextual information of data sample
vectors can be captured by a Gaussian filter. The resulting
Gaussian-filtered CEM-detection abundance fractional map is
then fed back to create a new band image to be incorporated
into �BSNE to form a new hyperspectral cube, which will
be further used for reprocessing CEM again. Such repeatedly
implementing CEM via feedback loops in an iterative fashion
is called ICEM. For example, at each iteration, say the kth
iteration, a Gaussian filter is used to blur |B|(k)

CEM, which is the
absolute value of CEM-detection abundance fractional map,
BCEM

k . This Gaussian-filtered band image, |B|(k)
GF(CEM), which

provides spatial classification information as similar filters
used in [12], will be further fed back to �

(k)
BSNE to create a new

set of hyperspectral images, �
(k+1)
BSNE = �

(k)
BSNE ∪ {|B|(k)

GF(CEM)}
for reprocessing CEM for next iteration. The same procedure
is repeatedly until a stopping rule is satisfied. In order to
determine a stopping rule, Otsu’s method [19] is applied
to |B|(k)

GF(CEM) to produce a binary classification map, B(k)
binary,

to be used to calculate Tanimoto index (TI) [23] for algorithm
termination in which case |B|(k)

CEM and B(k)
binary will be output

for final data analysis.
The detailed step-by-step implementation is provided in the

following.

A. ICEM
1) Initial Condition: Let {Bl}Ll=1 be the original set of band

images.

Fig. 1. Diagram of the kth iteration carried out by hyperspectral image
classification implementing ICEM on �

(k)
BSNE.

2) Implement a BS algorithm to select a band subset
{BBS

l }nBS
l=1.

3) Use an NBEP to create a new set of nonlinear band
images, {BNB

i }nNB
i=1 , where nNB is the number of new band

images by an NBEP.
4) Form a new set of band images, �(0) = {Bl}Ll=1 ∪
{BNB

i }nNB
i=1 . Let d(0) = (d1, · · · , dL, dNB

1 , · · · , dNB
nNB

)T be
the desired target pixels in �(0). Let δCEM

0 be CEM using
d(0) and R(0), which are obtained from �(0). Let k = 1.

5) At the kth iteration, update d(k) and R(k) =
∑N

i=1 r(k)
i (r(k)

i )
T

from �(k).
6) Use new generated d(k) and R(k) for δCEM

k to be imple-
mented on �(k). Let B(k)

CEM be the detection abundance

fractional map produced by δCEM
k .

7) Use a Gaussian filter to blur |B|(k)
CEM, where |B|(k)

CEM is the
absolute value of B(k)

CEM. The resulting image is denoted

by Gaussian-filter |B|(k)
GFCEM.

8) Check if |B|(k)
CEM satisfies a given stopping rule. If no,

continue. Otherwise, go to step 10).
9) Form �(k+1) = �(k) ∪ {|B|(k)

GFCEM}. Let k ← k + 1 and
go to step 4).

10) B(k)
CEM is the desired detection abundance fractional map

and ICEM is terminated.

Fig. 1 delineates how ICEM is processed as a subpixel target
detector.

V. STOPPING RULE FOR ICEM

In pattern recognition, one of popular criteria to mea-
sure segmentation/classification performance is TI defined
in [23] by

TI = |S ∩ S̃|
|S ∪ S̃| (2)
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Fig. 2. Flowchart of the stopping rule used for BSNE-ICEM.

where |A| is the size of a set A, S is the original image, and S̃
is segmented or classified image. In other words, TI calculates
a ratio of the data sample vectors in the intersection of a clas-
sified image with the original image to the union of the data
sample vectors of a classified image with the original image.
So, TI = 1 indicates that the classification rate is 1, which
means that the classification is perfect so as to achieve 100%
rate in the sense that all data sample vectors are classified
correctly. If TI = 0, it indicates that the classification rate is
0, that is, the intersection of a classified image with the original
image is empty, which means that no data sample vectors are
classified correctly. Generally speaking, 0 ≤ TI ≤ 1.

By taking advantage of TI in (2), we can use TI as a
stopping rule to effectively terminate ICEM by letting, S̃ =
Sk and S = Sk−1 be the kth thresholded binary image of
the kth CEM detection abundance fractional map, |B|(k)

CEM,
and (k − 1)th thresholded binary image of the (k − 1)th
CEM detection abundance fractional map, |B|(k−1)

CEM . In other
words, when the discrepancy between two Otsu’s thresholded
binary images |B|(k)

binary and |B|(k−1)
binary is less than ε, ICEM is

terminated. Fig. 2 shows a flowchart of a stopping rule using
TI.

VI. ALGORITHM FOR BSNE-ICEM

Using Figs. 1 and 2, an algorithm developed to implement
BSNE can be described as follows.

A. BSNE-ICEM

1) Initial conditions are as follows.
a) For each class, find its sample mean to calculate

the desired signature d for the particular class.
b) Use virtual dimensionality (VD) to estimate the

number of bands needed to be selected, nBS = nVD
for BSNE.

Fig. 3. Flowchart of BSNE-ICEM.

c) Select the values of the parameter σ used for
Gaussian filters in ICEM.

d) Prescribe an error threshold ε for TI in (2).

2) Use BS to select a set of desired bands, {BBS
l }nBS

l=1.
3) Use NBEP described in Section II to generate a set of

nonlinear band images, {BNB
l }nNB

l=1 .
4) Apply ICEM described in Fig. 1 to �(0) = {BBS

l }nBS
l=1 ∪{BNB

l }nNB
l=1 .

5) Use TI described in Fig. 2 as a stopping rule to terminate
ICEM.

6) Output |B|(k)
CEM which is real valued and B(k)

binary which
is binary valued to produce a confusion matrix for
classification.

Fig. 3 describes a flowchart diagram of implementing
BSNE-ICEM, which has a feedback loop to update the
desired signature d and the sample correlation matrix R
from the CEM-detection abundance fractional maps iteratively.
So, when both |B|(k)

CEM and |B|(k−1)
CEM agree within the error

threshold ε measured by TI, ICEM is terminated.
According to Fig. 3, BSNE-ICEM has several new features

that cannot be found in the current hyperspectral image classi-
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fication literature including those in [1]–[13]. Since hyperspec-
tral imagery generally has more bands than it needs, consider-
ing band expansion (BE) for hyperspectral imagery seems not
practical. BSNE-ICEM shows otherwise. However, in order to
show such BE to be practically useful and effective, two key
elements are proposed to implement BSNE. One is BS to find
effective bands to avoid two highly correlated bands to be used
for BE. The other is NBEP, which expands selected bands non-
linearly via nonlinear functions where NBEP plays a similar
role as a nonlinear kernel does for linear filters, such as SVM.
Furthermore, ICEM makes use of Gaussian filters to smooth
CEM-detection abundance fractional maps and feeds back
Gaussian-filtered CEM detection abundance fractional maps to
provide spatial information for reprocessing CEM iteratively
by gradually increasing more spatial information through feed-
back loops repeatedly. Finally, the most importantly, several
new quantitative measures are developed to evaluate classifi-
cation performance.

VII. REAL IMAGE EXPERIMENTS

Three real hyperspectral images were used for experiments,
Purdue University’s Indiana Indian Pines, University of Pavia,
Italy, and Salinas, each of which has its own unique feature
characteristics worth being explored. According to the recent
work [12], a comprehensive comparative analysis was con-
ducted among most existing spectral–spatial techniques, and
the four edge preserving filter (EPF)-based techniques, such as
EPF-B-c, EPF-G-c, EPF-B-g, and EPF-G-g, were shown to be
best classification techniques where “B” and “G” are used to
specify bilateral filter and guided filter, respectively, and “g”
and “c” indicate that the first principal component and color
composite of three principal components are used as reference
images [12]. Therefore, in the following experiments, the per-
formance of BSNE-ICEM will be evaluated in comparison
with these four EPF-based techniques. Specifically, an SVM
classifier was applied pixelwise with the test samples randomly
selected as was done in [12] to produce class-membership
maps, which were further filtered by four EPF techniques to
create soft probability maps, and the maximum probability was
chosen as the final class-membership. In addition to EPF-based
methods, we also included experiments by the Mahalanobis
distance-based maximum likelihood classification (MLC) tech-
nique [24], which was also implemented in conjunction with
EPF method to capture spatial information. It should be noted
that the EPF-based methods in [12] and MLC are implemented
using full bands. In order to make a comprehensive analysis
in comparison with BSNE-ICEM, we also performed the four
EPF-based methods and MLC using BS and BSNE in exactly
the same way that BSNE-ICEM was performed where BS is
UBS. However, since the BSNE-MLC method suffers from
singularity issue resulting from inverting the covariance matrix
used in MLC, the BSNE-MLC results were not included.

As also noted in [12], the training and test samples were
selected from the same class in which case misclassified
sample vectors were not considered. Besides, since BKG is
generally not considered in [1]–[13], the commonly perfor-
mance measure, OA, which is defined as the ratio of the
number of correctly classified test samples to the total number

TABLE I

CONFUSION MATRIX FOR BINARY CLASSIFICATION

of test samples, does not reflect real classification issues.
To further address these problems, we also introduce several
other performance measures that can measure the effects of
falsely classified data sample vectors in. These measures are
derived from a detection point of view based on a confusion
matrix commonly used for classification.

More specifically, if we consider a particular class to be
classified as a signal class of interest, then all other classes
will be considered as nonsignal classes, which can be treated
as a single BKG class. In this case, we can form a binary
classification confusion matrix as Table I where TP, FP, FN,
and TN are defined as signal detection (SD), false signal (FS)
detection, false BKG (FB) detection, and BKG detection (BD),
respectively.

Now, define N , NS , and NBKG as the total number of sample
vectors, the total number of signal sample vectors, and BKG
sample vectors where data sample vectors are divided into
signal class made up of all signal sample vectors and BKG
class including all nonsignal sample vectors, i.e., data sample
vectors other than signal sample vectors:

N total number of data sample vectors;
NS total number of signal sample vectors;
NBKG total number of BKG sample vectors;
SD data sample vectors, which are signal

sample vectors, are detected as signal sample
vectors;

FS data sample vectors, which are BKG
sample vectors, are detected as signal sample
vectors;

BD data sample vectors, which are BKG
sample vectors, are detected as BKG sample
vectors;

FB data sample vectors, which are signal
sample vectors, are detected as BKG sample
vectors;

PD = PSD SD rate;
PF = PFS false alarm rate/false classification rate/FS

rate;
PBDR BD rate;
Pprecision precision;
Paccuracy accuracy rate;
POA OA rate.

According to Table I, various quantitative measures can be
further defined as follows:

NS = NSD + NFB (3)

NBKG = NBD + NFS (4)

N = NS + NBKG (5)

PF = PFS = NFS

NBD + NFS
= NFS

NBKG
(6)
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TABLE II

CLASS LABELS OF 17 CLASSES

PD = PSD = NSD

NSD + NFB
= NSD

NS
(7)

PBDR = NBD

NBD + NFS
= NBD

NBKG
(8)

Pprecision = NSD

NSD + NFS
(9)

Paccuracy = NSD + NBD

N
(10)

POA =
c∑

i=1

w(i)
Ni

TSD

Ni
TS

with w(i) = Ni
TS∑c

i=1 Ni
TS

(11)

where c is the total number of classes to be classified without
BKG, and Ni

TSD and Ni
TS are the numbers of test samples

to be detected in class i and the number of test samples in
class i . It should be noted that POA in (11) can be calculated
by Paccuracy through

POA =
c∑

i=1

w(i)Pi
accuracy with w(i) = Ni

TS∑c
i=1 Ni

TS

(12)

where Paccuracy defined in (10) can be modified as the i th class
accuracy by

Pi
accuracy =

Ni
TSD

Ni
TS

. (13)

If we further define accuracy of BKG by

P B
accuracy =

NBD

NB
(14)

then Paccuracy in (9) extended to c classes plus BKG is
defined by

Paccuracy =
c∑

i=1

w̃(i)Pi
accuracy + w(B)P B

accuracy

= (1− w(B))POA + w(B)P B
accuracy (15)

where w̃(i) = (Ni
TS/(

∑c
i=1 Ni

TS + NB )).
Since BKG was not considered as a part of classification in

[12], BDR in (8) is not of interest in [12]. However, PF in (6),
PD in (7), Pprecision in (9), and Paccuarcy in (15) are of major
interest, because they are involved with the number of falsely
misclassified data samples, NFS, which is not considered in
POA in [12, eqs. (11) and (12)].

The test samples used in the following comparative
EPF-based experiments were entire pixels in the data to be
processed. In this case, training samples and BKG pixels were
also included as test samples. As a result, the evaluation was
performed quite different from that carried out in [12] where
only the training and test samples from the same class were

used for evaluation and BKG was not considered as a class
but rather excluded from classification.

A. Purdue Indiana Indian Pines
A real image used for experiments is a well-known Airborne

Visible Infrared Imaging Spectrometer (AVIRIS) image scene,
Purdue Indiana Indian Pines test site shown in Fig. 4(a),
its ground truth in Fig. 4(b) along with its 17 class maps
in Fig. 4(d), and aerial view in Fig. 4(c). Table II also
tabulates all the specific types of 16 classes. It has a size
of 145 × 145 pixel vectors taken from an area of mixed
agriculture and forestry in Northwestern Indiana, USA, with
details of band and wavelength is given in caption. The
data set is available at website http://cobweb.ecn.purdue.
edu/~biehl/MultiSpec/documentation.html. It was recorded in
June 1992 with 220 bands, which include water absorption
bands (bands 104–108 and 150–162). For our experiments,
these water bands were removed.

In order to implement BSNE, we first determine how many
bands needed to be selected, nBS, where VD developed in
[18] and [25] was used to estimate the value of nBS, which
is 29 [14]. In this case, a simple BS method, UBS, was used to
select {BUBS

l }29
l=1. Since the wavelength range is across visible

and infrared wavelengths, we used BREP instead of CBEP
to expand new nonlinear bands from {BUBS

l }29
l=1 to generate

2
( 29

2

) = 812 band ratioed bands, {BBREP
l }812

l=1. That is, accord-
ing to (1) for every pair (B j , Bk), we can have two band rarioed
images, BR j k = B j /Bk and BRkj = Bk/B j . As a result,

a total of 812 bands, �(0) = {BUBS
l }29

l=1∪{BBREP
l }812

l=1, was used
for ICEM. Table III tabulates the specifications of parameters
and various methods used by BSNE-ICEM. Fig. 5 shows
16 ICEM-detection real-valued class maps obtained from
using �(0), and Fig. 6 shows their binary maps obtained by
applying Otsu’s thresholding method to the real-valued class
maps in Fig. 5.

According to the ground truth in Table II, each of corn,
soybean, and grass has three different types. In this case,
16 classes are divided into 4 subclasses, corn-like classes 2–4,
grass-like classes 5–7, soybean-like classes 10–12, and other
remaining classes plus BKG class 17. Fig. 7 shows the spectral
profiles of these 4 classes plotted by 16 class means where
the spectral signatures of three corn classes are very close
each other and so are the three soybean classes. As expected,
classifying these classes will be very challenging.

Table IV tabulates results produced by BSNE-ICEM,
EPF-B-g, EPF-B-c, EPF-G-g, and EPF-G-c using five perfor-
mance measures, PD in (7), PF in (6), Pprecision in (9), POA
in (11) and (12), and Paccuracy in (15) in terms of percentile (%)
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Fig. 4. Purdue Indiana Indian Pines scene. (a) Band 186 (2162.56 nm). (b) Ground-truth map. (c) USGS Quadrangle map of the test site. (d) 17 class maps.

Fig. 5. 16 ICEM-detection abundance fractional class maps from original bands expanded by band ratioed bands (812 bands) from uniformly selected 29 bands.

where PD%, PF %, and Pprecision are shown in the three
columns under each method, and POA and Paccuracy are shown
in the last two rows with the bold faced values indicating the
best results. It should be noted that according to the codes
provided in [12] the obtained results are fluctuated and not
necessarily consistent with the results in [12].

According to Table IV, the best POA was the one pro-
duced by EPF-B-c, while the best accuracy was produced
by BSNE-ICEM using Otsu’s thresholding. As for the other
three performance measures, PD , PF , and Pprcision, EPF-G-c
generally produced the best PD values for 8 out of 16 classes,
and BSNE-ICEM produced the best values of PF and Pprecision

almost across board except class 9 whose best values of PF

and Pprecision were produced by EPF-G-c. The most interesting
finding is Paccuracy defined in (15), which includes BKG
classification into POA in (11) and (12). As shown in the last
row of Table IV, BSNE-ICEM produced nearly twice better
Paccuracy than four EPF-based methods, which did not include
BKG classification in their results in [12]. It is known that
POA is the major performance measure which has been widely
used to evaulate hyperspectral image classification [1]–[12].
Unfortunately, POA only tells half of a story, which is that
it does not account for BKG classification, but rather cal-
culates the correct classification of test data samples where

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 13,2023 at 12:03:20 UTC from IEEE Xplore.  Restrictions apply. 



XUE et al.: SUBPIXEL TARGET DETECTION APPROACH TO HYPERSPECTRAL IMAGE CLASSIFICATION 5101

Fig. 6. 16 BSNE-ICEM detection abundance fractional class maps in Fig. 5 thresholded by Otsu’s method.

Fig. 7. Spectral profiles of 16 class sample means in Purdue Indian Pines. (a) Corn classes. (b) Grass classes. (c) Soybean classes. (d) Other classes.

TABLE III

SPECIFICATIONS OF PARAMETERS USED BY BSNE-ICEM FOR THE PURDUE INDIAN PINES SCENE

TABLE IV

PERFORMANCE EVALUATION COMPARISON AMONG BSNE-ICEM AND FOUR EPF-BASED METHODS,
EPF-B-g, EPF-B-c, EPF-G-g, and EPF-G-c FOR THE INDIAN PINES SCENE

both training samples and testing samples come from the
same class. That is, POA does not include misclassifucation
of data samples from other classes such as BKG class.
To be more specific, if we consider multiclass confusion
matrix, POA only calculates the correct classification rates

for all classes along the diagonal line without BKG, while
discarding all misclassification rates off diagonal line. Such
misclassification rates are exactly the other half story must
be told in accuracy calculation. However, how to address
misclassification rates is challenging, because there are
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TABLE V

PERFORMANCE EVALUATION COMPARISON AMONG BS-SVM-EPF-BASED METHODS FOR THE INDIAN PINES SCENE

(
c
2

)
= ((c(c − 1))/2) combinations of misclassification rates,

where c is the total number of classes, which can be referred
to as one against one strategy. An alternative strategy is one
against rest, which considers a class of interest as the desired
class and all the rest of classes including BKG class as the
BKG. By doing so, a multiclass confusion matrix is further
simplified to a binary confusion matrix in which case a stan-
dard binary hypothesis testing problem can be applied. With
this interpretation, we can include the BKG class, class 17 as a
new class, a case not considered in [12]. In other words, we can
consider the class of interest as signal class specified by the
alternative hypothesis H1 and the BKG as the null hypothe-
sis H0. Then, PD is calculated by the correct classification rate
of samples from the signal class whereas PF is the false alarm
rate defined as the rate of misclassifying the samples from
BKG into the signal class. Such misclassified data samples are
referred to falsely alarmed or falsely classified data samples.
The measures of PF in (6), Pprecision in (9), and Paccuracy
in (15) are particularly designed to address this issue. By virtue
of these five performance measures calculated in Table IV,
BSNE-ICEM was the best to produce the best values of PF ,
Pprecision, and Paccuracy, while EPF-G-c and EPF-B-c were the
best to produce the best values of PD and POA, respectively.
As also noted, BSNE-ICEM had a lower detection accuracy
but a higher classification accuracy. This is mainly due to the
fact that the detection rate is calculated by the detection of a
target of interest from all data sample vectors including BKG
class. It is quite different from EPF-based methods, which only
calculated detection rates of targets from the same class that
has been used for training. Most importantly, if we examine
the spectral signature profiles of four categories of 16 classes,
their respective signatures are very similar and close. This
indicates that the classification among these classes cannot
be too high as shown by POA in the second row from the
last in Table III, which was around 95%. Instead, Pprecision
tabulated in the third column under each of four EPF-based
methods did reflect the difficulty of classifying each of these
classes. Paccuracy tabulated in the last row in Table III indeed

provided evidence the overall classification difficulty, which
was around 46% produced by the four EPF-based methods
and 87.54% produced by BSNE-ICEM. This implies that
Pprecision and Paccuracy should be the ones to be used to
measure class classification difficulty not POA. So, gener-
ally speaking, BSNE-ICEM is the best classification tech-
nique to deal with correct classification and misclassification
issues.

In order to see how BS and BSNE affect EPF-based meth-
ods, we also implemented four EPF-based methods using the
same bands selected by BSNE that were used by BSNE-ICEM;
Tables V and VI tabulate their results, which were not as
good as the results in Table IV. This demonstrated that when
the pure-pixel-based spectral classifier, such as SVM, is used
for classification, full band information provides better perfor-
mance than partial bands. Although BSNE using partial bands
with NBE performed better than BS without NBE, its included
nonlinear spectral information was insufficient to compete
EPF-based methods using full bands. Similar conclusions were
also drawn from MLC, which is also a pure-pixel-based
spectral classifier where Tables VII and VIII tabulate their
results without BS and with BS, respectively. Also comparing
Tables IV–VI with Tables VII and VIII, it clearly shows that
the EPF-based methods performed significantly better than
MLC.

B. Salinas

The Salinas image shown in Fig. 8(a) was acquired by the
AVIRIS sensor over Salinas Valley, CA, and with a spatial res-
olution of 3.7 m per pixel with a spectral resolution of 10 nm.
The image has a size of 512 × 217× 224. Fig. 8(b) and (c)
shows the color composite of the Salinas image and the
corresponding ground-truth class labels. The VD estimated
for this scene was 21 for UBS to select 21 bands. Since this
scene is very similar to the Purdue Indiana Indian Pines scene,
which also includes 20 water absorption bands, which are
108–112, 154–167, and 224, only BREP was used for NBE,
{BBREP

l }420
l=1. Table IX tabulates the specifications of parameters
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TABLE VI

PERFORMANCE EVALUATION COMPARISON AMONG BSNE-SVM-EPF-BASED METHODS FOR THE INDIAN PINES SCENE

TABLE VII

PERFORMANCE EVALUATION COMPARISON AMONG MLC-EPF-BASED METHODS FOR THE INDIAN PINES SCENE

TABLE VIII

PERFORMANCE EVALUATION COMPARISON AMONG BS-MLC-EPF-BASED METHODS FOR THE INDIAN PINES SCENE

and various methods used by BSNE-ICEM. Fig. 9 shows
16 ICEM-detection real-valued class maps obtained from using
�(0) = {BUBS

l }21
l=1∪{BBREP

l }420
l=1, and Fig. 10 shows their binary

maps obtained by applying Otsu’s thresholding method to the
real-valued class maps in Fig. 9. According to the ground truth

in Fig. 8(b), 16 classes are divided into 5 subclasses, weeds
classes 1 and 2, fallow classes 3–5, lettuce classes 11–14,
vineyard classes 15 and 16, and other remaining classes plus
BKG class 0. Fig. 11 shows the spectral profiles of these
5 classes plotted by 16 class means.
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Fig. 8. Ground truth of the Salinas scene with 16 classes. (a) Salinas scene. (b) Color ground-truth image. (c) Ground-truth class labels.

TABLE IX

SPECIFICATIONS OF PARAMETERS USED BY BSNE-ICEM FOR THE SALINAS SCENE

As discussed in the Purdue Indian Pines data experiments,
we also used one against rest to calculate the five perfor-
mance measures, PD in (7), PF in (6), Pprecision in (9),
Paccuracy in (15), and POA in (11) and (12) where BKG class,
class 0, is also included for classification. Table X tabulates
the results produced by BSNE-ICEM, EPF-B-g, EPF-B-c,
EPF-G-g, and EPF-G-c using five performance measures, PD

in (7), PF in (6), Pprecision in (9), POA in (11) and (12),
and Paccuracy in (15) in terms of percentile (%) where PD%,
PF %, and Pprecision are shown in the three columns under each
method, and POA and Paccuracy are shown in the last two rows
with the bold faced values indicating the best results.

According to Table X, the results obtained from the Salinas
scene were very similar and close to the results in Table IV
for the Purdue Indian Pines scene. So, similar conclusions
drawn from the Purdue Indian Pinese scene can also be applied
to the Salinas scene. That is, the best POA was the one
produced by EPF-G-c, while the best Paccuracy was produced
by BSNE-ICEM. As for the other three performance measures,
PD , PF , and Pprcision, EPF-G-c generally produced the best PD

values for 14 out of 16 classes, and BSNE-ICEM produced

the best values of PF and Pprecision almost across board
except class 8 whose best values of PF and Pprecision were
produced by EPF-G-c. In analogy with the Purdue Indian
Pines scene, BSNE-ICEM was the best to produce the best
values of PF , Pprecision, and Paccuracy. This also concludes
that BSNE-ICEM is generally the best classification technique
to deal with correct and classification and misclassification
issues.

Like the Purdue Indian Pines scene, we also performed
experiments for the Salinas scene and implemented four
EPF-based methods and MLC using the same bands selected
by BS and BSNE that were used by BSNE-ICEM for the
Salinas scene. Tables XI–XIV tabulate their respective results,
which were also not as good as the results in Table X. The
same conclusions drawn for the Purdue Indian Pines scene
were also applied to the Salinas scene.

C. University of Pavia

The University of Pavia image, which includes an urban
area surrounding the University of Pavia, Italy, was collected
by the ROSIS-03 satellite sensor. It is of size 610×340×115
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Fig. 9. ICEM 16 detection abundance fractional class maps from original bands expanded from uniformly selected 21 bands by band ratioed bands (420 bands)
for the Salinas scene.

TABLE X

PERFORMANCE EVALUATION COMPARISON AMONG BSNE-ICEM AND FOUR EPF-BASED METHODS,
EPF-B-c, EPF-B-g, EPF-G-c, and EPF-G-g FOR THE SALINAS SCENE

with a spatial resolution of 1.3 m per pixel and a spectral
coverage ranging from 0.43 to 0.86 μm with a spectral
resolution of 4 nm (12 most noisy channels were removed
before experiments). Nine classes of interest plus BKG class,
class 0, are considered for this image. The VD estimated for
this scene was 14 for UBS to select 14 bands. Since this scene
was acquired in a visbile range, BREP may not be effective as
it worked for the other two image scenes, Purdue Indian Pines

and Salinas. In this case, we used CBEP instead of BREP
to geneatte nonlinear band images. Fig. 12(a)–(c) shows the
University of Pavia image, the three-band color composite, and
the ground-truth class lables, respectively. The second-order
autocorrelated bands: x2 (14 bands); the third-order
autocorrelated bands: x3 (14 bands), the second cross-
correlated bands: xy (

( 14
2

) = 91 bands), and the third-order
correlated bands: x2 y (

( 14
2

) = 91 bands), xy2 (
( 14

2

) = 91
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Fig. 10. 16 ICEM-detection abundance fractional class maps in Fig. 9 thresholded by Otsu’s method.

Fig. 11. Spectral profiles of 16 class sample means in the Salinas scene.

bands), and xyz (
( 14

3

) = 364 bands); log x (14 bands); and√
x (14 bands). A total number of nonlinear expanded bands is

693 bands. Table XV tabulates the specifications of parameters
and various methods used by BSNE-ICEM. Fig. 13 shows
nine ICEM-detection real-valued class maps obtained from
using �(0), and Fig. 14 shows their binary maps obtained by
applying Otsu’s thresholding method to the real-valued class

maps in Fig. 13. Fig. 15 also plots the spectral profiles of
the nine classes where spectral signatures are plotted by class
means.

Compared with Figs. 7 and 11, which can be separated into
four and five different distinct spectral classes, Fig. 15 shows
that the spectral profiles of all nine class means in the
University of Pavia are very close. So, unlike Tables III and IX,
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TABLE XI

PERFORMANCE EVALUATION COMPARISON AMONG BS-SVM-EPF-BASED METHODS FOR THE SALINAS SCENE

TABLE XII

PERFORMANCE EVALUATION COMPARISON AMONG BSNE-SVM-EPF-BASED METHODS FOR THE SALINAS SCENE

TABLE XIII

PERFORMANCE EVALUATION COMPARISON AMONG MLC-EPF-BASED METHODS FOR THE SALINAS SCENE

which use the same value for all classes, it is anticipated that
the values of parameters would require judicious selection,
as shown in Table XV, which must be adapted to various
classes.

Table XVI tabulates the results produced by BSNE-ICEM,
EPF-B-g, EPF-B-c, EPF-G-g, and EPF-G-c using five perfor-
mance measures, PD in (7), PF in (6), Pprecision in (9), POA
in (11) and (12), and Paccuracy in (15) in terms of percentile (%)

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 13,2023 at 12:03:20 UTC from IEEE Xplore.  Restrictions apply. 



5108 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 9, SEPTEMBER 2017

TABLE XIV

PERFORMANCE EVALUATION COMPARISON AMONG BS-MLC-EPF-BASED METHODS FOR THE SALINAS SCENE

Fig. 12. Ground truth of the University of Pavia scene with nine classes.

Fig. 13. ICEM nine detection abundance fractional class maps from original bands expanded from uniformly selected 14 bands by band cross-correlation
bands (693 bands) for the University of Pavia scene.

where PD%, PF %, and Pprecision% are shown in the three
columns under each method, and POA and Paccuracy are shown
in the last two rows with the bold faced values indicating the
best results. If we further plot the spectral profiles of the nine
classes by their class means, all spectral signatures are very
similar. This fact was evidenced in the last row in Table XVI
where Paccuracy values produced by four EPF-based methods

were only around 20.40% even though their POA can be as
high as around 99%. This indicates that POA did not reflect
the difficulty of classifying these nine classes. Instead, Paccuracy
should be the one to be used to measure the class classification
difficulty.

Despite the fact that the University of Pavia scene is
quite different from the Purdue Indian Pines and Salinas
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Fig. 14. Nine ICEM-detection abundance fractional class maps in Fig. 13 thresholded by Otsu’s method.

TABLE XV

SPECIFICATIONS OF PARAMETERS USED BY BSNE-ICEM

TABLE XVI

CLASSIFICATION ACCURACIES FOR ICEM IN COMPARISON WITH EPF-B-c, EPF-B-g, EPF-G-c, and EPF-G-g FOR THE UNIVERSITY OF PAVIA SCENE

Fig. 15. Spectral profiles of nine class sample means in the University of
Pavia scene.

scenes in the sense of spectral range and spectral signature
profiles, the results in Table XVI showed similar trends to
but were worse than the results in Tables IV and X. Accord-
ing to Table XVI, the best POA was the one produced by
EPF-G-c, while the best Paccuracy = 76.38 was produced by
BSNE-ICEM, which was more than three times better than
around 20% produced by four EPF-based methods. As for
the other three performance measures, PD , PF , and Pprcision,
EPF-G-c generally produced the best PD values for eight out

of nine classes, and BSNE-ICEM produced the best values
of PF and Pprecision almost across board except two classes,
class 3 and class 7 whose best values of PF and Pprecision were
produced by EPF-G-g and EPF-G-c, respetively. On the other
hand, BSNE-ICEM was the best to produce the best values of
PF , Pprecision, and Paccuracy. The same conclusions drawn from
the experiments conducted for the Purdue Indian Pines scene
and Salinas scene were also applied to BSNE-ICEM, which is
generally the best classification technique to deal with correct
and classification and misclassification issues.

Analogous to the Purdue Indian Pines and Salinas scenes,
we also implemented four EPF-based methods and MLC for
the University of Pavia using the same bands selected by BS
and BSNE that were used by BSNE-ICEM. As expected, their
respective results tabulated in Tables XVII–XX were also not
as good as the results in Table XVI.

D. Parameter Analysis

When ICEM is implemented, three parameters, window
size, standard deviation, σ and window size used by a
Gaussian filter are specified to capture spatial information and
an error threshold ε is also used for TI to terminate ICEM.
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TABLE XVII

PERFORMANCE EVALUATION COMPARISON AMONG BS-EPF-BASED METHODS FOR THE UNIVERSITY OF PAVIA SCENE

TABLE XVIII

PERFORMANCE EVALUATION COMPARISON AMONG BSNE-EPF-BASED METHODS FOR THE UNIVERSITY OF PAVIA SCENE

TABLE XIX

PERFORMANCE EVALUATION COMPARISON AMONG MLC-EPF-BASED METHODS FOR THE UNIVERSITY OF PAVIA SCENE

TABLE XX

PERFORMANCE EVALUATION COMPARISON AMONG BS-MLC-EPF-BASED METHODS FOR THE UNIVERSITY OF PAVIA SCENE

Table XXI tabulates the results of POA and Paccuracy produced
by BSNE-ICEM using a Gaussian filter window size from
5×5 to 15×15. As clearly shown in Table XXI, BSNE-ICEM

was very robust to the selected Gaussian filter window size.
Furthermore, Fig. 16 also plots the results of POA and Paccuracy
produced by BSNE-ICEM using a Gaussian filter with σ
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TABLE XXI

ROBUSTNESS OF GAUSSIAN FILTER WINDOW SIZE IN THE PROPOSED METHOD BSNE-ICEM

Fig. 16. Performance analysis of POA and Paccuracy using various values of σ .

Fig. 17. Various values of error threshold ε used by TI as a stopping rule.

varying from 0.1 to 1 where the best performance seemed
to be σ in the range from 0.6 to 0.7. Fig. 17 also plots the
results of POA and Paccuracy produced by BSNE-ICEM using
various values of ε for TI as a stopping rule from 0.8 to 0.99.
As we can see from Fig. 17, POA and Paccuracy tended to be
stable after 0.92.

Despite that the values of TI for different classes for the Uni-
versity of Pavia were selected differently in our experiments,
the plots in Fig. 17 were produced by using the same value of
TI for all classes to show its robustness to classification once
the value of TI goes beyond 0.92. This is because the purpose
of Fig. 17 is to illustrate the robustness of TI to classification
as the values of TI are increased, and the same value of TI
for all classes has sufficiently demonstrated this fact.

E. Discussions
There are four comments, which are noteworthy.
1) The Otsu method used in BSNE-ICEM is not neces-

sarily optimal. But it has been shown very effective.
However, if there is a better thresholding technique,
it can be replaced by this technique.

2) The UBS used in BSNE-ICEM is also not necessarily
an optimal BS technique, but rather an empirical and
simple choice. The performance of BSNE-ICEM can be
improved if BS is specifically designed such as band
subset selection in [26] and [27].

3) The value of the parameter σ used in Gaussian filters
is also selected empirically and not optimized. So is the
Gaussian window size. Finding optimal values of these
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TABLE XXII

COMPUTING TIME IN SECONDS FOR BSNE-ICEM, EPF-BASED METHODS, BS-EPF-BASED METHODS, AND BSNE-EPF-BASED METHODS

two parameters is challenging, since they are determined
by the data to be used for processing. Nevertheless,
Table XXI and Fig. 16 show that the empirical selections
of parameters, σ , and window size are rather robust.

4) The Gaussian filters used in BSNE-ICEM can be
replaced with other types of spatial filters if there is
one that can do better than Gaussian filters.

F. Contributions

The experiments conducted in Section VII-C have several
contributions. First of all, experiments are comprehensive
where four EPF-based methods using BS and BSNE and MLC
with/without BS are included for comparison. We believe that
these results are not available or reported in the literature.
Another contribution is new performance measures introduced
for performance evaluation. In particular, false-classification
rate, PF , precision rate, Pprecision, and accuracy rate, Paccuracy,
are not included as measures in [1]–[13] to evaluate the
misclassification rate plus BKG classification. A third con-
tribution is to provide evidence that the detection rate PD

is not equivalent to classification rate. As a result, POA is
not equivalent to Paccuracy or Pprecision. Specifically, detection
rate and accuracy rate are not directly correlated. According
to (7), detection rate is calculated based on individual classes
in which case the BKG class is not counted. By contrast,
the precision rate in (9) and accuracy rate in (10) are cal-
culated by all classes including the BKG class. In general,
the BKG class always produces worst classification. That
is the reason the EPF-based methods which do not account
for the BKG class produced very poor precision and accuracy
rates.

VIII. COMPUTATIONAL COMPLEXITY ANALYSIS

In order to evaluate the efficiency of BSNE-ICEM com-
pared with four EPF-based methods and MLC, Table XXII
tabulates their respective computing times in seconds where
a computer environment was specified by an Intel i7-6500U
2.5-GHz base frequency CPU and 12-GB 2133-MHz memory.
All experiments were implemented using MATLAB and the
SVM available in LIBSVM [28]. In particular, the Gaussian
kernel parameter σ and slack variables used by SVM were
selected by fivefold cross validation. It should be noted

that ICEM and MLC did not need training sample vectors.
To the contrary, the computing timing required by the SVM-
EPF methods did include the computing times of training,
prediction, principal components analysis (PCA), and EPF.
Moreover, the computing time of all the experiments did not
include the times of generating inputs, such as desired target
generated for ICEM and MLC, generating training sample
vectors for SVM, and processing BS and nonlinear extension.
As we can see from Table XXII, MLC required the least
computing time while EPF-based methods required the most
computing time.

IX. CONCLUSION

This paper develops an approach to hyperspectral image
classification, which is based on a hyperspectral sub-
pixel target detector, CEM, coupled with BS-then-nonlinear
expansion (BSNE). It is quite different from the conven-
tional SVM-based spectral–spatial approaches reported in the
literature. It reinvents a wheel by replacing SVM with CEM
and kernelization used by SVM with BSNE. In order to
capture spatial information, Gaussian-filtered CEM-detected
abundance fractional maps are fed back iteratively to BSNE
band-expanded images to form a new set of hyperspectral
cubes, which will be reprocessed by CEM so as to improve
classification performance. Such an ICEM can be considered
as a spectral–spatial filter, that is, the more the iterations car-
ried out by ICEM, the more the spatial information captured.
As a result of BSNE-ICEM, there are many unique features
that can be derived as follows.

1) CEM operating as a subpixel detector can be used
to replace the commonly used SVM as the pure-pixel
classification technique.

2) CEM-detection abundance fractional maps can be
thresholded, such as Otsu’s method, to produce binary
maps to perform classification.

3) Using a one-against-rest strategy for a binary hypothesis
testing problem converts a multiclassification confusion
matrix to a binary confusion matrix. As a result, three
new performance measures, such as detection rate, false
classification rate, and precision rate, are introduced in
addition to the commonly used OA and accuracy.

4) The idea of taking advantage of iterative feedbacks from
Gaussian filtered CEM detection abundance fractional
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maps captures spatial information that can also be
applied to many other pixel-based spectral filters.

5) Opens up a new direction for hyperspectral image
classification. Several investigations along this line are
currently undertaken.
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