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A Superpixel-Based Dual Window RX for
Hyperspectral Anomaly Detection

Lang Ren , Liaoying Zhao , and Yulei Wang

Abstract— This letter presents a superpixel-based dual window
RX (SPDWRX) anomaly detection (AD) algorithm that uses
superpixel segmentation (SPS) to adaptively determine the dual
window for local RX (LRX) detection, rather than using a fixed
dual window. The main premise of SPDWRX is to first divide the
hyperspectral image into multiple superpixels and then extend
the minimum bounding rectangle to determine the background
of each superpixel. Finally, LRX AD is conducted on each pixel
in the same superpixel using the same background. Furthermore,
a fine SPS method is proposed based on the entropy rate super-
pixel to quickly obtain uniform superpixels. The experimental
results show that the proposed SPDWRX method can significantly
improve the detection speed and slightly improve the detection
performance, and the modified SPS can further improve the
detection performance of SPDWRX.

Index Terms— Anomaly detection (AD), dual window, hyper-
spectral image (HSI), superpixel segmentation (SPS).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are 3-D digital images
in both spatial and spectral dimensions. Because the

rich spectral information of each pixel in HSI can possess an
intrinsic advantage to find and identify the subtle differences
of different objects on the ground surface, target detection has
been one of the most interesting and fundamental tasks in the
HSI [1]. Anomaly detection (AD), known as a special case
of target detection, is more practical in actual applications
because it aims to find the targets of interest without any prior
information [2].

According to [3], AD methods can be divided into statistic
methods, such as global Reed–Xiaoli algorithm (GRX) [4],
kernel methods, such as support vector data description [5],
and other methods [2], [3], [6]. Many currently used statistic
AD methods are variants of RX, such as local RX (LRX) [7],
weighted-RXD [8], and the spectral-spatial-based local sum-
mation method (LSAD) [9], among others. RX detectors
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that consider pixels which are located in a single window
centered on the pixel being tested will lead to a high false
alarm rate [3]. To address this issue, a dual-window-based
RX (DWRX) [10] and a multiple-window AD (MWAD) [11]
were developed to naturally divide the local area into potential
target and background regions to purify the background for
AD. However, both the DWRX and MWRD sometimes failed
to ensure the purity of the background for all pixels because
the inner window was a rectangle of a fixed size. Moreover,
it is time-consuming to recalculate the covariance matrix and
its inverse for each pixel.

In recent years, superpixel segmentation (SPS) has been
used for different special tasks in HSI research analysis,
such as spectral unmixing [12], band selection [13], and
target detection [14]. In this letter, we concentrate on using
superpixels to improve the efficiency of RX for HSI.

Two of the most widely used algorithms of superpixel
segments in HSI application are based on simple linear iter-
ative clustering (SLIC) [15] and the entropy rate superpixel
(ERS) [16]. SLIC is usually modified to operate on all
image bands [12], [14], [17], and the ERS is applied to
the first three principal components (PCs) after the principal
component analysis (PCA) of HSI [13]. One key factor that
affects the application effect of superpixels for HSI is the
uniformity inside segments [18]. By applying the modified
SLIC, the uniformity is always ensured if the segments are
small enough, and it is time-consuming. On the contrary, only
using the first three PCs, the ERS can quickly get compact
and homogeneous superpixels with similar sizes [13], but it
fails to ensure the uniformity of each superpixel because only
three PCs are used.

This letter attempts to explore a new version of dual-
window-based RX on SPS. The three main technical contri-
butions are as follows.

1) In order to quickly obtain uniformed superpixels, super-
pixels are constructed by fine adjustment based on an
optimal spectral similarity metric after PCA-ERS.

2) To improve the background information estimation,
a dual window is adaptively determined for each
superpixel.

3) To decrease the amount of time consumed, the same
background suppression is used for pixels in the same
superpixel so that the covariance matrix and its inverse
only need to be calculated once for each superpixel.

II. PROPOSED METHOD

A. Superpixel Segmentation

The ERS [16] is adopted in this letter for initial SPS. The
boundary pixels of the extracted superpixels are then finely
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Algorithm 1 PCA-ERS-FA Superpixel Segmentation

Input: Hyperspectral data set X ∈ RL×N .
Output: Superpixel set SA = {Si }, i = 1, 2, . . . , N .
1: Segmentation base image generation

The principal component analysis is applied to the
original HSI to obtain the first principal component and
to generate the segmentation base image.

2: Initial superpixel generation by ERS
All pixels in the segmentation base image is divided

into NA disjoint superpixels, which denoted as SA =
S1, S2, . . . , SNA , by ERS.

3: Fine adjustment of SA
a) Boundary updates: The candidate superpixels for

each boundary pixel in the 8-neighborhood are identi-
fied. A correlation function that relates each boundary
pixel to the candidate superpixels is calculated. The
boundary pixel is assigned to the superpixel corre-
sponding to the minimum correlation value among all
superpixel candidates [17].

b) Orphaned pixels connection: Any orphaned pixels
that do not belong to the same connected super-
pixels are eliminated using a connected components
algorithm [15].

c) Terminate condition: Steps a) and b) are repeated
until either the overall residual error converges to a value
less than a certain threshold, or a maximum number of
iterations is exceeded.

adjusted to make the superpixels relatively regular and com-
pact. The proposed SPS process is described in Algorithm 1,
denoted by PCA-ERS-FA. Only the first PC is used in
PCA-ERS-FA rather than three PCs.

The correlation function between the boundary pixels xi and
its j th candidate superpixel in the given algorithm is defined as

Fij = wdspatial(xi , s j ) + (1 − w)dspectral(xi , s j ) (1)

where s j is the center pixel of the j th candidate superpixel
of xi , and

dspatial(xi , s j ) = 1 − exp(−‖pxi − ps j ‖2) (2)

dspectral(xi , s j ) = xT
i s j

‖xi‖‖s j ‖ (3)

where pxi and ps j denote the coordination of pixels xi and s j ,
respectively.

B. Superpixel-Based Dual Window

Unlike the traditional dual window, in which both windows
are rectangular and the sizes of the inner and outer windows
are fixed, in the superpixel-based dual window, only the outer
window is rectangular, and the size of the outer window is
not fixed. Fig. 1 illustrates two samples of the superpixel-
based dual window. In each sample, the area in blue is a
superpixel, which is just the inner window, and the purple
rectangle expresses the outer window. The inner window is
notably irregular. The smallest outer rectangle of the super-
pixel, which is plotted by a yellow dotted line, is used to
assist in determining the outer window. As Fig. 1 illustrates,
the opposite edges of the two rectangles are spaced at w pixels.

Fig. 1. Samples of the superpixel-based dual window. (a) Sample 1.
(b) Sample 2.

C. Superpixel-Based Local RX Algorithm

Let SPi denote the pixel set of the i th superpixel of HSI,
and the detection value for each pixel in SPi is

δ j

(
µi ,

∑
i

)
= (x j − µi )

∑−1

i
(x j − µi ) (4)

where µi and
∑

i are the mean vector and the covari-
ance matrix of spatial neighboring pixels located within the
superpixel-based dual window of SPi , respectively, x j is the
j th pixel in SPi , j = 1, 2, . . . , ni , and ni is the number of
pixels in SPi .

After obtaining superpixels via SPS, the proposed
superpixel-based dual window RX (SPDWRX) AD algorithm
conducts detection for each pixel in a superpixel-based dual
window by the following procedure.

1) Establish Pixel Ordinal Correspondence: For each pixel
x j in a superpixel SPi , find its corresponding ordinal,
which is denoted as I j in the entire HSI data.

2) Determine the Superpixel-Based Dual Window: The
outer window of superpixel SPi is determined by extend-
ing each edge of the smallest outer rectangle of the
superpixel by w spaces.

3) Calculate the Detection Value: Calculate the detection
value of each pixel x j in SPi with (4), and set dI j = δ j .

III. REAL HYPERSPECTRAL EXPERIMENT

To evaluate the performance of the proposed SPDWRX
algorithm, our experiment uses three different LRX detection
algorithms for comparison. These methods include LRX [7],
LSAD [9], and DWRX [10]. Furthermore, the results of
SPDWRX using SLIC based on boundary updating (BU) [17],
PCA-ERS, and the proposed PCA-ERS-FA are also compared.
Considering that the result of RX detection can be promi-
nently improved by subspace projection [9], the inversion of
covariance is calculated by SVD in all the algorithms. The
experiment uses two real hyperspectral scenes with complete
ground truth information of the anomaly target. The area under
the receiver operating characteristic (ROC) curve of (Pd , Pf ),
denoted by area under curve (AUC ), is used for evaluation of
detection performance. The maximum iterative time of BU in
PCA-ERS-FA is set to 5.

A. Experiment on HYDICE Image

A real image scene collected by the hyperspectral dig-
ital imagery collection experiments (HYDICEs), shown
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Fig. 2. (a) HYDICE scene. (b) Ground truth map.

Fig. 3. Results of SPS. (a) BU. (b) PCA-ERS. (c) PCA-ERS-FA.

in Fig. 2(a), was used for the experiments. It has a total
of 169 bands, along with a spatial resolution of 1.56 m and
a spectral resolution of 10 nm. Its detailed description can
be found in [19]. It has a size of 64 × 64 pixel vectors and
15 man-made panels that can be considered as anomalies in
the scene. The ground truth map is provided in Fig. 2(b).

Two experiments are conducted to evaluate our proposed
algorithm. The computing time is then discussed.

1) Detection Performance of the SPDWRX With Different
Parameters: Fig. 3 shows the results of SPS, wherein each
line in the right subimage shows the superpixels of the right
bottom area marked by yellow lines in the left subimage,
and the object positions are indicated by different markers.
Table I shows the AUC of SPDWRX with a different window
space w. The number of superpixels is 410, 410, and 416 for

Fig. 4. AUC of SPDWRX with different numbers of superpixels.

PCA-ERS, PCA-ERS-FA, and BU, respectively, as shown
in Fig. 3 and Table I. Fig. 3 shows that both BU and
PCA-ERS-FA obtained regular superpixels. The superpxiel
that contained object marked by star or circle is obviously not
well segmented by PCA-ERS, while both are adjusted well by
PCA-ERS-FA. It is worth noting that even though the average
size of all superpixels is about 10 pixels when the number
of superpixel is 410 or 416, most superpixels that contain the
objects are less than 10, which is reasonable for HYDICE data
with target panels ranging from 2 pixels to 1 pixel. It is worth
mentioning that the observations from the experimental results
provided in Table I are remarkable.

1) When w = 3, the results of SPDWRX using different
SPS methods are all obviously better than the results of
the other cases. When w = 4, BU and PCA-ERS-FA
also perform well.

2) The PCA-ERS-FA obtains the largest AUC to 0.9964,
which is slightly better than BU, while BU is slightly
better than PCA-ERS-FA except for w = 3 or 10. The
results of PCA-ERS are much worse than the other two
methods.

Fig. 4 shows the AUC of SPDWRX by three SPS methods
with different numbers of superpixels when the window space
is fixed as 3, where the data in different colors are the largest
values of AUC for each method. As shown in Fig. 4, as for
the largest AUC, all the three methods can obtain a good
value and the PCA-ERS-FA is better than BU. On the whole,
PCA-ERS is still much worse than the other two methods and
PCA-ERS-FA is slightly better than BU in most cases. The
AUCs of SPDWRX by PCA-ERS-FA are all near to 1 when
the number of superpixels varied from 310 to 600.

Finally, we can conclude from Fig. 3, Table I, and Fig. 4 that
3 or 4 is the relatively proper choice for window space, and
the SPDWRX using PCA-ERS-FA is robust to the number of
superpixels. In addition, the SPDWRX using PCA-ERS-FA
exhibits a significant improvement in detection performance
and detection stability compared with using PCA-ERS.

2) Comparison of Different RX Algorithms: Denote the
size of the sliding window as sw × sw. By setting sw as
[3:2:15], both LRX and LSAD obtain optimal results when
sw = 7. DWRX obtains the optimal result when swin = 3
and swout = 7. The optimal result of SPDWRX using
PCA-ERS-FA is compared with the optimal results of LRX,
LSAD, and DWRX. Fig. 5 shows the respective detection
maps of the four algorithms. Fig. 6 plots the ROC curves
of (Pd , P f ). Table II provides the AUC values for the ROC
curves of (Pd , P f ).
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TABLE I

DETECTION RESULTS OF SPDWRX WITH DIFFERENT NUMBERS OF SUPERPIXELS (WINDOW SPACE = 3)

Fig. 5. Detection maps of four LRX algorithms. (a) LRX. (b) LSAD.
(c) DWRX. (d) SPDWRX.

Fig. 6. ROC curve for the detection result of the HYDICE scene.

It is evident from Fig. 5 that SPDWRX exhibits the best
background suppression of all the algorithms, as all the object
panels are only clearly detected in the respective detection
maps of SPDWRX. It is also evident from Fig. 6 and
Table II that SPDWRX is slightly better than the other three
methods.

TABLE II

AUC VALUES OF THE COMPLETE ROC CURVE OF (Pd , Pf )

TABLE III

CPU TIMES OF DIFFERENT ALGORITHMS

Fig. 7. San Diego airport data. (a) Pseudocolor image. (b) Target map of
anomalies in the test region.

3) Computing Time: The computer environments used for
the experiments are 64-bit operating systems with Intel
i7-7700, a central processing unit (CPU) of 3.60 GHz, and
8 GB of random access memory (RAM). Table III lists the
average CPU time of each algorithm after running 5 times,
where the number of subpixels for each SPDWRXs is same
as shown in Fig. 3, and the time of the SPDWRX includes time
for SPS and 1.298 s for RX detection. As provided in Table III,
the CPU times of LRX, LSAD, and DWRX are similar, while
the total CPU time of each SPDWRX is much less than the
other methods. This is primarily because the time required
to calculate the covariance matrix and its inverse is largely
reduced in SPDWRX, and therefore, the operation efficiency
is greatly improved. In addition, BU is more time-consuming
than PCA-ERS and PCA-ERS-FA.

B. Experiment on San Diego Airport Data

The experiment uses a subgraph with a size of 100 × 100
cut from San Diego data collected by HYDICEs, and it is
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Fig. 8. Comparison of the ROC curves of different algorithms.

TABLE IV

RESULTS OF DIFFERENT ALGORITHMS FOR THE SAN DIEGO IMAGE

shown in Fig. 7(a). Its ground truth is provided in Fig. 7(b).
It was acquired by 224 spectral bands with spectral coverage
from 0.4 to 2.5 μm. The spatial resolution is 3.5 m, and
the spectral resolution is 10 nm. After removing the low-
SNR or water vapor absorption (1–6, 33–35, 97, 107–113,
153–166, and 221–224), 189 spectral bands are used in the
experiment.

Fig. 8 plots the ROC curves of (Pd , P f ) for the optimal
results of the four algorithms. Table IV provides the AUC
and CPU time for each method. The parameters are sw = 13
for LRX and LSAD, swin = 5 and swout = 11 for DWRX,
and w = 4 for SPDWRX, and the number of superpixels
is 350, 350, and 357 for PCA-ERS, PCA-ERS-FA, and BU,
respectively.

It can be seen from Fig. 8 and Table IV that SPDWRX
(PCA-ERS-FA) obtains the best result. Compared with
SPDWRX (PCA-ERS), the AUC is increased by 0.016. Both
SPDWRXs by ERS run much faster than LRX and LSAD.
The time of SPDWRX by BU is almost half the time of
LRX or LSAD.

IV. CONCLUSION

This letter develops a new dual RX AD method based on
SPS, as well as a modified SPS method based on PCA-ERS.
In contrast to three typical LRX algorithms, the advantages
of the new RX detection approach include a small increase
in detection performance and a large increase in speed. The
proposed SPS method can further improve detection perfor-
mance by taking slightly more time. In the future work,
the performance of SPDWRX is to be verified by using other
SPS methods, such as uniformity-based SPS [18]. In addition,
the applicability of the algorithm to scenes with substantial
different sizes anomalies or anomalies close together need to
be further verified.
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