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ABSTRACT 

Hyperspectral image (HSI) has attracted much attention 

because of its rich spectral information. However, due to the 

limitation of imaging hardware conditions, it is often 

difficult to directly obtain a high spatial resolution 

hyperspectral image (HR-HSI). To improve the resolution, 

it is an economical and effective method to fuse the 

hyperspectral image with the high spatial resolution multi-

spectral image (HR-MSI) collected from the same scene. In 

recent years, with the development of deep learning, the 

convolutional neural network (CNN) based models have 

been applied to solve the super-resolution reconstruction of 

hyperspectral images. However, limited by the convolution 

kernel size, the receptive field of CNN is relatively small 

with more attention to the local information of the image. In 

order to solve this problem, this paper proposes a Swin 

Transformer based super-resolution reconstruction (STSR) 

network for hyperspectral images. Specifically, Swin 

Transformer structure is innovatively used in STSR as the 

skeleton of the network, where the Swin Transformer 

residuals are used to extract the global spatial feature 

information in the image. In addition, in order to retain the 

spectral details in the process of super-resolution 

reconstruction, a spectral attention module is introduced to 

preserve the original spectral information. The experimental 

results show that the high-resolution hyperspectral images 

fused by the proposed STSR method are superior to the 

comparison method in terms of vision and quality, which 

proves the superiority of this method. 

 

Index Terms—Hyperspectral image, spectral attention, 

swin-transformer, super-resolution 

 

1. INTRODUCTION 

Hyperspectral imaging system can collect surface 

information with hundreds of continuous bands 

simultaneously, and obtain a set of spectral images of the 

same scene. Compared with traditional natural or 

multispectral images, the main advantage of hyperspectral 

images is that they have richer spectral information of 

ground objects, which is conducive to the accurate 

distinction and identification of things in image scenes, so 

they are widely used in geological exploration, target 

recognition, medical diagnosis, and other fields [1]. 

However, due to the limitations of incident energy and 

hardware conditions, the spatial resolution of hyperspectral 

images is generally low, which also significantly affects its 

applications [2]. A practical solution is to reconstruct 

hyperspectral images by fusing higher-resolution 

multispectral images of the same scene. This process is 

normally called hyperspectral image super-resolution 

reconstruction. 

Hyperspectral image super-resolution reconstruction 

(HSI-SR) is an ill-posed problem. Traditional methods try 

to make use of correlation between spectral bands to 

manually construct different prior knowledge (self-

similarity, sparsity, and low rank, et al [3-5]) as a 

regularizer to solve this problem, which have achieved 

excellent performance since these used priors have been 

closer and closer to the basic characteristics of the data. 

However, these manually constructed priors have 

limitations and need to be readjusted when facing different 

data sets, thus affecting the quality of reconstructed images. 

In recent years, deep learning technologies, especially 

CNN, have been developing rapidly. Deep learning has 

become a promising method to deal with the super-

resolution problem of hyperspectral images. Compared with 

the traditional method based on manually designed priors, 

the CNN-based deep learning method is data-driven, and 

the network will learn corresponding priors according to the 

characteristics of the data set itself. However, the learning 

ability of CNN is limited. It requires deep networks when 

learning global features of images, and convolution is 

ineffective for long-distance-dependent modeling. In 

contrast, self-attention mechanisms proposed in the field of 

natural language processing (NLP) are more effective for 

combining global features at an early layer, especially the 

Transformer network, which can be used as an alternative to 

CNN to capture global interactions between contexts. Vit-

Transformer [6] is the first attempt to apply Transformer 

architecture in the field of computer vision (CV), but its 

global self-attention mechanism has quadratic 

computational complexity for the input image size with a 
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high usage of GPU memory. On this basis, Liu et al [7]. 

proposed a Swin Transformer structure with a hierarchical 

design including shift window operation, which extends the 

applicability of Transformer and makes it a universal 

backbone of CV. 

Inspired by Swin Transformer and the attention 

mechanism, this paper constructs a hyperspectral image 

super-resolution reconstruction network based on Swin 

Transformer. Specifically, on the one hand, convolution and 

several Swin Transformer residual blocks are respectively 

used to learn the shallow and deep features in the input 

image space; while on the other hand, the spectral attention 

module is introduced to excavate the spectral features 

between adjacent bands of hyperspectral images to guide 

image reconstruction, which can better retain the original 

spectral information of images. Besides, long and short skip 

links are added to the network, which makes the 

transmission of network information flow more flexible and 

enhances the robustness of the network. 

 
Figure 1. The overall structure of the proposed STSR algorithm. 

 

2. METHODOLOGY 

2.1. Network structure 

In HSI-SR tasks, larger receptive fields can normally lead to 

better reconstruction results. However, it is not capable of 

long-range modeling due to the limitations of standard 

convolution operations in CNN architectures. In this paper, 

a Swin-Transformer architecture is used instead of CNN to 

capture the global spatial features of images. At the same 

time, in the process of image reconstruction, it is also 

essential to learn the spectral characteristics of the image, 

which helps to ensure that the spectrum of the reconstructed 

image is not distorted. Based on the above analysis, this 

paper proposes a new Swin Transformer based super-

resolution reconstruction (STSR) network for hyperspectral 

images, as shown in Figure 1. The algorithm consists of 

three parts: shallow feature extraction, deep feature 

extraction, and image reconstruction module. 

Let 
h w LY    and 

H W lZ    represent the LR-HSI 

and HR-MSI of the same scene observed, where W(w) and 

H(h) represent the width and height of spatial dimensions, 

and L(l) is the number of bands. The goal of super-

resolution reconstruction is to estimate the HR-HSI 
H W LX    with both high spatial and high spectral 

resolution from these two images. 

Shallow feature extraction: Since the spatial sizes of 

LR-HSI and HR-MSI images are different, bicubic 

interpolation is firstly used to up-sample the LR-HSI data to 

the same size as HR-MSI, thus that the network can learn 

the features of both images at the same time. The MSI is 

then embedded into the up-sampled HSI in the spectral 

dimension. Finally, a simple 3×3 convolution layer is used 

to extract shallow features from the input fused image. 

Deep feature extraction: The Residual Swin 

Transformer Block has been successfully used in the super-

resolution reconstruction of RGB images for the first time 

since the SwinIR method is proposed [9], and excellent 

reconstruction results have been obtained. However, since 

HSI is a 3D data cube, both spatial and spectral self-

similarity are very important in the process of super-

resolution reconstruction. Therefore, this module is divided 

into two parts: deep spatial feature extraction block and 

spectral feature extraction block. 

The deep spatial feature extraction block consists of N 

Swin Transformer residual blocks to learn the global spatial 

information of the image. Transformer was originally 

applied to NLP, and its input is all text words with a fixed 

scale. When it is applied to CV, there is a problem that the 

image resolution is much larger than the text words. 

Compared with traditional images, hyperspectral images 

have a higher spectral resolution, and each pixel of the 

image can be regarded as a vector with a fixed scale of band 

number. As a result, the global relationships between pixels 

can be learned by Swin Transformer residual blocks by 

inputting the data in the form of pixel by pixel instead of 

dividing the image into image blocks of uniform sizes. At 

the same time, the cost of calculating the global self-
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attention of the image can be reduced by using the shifted 

window structure in the Swin Transformer residual block. 

The structure of the spectral feature extraction block is 

shown in Figure 2. Firstly, the input global spatial 

information is compressed through the maximum pooling 

layer and the average pooling layer, and then feature 

learning is performed on the channel dimension through the 

weight-sharing multilayer perceptron (MLP). Finally, 

through the sigmoid layer, the spectral information of the 

channel is converted into a weight coefficient, which is used 

to measure the importance of different channels. 

 
Figure 2. Schematic of the spectral feature extraction block 

Image reconstruction module: In this stage, the 

shallow and deep spatial feature information is firstly fused, 

where the shallow features mainly contain low-frequency 

information, and the deep features mainly focus on restoring 

lost high-frequency information. Through global skip 

connections, the robustness of the network can be enhanced. 

Furthermore, the difficulty of training can be reduced since 

that the Swin Transformer residual block is more focused on 

mining high-frequency information. Then use spectral 

attention to reduce the spectral distortion in the process of 

learning spatial features, finally reduce the number of 

feature channels to the number of spectral bands through the 

image reconstruction block, and generate the final 

reconstruction results. 

2.2. Loss function 

In the reconstruction process, the most crucial part is 

restoring the high-frequency details lost in the original 

image. The mean absolute error (MAE) can find minor 

errors easier with a better convergency of the network. 

Therefore, this paper uses the MAE between reconstructed 

images and ground truth to control the learning of spatial 

information, as shown in equation (1). 
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Where 
mO  and mX  are the m-th reconstructed HR-

HSI and ground truth, respectively. M is the number of 

images in a training batch, and   denotes the parameter set 

of the network. 

To simultaneously ensure that the reconstruction 

results have less spectral distortion, a Spatial Spectral Total 

Variation (SSTV) loss in [9] is introduced. It takes into 

account both spatial and spectral correlations. 
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Where h , w , and l  denote the gradient functions 

of the computed horizontal, vertical, and spectral 

dimensions. 

The final loss function can be expressed as follows: 

 ( ) ( ) ( ) SSTVLLL += 1  (3) 

Where   is the trade-off parameter, used to adjust the 

weight between space and spectral reconstruction error. 

 

3. EXPERIMENTS AND RESULTS 

Experiments are conducted on two public hyperspectral 

datasets, the CAVE dataset and the Harvard dataset. The 

CAVE dataset contains 32 scenes, with spectral bands (31 

bands) acquired at intervals of 10nm in the range of 400-

700nm. The Harvard dataset contains 77 HSIs of indoor and 

outdoor scenes. It also has 31 bands, and the spectral 

coverage range is 420-720nm. The spatial size of each 

image is 1040×1392. 

Training and data simulation: In this paper, 20 

images are selected from the CAVE dataset for training the 

network. The remaining 11 images are used for testing 

together with 9 images randomly selected from the Harvard 

dataset. Due to the small number of training samples 

available, this paper divides the training set images to obtain 

4275 overlapping image patches with a size of 64×64×31 

and regards them as ground truth. By applying a Gaussian 

filter with a blur kernel size of 3×3 and a standard deviation 

of 0.5, the overlapping image patches are down-sampled to 

a size of 16×16×31, which is regarded as the LR-HSI. In 

addition, spectral response functions of the Nikon D700 

camera are used to generate HR-MSI patches. To train the 

proposed network, the Adam optimizer is applied with 

β1=0.9, β2=0.999, and the learning rate is initially equal to 

1e−4, which is reduced by half every 75 epochs. 

Performance Evaluation: In order to evaluate the 

performance, the proposed STSR method is compared with 

several state-of-the-art methods, including CNMF, FUSE, 

and Fusformer. Four quantitative evaluation indicators are 

used to measure the performance of different methods 

quantitatively, including peak signal-to-noise ratio (PSNR), 

spectral angle mapping (SAM), structural similarity (SSIM), 

and erreur relative global adimensionnelle de synthèse 

(ERGAS). The larger PSNR and SSIM are, and the smaller 

SAM and ERGAS are, the better the reconstruction effect is. 

Table 1 lists the reconstruction results of different methods 

on the two datasets when the scale factor is 4, where the 

optimal value is marked in bold, and the suboptimal value is 

marked with underline. It can be seen from Table 1 that the 

method proposed in this paper has reached the optimal or 

suboptimal value in each index. Figure 3 shows the results 
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obtained by different methods in a visual way. For easier 

observation and comparison, the details in the red box in the 

figure are enlarged. 

Table 1. Comparative results of different methods with scale factor 4. 

Dataset Metrics CNMF FUSE Fusformer STSR 

CAVE 

PSNR 41.82 39.68 48.56 49.97 

SAM 7.32 4.97 2.52 1.96 

SSIM 0.975 0.979 0.995 0.996 

ERGAS 3.27 3.88 1.30 1.46 

Harvard 

PSNR 45.12 42.70 44.42 45.98 

SAM 2.56 2.69 2.66 2.20 

SSIM 0.978 0.970 0.984 0.980 

ERGAS 2.05 2.538 2.48 2.17 

 

 
GT                 CNMF             FUSE             Fusformer            STSR 

Figure 3. Visual results using different reconstruction methods with scale 

factor 4 for the CAVE and Harvard datasets. Spectral bands 26-14-6 are 

displayed as R-G-B display composite color images. To observe more 

clearly, each result's part of the red box is enlarged and shown in the 2nd 

and 4th row, respectively. 

 

4. CONCLUSION 

This paper proposes a hyperspectral image super-resolution 

algorithm based on Swin Transformer to fully extract spatial 

information and spectral similarity. Since CNN cannot 

effectively learn the global information of images, this 

paper leverages the Swin Transformer residual block to 

mine the contextual information of images with low 

computational cost using pixel-by-pixel input. Meanwhile, 

the spectral distortion of the reconstructed image is reduced 

by a spectral attention module and SSTV loss. Experimental 

results on two hyperspectral databases show that the 

proposed method can achieve better results and outperform 

the state-of-the-art methods. In addition, it is worth noting 

that it is also crucial to obtain multi-scale features of the 

image during the reconstruction process. The method 

proposed in this paper can achieve multi-scale feature 

extraction if different displacement window sizes are set at 

the Swin transformer residual block. 
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