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ABSTRACT

Hyperspectral image (HSI) has attracted much attention
because of its rich spectral information. However, due to the
limitation of imaging hardware conditions, it is often
difficult to directly obtain a high spatial resolution
hyperspectral image (HR-HSI). To improve the resolution,
it is an economical and effective method to fuse the
hyperspectral image with the high spatial resolution multi-
spectral image (HR-MSI) collected from the same scene. In
recent years, with the development of deep learning, the
convolutional neural network (CNN) based models have
been applied to solve the super-resolution reconstruction of
hyperspectral images. However, limited by the convolution
kernel size, the receptive field of CNN is relatively small
with more attention to the local information of the image. In
order to solve this problem, this paper proposes a Swin
Transformer based super-resolution reconstruction (STSR)
network for hyperspectral images. Specifically, Swin
Transformer structure is innovatively used in STSR as the
skeleton of the network, where the Swin Transformer
residuals are used to extract the global spatial feature
information in the image. In addition, in order to retain the
spectral details in the process of super-resolution
reconstruction, a spectral attention module is introduced to
preserve the original spectral information. The experimental
results show that the high-resolution hyperspectral images
fused by the proposed STSR method are superior to the
comparison method in terms of vision and quality, which
proves the superiority of this method.

Index Terms—Hyperspectral image, spectral attention,
swin-transformer, super-resolution

1. INTRODUCTION

Hyperspectral imaging system can collect surface
information with hundreds of continuous bands
simultaneously, and obtain a set of spectral images of the
same scene. Compared with traditional natural or
multispectral images, the main advantage of hyperspectral
images is that they have richer spectral information of
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ground objects, which is conducive to the accurate
distinction and identification of things in image scenes, so
they are widely used in geological exploration, target
recognition, medical diagnosis, and other fields [1].
However, due to the limitations of incident energy and
hardware conditions, the spatial resolution of hyperspectral
images is generally low, which also significantly affects its
applications [2]. A practical solution is to reconstruct
hyperspectral  images by fusing higher-resolution
multispectral images of the same scene. This process is
normally called hyperspectral image super-resolution
reconstruction.

Hyperspectral image super-resolution reconstruction
(HSI-SR) is an ill-posed problem. Traditional methods try
to make use of correlation between spectral bands to
manually construct different prior knowledge (self-
similarity, sparsity, and low rank, et al [3-5]) as a
regularizer to solve this problem, which have achieved
excellent performance since these used priors have been
closer and closer to the basic characteristics of the data.
However, these manually constructed priors have
limitations and need to be readjusted when facing different
data sets, thus affecting the quality of reconstructed images.

In recent years, deep learning technologies, especially
CNN, have been developing rapidly. Deep learning has
become a promising method to deal with the super-
resolution problem of hyperspectral images. Compared with
the traditional method based on manually designed priors,
the CNN-based deep learning method is data-driven, and
the network will learn corresponding priors according to the
characteristics of the data set itself. However, the learning
ability of CNN is limited. It requires deep networks when
learning global features of images, and convolution is
ineffective for long-distance-dependent modeling. In
contrast, self-attention mechanisms proposed in the field of
natural language processing (NLP) are more effective for
combining global features at an early layer, especially the
Transformer network, which can be used as an alternative to
CNN to capture global interactions between contexts. Vit-
Transformer [6] is the first attempt to apply Transformer
architecture in the field of computer vision (CV), but its
global  self-attention = mechanism  has  quadratic
computational complexity for the input image size with a
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high usage of GPU memory. On this basis, Liu et al [7].
proposed a Swin Transformer structure with a hierarchical
design including shift window operation, which extends the
applicability of Transformer and makes it a universal
backbone of CV.

Inspired by Swin Transformer and the attention
mechanism, this paper constructs a hyperspectral image
super-resolution reconstruction network based on Swin
Transformer. Specifically, on the one hand, convolution and
several Swin Transformer residual blocks are respectively

\
\

used to learn the shallow and deep features in the input
image space; while on the other hand, the spectral attention
module is introduced to excavate the spectral features
between adjacent bands of hyperspectral images to guide
image reconstruction, which can better retain the original
spectral information of images. Besides, long and short skip
links are added to the network, which makes the
transmission of network information flow more flexible and
enhances the robustness of the network.

. Bicubic inferpolation operator

. Element-wise sum

} Spectral Feature Extraction Block [

. Concatenation operator

Figure 1. The overall structure of the proposed STSR algorithm.

2. METHODOLOGY

2.1. Network structure

In HSI-SR tasks, larger receptive fields can normally lead to
better reconstruction results. However, it is not capable of
long-range modeling due to the limitations of standard
convolution operations in CNN architectures. In this paper,
a Swin-Transformer architecture is used instead of CNN to
capture the global spatial features of images. At the same
time, in the process of image reconstruction, it is also
essential to learn the spectral characteristics of the image,
which helps to ensure that the spectrum of the reconstructed
image is not distorted. Based on the above analysis, this
paper proposes a new Swin Transformer based super-
resolution reconstruction (STSR) network for hyperspectral
images, as shown in Figure 1. The algorithm consists of
three parts: shallow feature extraction, deep feature
extraction, and image reconstruction module.

Let Y € R and Z e R"™" represent the LR-HSI
and HR-MSI of the same scene observed, where W(w) and
H(h) represent the width and height of spatial dimensions,
and L(/) is the number of bands. The goal of super-
resolution reconstruction is to estimate the HR-HSI
X e R"™™*" with both high spatial and high spectral
resolution from these two images.

Shallow feature extraction: Since the spatial sizes of
LR-HSI and HR-MSI images are different, bicubic
interpolation is firstly used to up-sample the LR-HSI data to
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the same size as HR-MSI, thus that the network can learn
the features of both images at the same time. The MSI is
then embedded into the up-sampled HSI in the spectral
dimension. Finally, a simple 3x3 convolution layer is used
to extract shallow features from the input fused image.

Deep feature extraction: The Residual Swin
Transformer Block has been successfully used in the super-
resolution reconstruction of RGB images for the first time
since the SwinlR method is proposed [9], and excellent
reconstruction results have been obtained. However, since
HSI is a 3D data cube, both spatial and spectral self-
similarity are very important in the process of super-
resolution reconstruction. Therefore, this module is divided
into two parts: deep spatial feature extraction block and
spectral feature extraction block.

The deep spatial feature extraction block consists of N
Swin Transformer residual blocks to learn the global spatial
information of the image. Transformer was originally
applied to NLP, and its input is all text words with a fixed
scale. When it is applied to CV, there is a problem that the
image resolution is much larger than the text words.
Compared with traditional images, hyperspectral images
have a higher spectral resolution, and each pixel of the
image can be regarded as a vector with a fixed scale of band
number. As a result, the global relationships between pixels
can be learned by Swin Transformer residual blocks by
inputting the data in the form of pixel by pixel instead of
dividing the image into image blocks of uniform sizes. At
the same time, the cost of calculating the global self-
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attention of the image can be reduced by using the shifted
window structure in the Swin Transformer residual block.

The structure of the spectral feature extraction block is
shown in Figure 2. Firstly, the input global spatial
information is compressed through the maximum pooling
layer and the average pooling layer, and then feature
learning is performed on the channel dimension through the
weight-sharing multilayer perceptron (MLP). Finally,
through the sigmoid layer, the spectral information of the
channel is converted into a weight coefficient, which is used
to measure the importance of different channels.

Maxpooling

9=
Avgpooling ]

Input Shared MLP

j @ Sigmoid
SO~

Channel Attention

Xﬁ

Figure 2. Schematic of the spectral feature extraction block

Image reconstruction module: In this stage, the
shallow and deep spatial feature information is firstly fused,
where the shallow features mainly contain low-frequency
information, and the deep features mainly focus on restoring
lost high-frequency information. Through global skip
connections, the robustness of the network can be enhanced.
Furthermore, the difficulty of training can be reduced since
that the Swin Transformer residual block is more focused on
mining high-frequency information. Then use spectral
attention to reduce the spectral distortion in the process of
learning spatial features, finally reduce the number of
feature channels to the number of spectral bands through the
image reconstruction block, and generate the final
reconstruction results.

2.2. Loss function

In the reconstruction process, the most crucial part is
restoring the high-frequency details lost in the original
image. The mean absolute error (MAE) can find minor
errors easier with a better convergency of the network.
Therefore, this paper uses the MAE between reconstructed
images and ground truth to control the learning of spatial
information, as shown in equation (1).

Lo Sor-x o

Where O™ and X" are the m-th reconstructed HR-
HSI and ground truth, respectively. M is the number of
images in a training batch, and € denotes the parameter set
of the network.

To simultaneously ensure that the reconstruction
results have less spectral distortion, a Spatial Spectral Total
Variation (SSTV) loss in [9] is introduced. It takes into
account both spatial and spectral correlations.
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Lon @)=Y ([0 +[7.07], +[w.07] 2
m=l1

Where V,, V,,, and V, denote the gradient functions

of the computed horizontal, vertical, and spectral
dimensions.
The final loss function can be expressed as follows:
L(0)=L,(0)+ aLgsp, (6) (3)

Where « is the trade-off parameter, used to adjust the
weight between space and spectral reconstruction error.

3. EXPERIMENTS AND RESULTS

Experiments are conducted on two public hyperspectral
datasets, the CAVE dataset and the Harvard dataset. The
CAVE dataset contains 32 scenes, with spectral bands (31
bands) acquired at intervals of 10nm in the range of 400-
700nm. The Harvard dataset contains 77 HSIs of indoor and
outdoor scenes. It also has 31 bands, and the spectral
coverage range is 420-720nm. The spatial size of each
image is 1040x1392.

Training and data simulation: In this paper, 20
images are selected from the CAVE dataset for training the
network. The remaining 11 images are used for testing
together with 9 images randomly selected from the Harvard
dataset. Due to the small number of training samples
available, this paper divides the training set images to obtain
4275 overlapping image patches with a size of 64x64x31
and regards them as ground truth. By applying a Gaussian
filter with a blur kernel size of 3%3 and a standard deviation
of 0.5, the overlapping image patches are down-sampled to
a size of 16x16x31, which is regarded as the LR-HSI. In
addition, spectral response functions of the Nikon D700
camera are used to generate HR-MSI patches. To train the
proposed network, the Adam optimizer is applied with
£1=0.9, p>,=0.999, and the learning rate is initially equal to
le—4, which is reduced by half every 75 epochs.

Performance Evaluation: In order to evaluate the
performance, the proposed STSR method is compared with
several state-of-the-art methods, including CNMF, FUSE,
and Fusformer. Four quantitative evaluation indicators are
used to measure the performance of different methods
quantitatively, including peak signal-to-noise ratio (PSNR),
spectral angle mapping (SAM), structural similarity (SSIM),
and erreur relative global adimensionnelle de synthése
(ERGAS). The larger PSNR and SSIM are, and the smaller
SAM and ERGAS are, the better the reconstruction effect is.
Table 1 lists the reconstruction results of different methods
on the two datasets when the scale factor is 4, where the
optimal value is marked in bold, and the suboptimal value is
marked with underline. It can be seen from Table 1 that the
method proposed in this paper has reached the optimal or
suboptimal value in each index. Figure 3 shows the results
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obtained by different methods in a visual way. For easier
observation and comparison, the details in the red box in the
figure are enlarged.

Table 1. Comparative results of different methods with scale factor 4.

Dataset Metrics CNMF FUSE Fusformer STSR
PSNR 41.82 39.68 48.56 49.97

SAM 7.32 4.97 2.52 1.96

CAVE SSIM 0.975 0.979 0.995 0.996
ERGAS 3.27 3.88 1.30 1.46

PSNR 45.12 42.70 44.42 45.98

Harvard SAM 2.56 2.69 2.66 2.20
SSIM 0.978 0.970 0.984 0.980

ERGAS 2.05 2.538 2.48 2.17

CNMF FUSE
Figure 3. Visual results using different reconstruction methods with scale
factor 4 for the CAVE and Harvard datasets. Spectral bands 26-14-6 are
displayed as R-G-B display composite color images. To observe more
clearly, each result's part of the red box is enlarged and shown in the 2nd
and 4th row, respectively.

Fusformer STSR

4. CONCLUSION

This paper proposes a hyperspectral image super-resolution
algorithm based on Swin Transformer to fully extract spatial
information and spectral similarity. Since CNN cannot
effectively learn the global information of images, this
paper leverages the Swin Transformer residual block to
mine the contextual information of images with low
computational cost using pixel-by-pixel input. Meanwhile,
the spectral distortion of the reconstructed image is reduced
by a spectral attention module and SSTV loss. Experimental
results on two hyperspectral databases show that the
proposed method can achieve better results and outperform
the state-of-the-art methods. In addition, it is worth noting
that it is also crucial to obtain multi-scale features of the
image during the reconstruction process. The method

proposed in this paper can achieve multi-scale feature
extraction if different displacement window sizes are set at
the Swin transformer residual block.
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