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Anomaly Detection Using Causal Sliding Windows
Chein-I Chang, Fellow, IEEE, Yulei Wang, and Shih-Yu Chen, Member, IEEE

Abstract—Anomaly detection using sliding windows is not new
but using causal sliding windows has not been explored in the
past. The need of causality arises from real-time processing where
the used sliding windows should not include future data sam-
ples that have not been visited, i.e., data samples come in after
the currently being processed data sample. This paper develops
an approach to anomaly detection using causal sliding windows,
which has the capability of being implemented in real time. In
doing so, three types of causal windows are defined: 1) causal slid-
ing square matrix windows; 2) causal sliding rectangular matrix
windows; and 3) causal sliding array windows. By virtue of causal
sliding windows, a causal sample covariance/correlation matrix
can be derived for causal anomaly detection. As for the causal slid-
ing array windows, recursive update equations are also derived
and thus speed up real-time processing.

Index Terms—Causal anomaly detection, causal sliding array
window, causal sliding rectangular matrix window, causal sliding
square matrix window, K-RX detector (K-RXD), R-RX detector
(R-RXD).

I. INTRODUCTION

A NOMALY detection has received considerable interest in
hyperspectral data exploitation [1] since a hyperspectral

imager can uncover many subtle targets, which are not known
a priori or cannot be visualized by inspection. It is particularly
crucial when anomalies such as moving targets may appear in a
short period and vanish thereafter, in which case, timely detec-
tion is necessary and real-time processing of anomaly detection
becomes inevitable. Unfortunately, many anomaly detection
algorithms reported in the literature are actually not real-time
processing algorithms even though some of them claim to be.
For example, the most widely used anomaly detector known as
RX detector (RXD) developed by Reed and Yu in [2] along with
its many variants [3] cannot be implemented in real time, due to
its use of covariance matrix which requires entire data sample
vectors to calculate the sample mean vector [4]–[8]. In addition,
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many local or adaptive anomaly detectors which make use of
sliding windows to capture local statistics to improve anomaly
detection are not real-time processing detectors either because
their used sliding windows include future data sample vectors
come after the currently being processed data sample vector
[9]–[14]. All these types of anomaly detection algorithms vio-
late a key element required for real-time processing, which
is causality [15]. According to [16], a causal signal process-
ing algorithm can only process data samples vector up to the
data sample vector currently being processed. In other words,
the data sample vectors used for data processing can be only
those which have been visited and any future data sample vec-
tor that comes in after the current data sample vector should not
be included in data processing. Recently, such issue in causal
anomaly detection has been investigated for real-time process-
ing [17], [18]. However, anomaly detection using sliding causal
windows remains unresolved and has received little interest.
This is mainly due to the fact that if a sliding window to be
used for anomaly detection is relatively small, its processing
time is negligible. In this case, it can be processed in near
real time, but it is still not a real-time processing algorithm
because the used window centered at the current data sample
vector includes future data sample vectors which come after
the center of the window. Another issue is the size of the used
sliding window. If it is small and can be implemented in near
real time, the resulting performance may not be desirable. If
it is too large, the resulting performance may be better but it
cannot be implemented in real time since the processing time
may exceed time constraints. To resolve this issue, this paper
develops an approach to anomaly detection using causal slid-
ing windows which can be implemented in a causal manner
where a causal sample covariance/correlation matrix can be
defined by data sample vectors embraced in a causal sliding
window. Three types of causal sliding windows are defined:
1) causal sliding square matrix windows; 2) causal sliding rect-
angular windows; and 3) causal sliding array windows. While
a causal sliding square and rectangular matrix window requires
bookkeeping to keep track of data sample vectors, a causal slid-
ing array window works like a queue. As a result, recursive
equations can be derived for the causal sliding array window
so that anomaly detection using a causal sliding array win-
dow can be updated recursively by only including the new
incoming data sample vector for data processing without repro-
cessing the entire previously visited data sample vectors over
and over again. Accordingly, this capability provides feasibility
of real-time processing.

Various anomalies may exhibit different local properties in
terms of size, spectral signature, and spectral correlation with
their surrounding sample vectors. The development of adap-
tive anomaly detection is designed to capture their local spectral
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statistics. In order to adapt local statistics of anomalies, many
reports have modified K-RXD by replacing the covariance
matrix K with a local covariance matrix calculated by data
sample vectors embraced by so-called local or sliding win-
dow specified by W. By virtue of the window W, anomalies
can be detected by spectral statistics of the data sample vectors
in the window W which varies sample by sample [19]. This
type of anomaly detection is generally referred to as adaptive
anomaly detection and performs K-RXD by varying local spec-
tral statistics characterized by data sample vectors in a window
W. However, it seems that using a sliding window to capture
local statistics in the sense of causality has never been inves-
tigated in the literature. Since causality is a prerequisite to
real-time processing, no anomaly detector using sliding win-
dows can be considered as a real-time anomaly detector. This
paper addresses this issue and further develops three different
types of causal sliding windows, called causal sliding square
matrix window, causal sliding rectangular matrix window and
causal sliding array window, all of which can be implemented
in real-time processing.

II. COMMONLY USED ANOMALY DETECTION

The most widely used anomaly detector is probably the
one developed by Reed and Yu in [1] referred to as K-RXD,
where K is the global sample covariance matrix. Since then,
many various K-RXD-type anomaly detectors have been pro-
posed including some using sliding window to make anomaly
detection adaptive [13], [15], [18]–[20].

Assume that {ri}Ni=1, where N is the total number of entire
data sample vectors in the data; and ri = (ri1,ri2, . . . , riL)

T

is the ith data sample vector, where L is the total number of
spectral bands.

A. RX Detector

The K-RXD, denoted by δK-RXD(r), is specified by

δK-RXD(r) = (r− μ)TK−1 (r− μ) (1)

where μ is the global sample mean vector and K is
the global sample data covariance matrix formed by K =
(1/N)

∑N
i=1 (ri − μ) (ri − μ)T . The form of δK-RXD(r) in

(1) is actually the well-known Mahalanobis distance. Since K
is a nonnegative definite matrix, it can be expressed as K =
K1/2K1/2. Using K−1/2 as a transformation matrix, (1) can
be simply reduced to

δK-RXD(r) = (r− μ)TK−1/2K−1/2 (r− μ)
=

(
K−1/2r−K−1/2μ

)T (
K−1/2r−K−1/2μ

)
= r̃T r̃ = ||̃r||2. (2)

with r̃ = K−1/2(r− μ). Equation (2) shows that K-RXD actu-
ally calculates the square of the vector length of r̃, ||̃r||2
which represents the gray-level intensity of r̃. So, from a
detection point of view, K−1/2 can be interpreted as a whiten-
ing matrix. However, from a signal processing point of view,

the use of K and μ to remove the first two-order statistics
is called data sphering. Since the image background can be
generally described by the second-order statistics, K-RXD per-
forms anomaly detection by finding the higher intensities of
sphered data sample vectors. In other words, anomaly detec-
tion is enhanced by anomaly contrast resulting from removing
image background via data sphering in (2), so as to achieve
background suppression.

B. R-RXD

Another anomaly detector derived from K-RXD is denoted
by δR-RXD(r) and is specified by

δR-RXD(r) = rTR−1r (3)

where R is the global sample data autocorrelation matrix
formed by R = (1/N)

∑N
i=1 rir

T
i . The form of K-RXD in (1)

may not explain quite well about how anomaly detector per-
forms by using its detected anomaly intensity and contrast.
However, by virtue of (3), the concept of anomaly intensity
and contrast can be well-explained by R-RXD. First of all, the
form of (3) can be decomposed into two components: 1) R−1r;
and 2) rT . The first component, R−1r carried out by R-RXD,
actually performs background suppression via the use of the
global sample correlation matrix to increase the contrast of
anomalies against the entire image background. This is fol-
lowed by the second component rT , which performs a matched
filter to detect anomaly intensity via matching the background-
compressed data sample R−1r using its own signature r as
a matched signal source vector. Such a matched filter takes
an inner product of the incoming signal source vector r with
the matched signal source vector R−1r. It actually performs
the spectral angle mapper (SAM) [1] by calculating the angle
between R−1r and rT . Therefore, from a practical point of
view there should have an absolute value in (3) to avoid neg-
ative values caused by the angle. It should be noted that the
negative value of R-RXD does not imply negative magnitude.
It simply says that R−1r and rT are in opposite directions.

However, it should be noted that there is a significant differ-
ence between R-RXD and K-RXD because the former detects
data sample vector itself; but the latter actually detects the data
sample variation from the global sample mean, i.e., data sample
vectors which have large gradients. So, technically speaking,
K-RXD does not detect intensities of anomalies themselves but
rather their gradient intensities. As a result, K-RXD works as a
distance measure like Mahalanobis distance, whereas R-RXD
which can be considered as a matched filter [1], [3].

III. DESIGN OF CAUSAL SLIDING WINDOWS

In this section, we design three types of causal sliding win-
dows: 1) causal sliding square matrix window; 2) causal sliding
rectangular matrix window; and 3) causal sliding array win-
dow, all of which can be used by an anomaly detector to
adjust K or R dynamically to capture changes in sample by
sample in the background so as to achieve sample varying
background suppression as opposed to sample invariant-based
anomaly detectors reported in the literature.
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Fig. 1. Causal and noncausal windows of a window with window size wa = 25
and width a = 2.

A. Causal Sliding Square Matrix Windows

First of all, consider a standard window commonly used in
image processing which is a square window [21]. Assume that
the square window is specified by w2 = (2a+ 1)× (2a+ 1)
with w = 2a+ 1 and a ≥ 0 where w2 = w × w is defined as
“window size” and a = (w − 1) /2 is considered as “window
width.” It is worth noting that the window is generally odd
because it is centered at a given data sample vector rn, which
is currently being processed. So, when a = 0, the square matrix
window is reduced to its center rn and no sample correlation
surrounding rn is considered. Basically, the data sample vec-
tors in a square matrix window can be equally split into two
halves of data sample vectors, each of which has an equal num-
ber of data sample vectors (w2 − 1)/2 = 2(a2 + a). The first
half is called causal data sample vectors, which precede the
current data sample vector rn and the other half is noncausal
data sample vectors, which appear after the current data sample
vector rn.

Let {ri}ni=1 be a set of all data sample vectors up to the
currently being processed data sample vector rn. A sliding
causal square matrix window W is then defined by its win-
dow size and width specified by wa = (2a+ 1)× (2a+ 1) and
a = (

√
wa − 1)/2, respectively, as a window, which includes

all the (wa − 1)/2 = 2(a2 + a) causal data sample vectors in
the square window W that appear before the rn and have been
visited, whereas a noncausal matrix window includes only those
(wa − 1)/2 = 2(a2 + a) noncausal data sample vectors which
are future data sample vectors yet to be visited within the square
window W. With this definition w2 = wa.

Fig. 1 illustrates its concept by specifying the window W
with size of wa = 5× 5 and a = (

√
wa − 1)/2 = (5− 1)/2 =

2, where the pixel currently being processed is specified by its
2-D spatial location, r(n,m) with (n,m) indicating its spatial
location for a better illustrative purpose. In this case, the causal
square matrix window comprises of all the causal 12 data sam-
ple vectors

{
r(n−i,m−j)

}2,2

i=0,j=0
− r(n,m) and the noncausal

square matrix window highlighted by RED is also made up of
all the 12 noncausal data sample vectors yet to be processed in
W

{
r(n+i,m+j)

}2,2

i=0,j=0
− r(n,m).

So, when the sliding square matrix window in Fig. 1 moves
its center to the next data sample vector rn+1, the causal matrix

Fig. 2. Causal square matrix windows at r(n,m) and r(n+1,m).

Fig. 3. A causal sliding array window with size specified by ω = 2a2 +
a = 12.

window also moves and the data sample vectors included in this
moved causal matrix window are shown in Fig. 2, where the two
sliding causal matrix windows at rn and rn+1 are specified by
dotted and dashed lines, respectively.

B. Causal Sliding Array Windows

As we can see from Fig. 2, all data sample vectors excluded
from the causal matrix window are not removed in sequence.
In this case, let rn−m = r(n,m). For example, in Fig. 2, the
r(n−2,m−2), r(n−2,m−1) and r(n−2,m) in the causal matrix win-
dow centered at rn−m are removed from the causal matrix
window centered at rn−m+1, while r(n+2,m−2) and r(n+2,m−1)

which are not included in the causal matrix window centered
at rn−m are now added to the causal matrix window centered
at rn−m+1. Obviously, it requires bookkeeping to keep track
of which data sample vector should be removed and which
data sample vectors should be added as a causal matrix win-
dow moves on. To resolve this issue, we can stretch out the
causal matrix window in Fig. 1 as a linear array shown in Fig. 3
by letting rn−m = r(n,m), rn−ω = r(n−2,m−2), rn−ω+1 =
r(n−1,m−2), etc., in which case, we can define the array window
size as ω = 2(a2 + a) = 12.

Using Fig. 3, we define a causal sliding array window corre-
sponding to Fig. 1 as a linear array with array window size given
by ω = 2a2 + a = 12 sliding along with the currently being
processed nth data sample vector rn according to data process-
ing line by line as a linear array, which embraces 2a2 + a = 12
pixels {ri}n−1

i=n−ω preceding the processed data sample vector
rn. In other words, the causal sliding array window of width
ω defined in Fig. 3 is formed by a linear array which consists
of ω data sample vectors preceding the current processed data
sample rn. It is no longer a square window of size w2 shown in
Fig. 1. It should be also noted that the current data sample vec-
tor rn is not included in the causal sliding array window. So,
when a causal sliding array window moves along with the data
sample vectors, the linear array simply performs like a queue,
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Fig. 4. Causal sliding array window at rn with width specified by ω.

Fig. 5. Causal rectangular matrix window at r(n,m) with window size of
wab = 3× 7.

first in and first out. Fig. 4 shows the causal sliding array win-
dow at rn depicted by dotted lines and the causal sliding array
window at rn+1 depicted by dashed lines, where the farthest
data sample vector rn−ω from rn in the causal sliding array
window at rn is removed from the causal sliding array window
at rn, while the most recent data sample vector rn is then added
to the causal sliding array window at rn+1.

The difference between the causal sliding square matrix win-
dow shown in Fig. 2 and the causal sliding array window shown
in Fig. 4 is that when a new data sample vector is due to being
processed r(n+1,m) in Fig. 2 and rn+1 in Fig. 4, the data sample
vectors to be removed, r(n−2,m−2), r(n−2,m−1) and r(n−2,m)

and added, r(n+2,m−2), r(n+2,m−1) in Fig. 2 are not consecu-
tive, while the data sample vector to be removed from the array
rn−ω and the data sample vector to be added, rn in Fig. 4 are
successive. As a consequence, from practical implementation
using causal sliding array window is much simpler than using
causal sliding square matrix window even though the latter is
the common practice in image processing [21].

C. Causal Sliding Rectangular Matrix Window

Interestingly, both the causal sliding square matrix win-
dow defined in Section III-A and causal sliding array window
defined in Section III-B can be interpreted as special cases of a
more general form which makes use of a causal sliding rectan-
gular window W specified by its length a, and width b, and size
wab = (2b+ 1)× (2a+ 1). Its idea can be illustrated in Fig. 5
using Fig. 1 as an example.

As a result, when b = a, the window size wab becomes wa

and the causal sliding rectangular matrix window is reduced to
a causal sliding square matrix window. When b = 0, then the
window size wab becomes ω and the causal sliding rectangular
matrix window is reduced to a causal sliding array window as
shown in Fig. 6, where rn is the currently being processed data
sample vector and ω is the array window size.

IV. CAUSAL ANOMALY DETECTION

Using causal sliding windows defined in Section III, we can
now define a causal anomaly detector which makes use of

Fig. 6. Causal and noncausal sliding array window with size ω = 2a2 +
a = 12.

causal windows to capture background varying with sample
vectors to perform adaptive anomaly detection. Since K-RXD
and R-RXD described in Section II are of major interests, these
two anomaly detectors will be used to derive causal anomaly
detectors as follows.

A causal R-RXD (CR-RXD) using a causal sliding win-
dow W, denoted by δCR-RXD(r), can be derived from (3) and
specified by

δCR-RXD
W (rn) = rTn R̃

−1(n)rn (4)

where rn is the nth data sample vector currently being pro-
cessed and R̃(n) is called “causal” sample correlation matrix
formed by data sample vectors in a causal sliding window W if
it is defined by R̃(n) = (1/nW)

∑
ri∈W rir

T
i , where nW is the

total number of data sample vectors in W.
In analogy with (4), a causal version of the K-RXD in (1) can

be re-expressed as

δCK-RXD
W (rn) = (rn − μ̃(n))T K̃(n)−1 (rn − μ̃(n)) (5)

where μ̃(n) = (1/nW)
∑

ri∈W ri is the “causal” sample

mean averaged over all data sample vectors, {ri}n−1
i=1

and K̃(n) = (1/nW)
∑

ri∈W (ri − μ̃(n)) (ri − μ̃(n))T is the
“causal” covariance matrix formed by all the data sample
vectors in a causal sliding window W.

Most recently, causal anomaly detection without using causal
sliding windows was investigated in [18], where two causal
anomaly detectors: 1) causal R-RXD (CR-RXD) and 2) causal
K-RXD (CK-RXD) were developed. However, the causal sam-
ple correlation used in both CR-RXD and CK-RXD is specified
by all data sample vectors {ri}n−1

i=1 that have been visited and
processed before the current data sample vector rn. It is inter-
esting to note that these two causal anomaly detectors can be
actually considered as special cases of our proposed causal
anomaly detectors δCR-RXD

W (rn) in (4) and δKR-RXD
W (rn) in

(5) using a causal sliding array window W, which grows and
keeps adding new data sample vectors, i.e., W = ∪n−1

i=1 ri.
Accordingly, this paper can be considered as adaptive version
of causal anomaly detection in [18] with using a causal slid-
ing window W to capture local spectral statistics among data
sample vectors in W.

V. RECURSIVE CAUSAL ANOMALY DETECTION

Theoretically, (4) can be implemented in real time. However,
the causal sample correlation R̃(n) in (4) varies with data sam-
ple vectors to be processed and must be recalculated each time
as long as a new data sample vector is fed in. This processing
time generally goes beyond time constraints required for real-
time implementation. In order to resolve this issue, this section
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derives a recursive causal information update equation which
only needs to update causal anomaly detection by including
innovations information provided by the new data sample vec-
tor and its correlation with processed information obtained from
previous data sample vectors.

A. Derivations of Recursive Equations

Assume that the width of a causal sliding array window is
specified by ω and the data sample vector to be processed is
rn. To emphasize the width of ω and the processed data sample
vector rn, we re-write R̃(n) in (4) as R̃ω(n). Then R̃ω(n+ 1)
can be further expressed as

R̃ω(n+ 1) =
[(

R̃ω(n)− rn−ωr
T
n−ω

)
+ rnr

T
n

]
. (6)

Now, in order to calculate the inverse of R̃ω(n+ 1),
i.e., R̃−1

ω (n+ 1), we repeatedly make use of the following
Woodbury matrix identity [22] twice

[
A+ uvT

]−1
= A−1 −

[
A−1u

] [
vTA−1

]
1 + vTA−1u

(7)

to first bring out rnrTn with A =
(
R̃ω(n)− rn−ωr

T
n−ω

)
and

u = v = rn; then bring out −rn−ωr
T
n−ω by letting A =

R̃ω(n) and u = −v = rn−ω as follows [(8), shown at the

bottom of the page], where
(
R̃ω(n)− rn−ωr

T
n−ω

)−1

can be

further updated recursively by(
R̃ω(n)− rn−ωr

T
n−ω

)−1

= R̃−1
ω (n)−

[
R̃−1

ω (n)rn−ω

] [
−rTn−ωR̃

−1
ω (n)

]
1− rTn−ωR̃

−1
ω (n)rn−ω

= R̃−1
ω (n) +

[
R̃−1

ω (n)rn−ω

] [
rTn−ωR̃

−1
ω (n)

]
1− rTn−ωR̃

−1
ω (n)rn−ω

. (9)

By virtue of (8) and (9), R̃ω(n+ 1) can be updated recur-
sively by R̃ω(n) via deleting the information rn−ω and adding
the new information rn.

B. Computational Complexity

The advantage of using the causal sliding array windows over
causal sliding matrix windows is the use of recursive equa-
tions (8) and (9), where deriving similar recursive equations
for using causal sliding matrix windows is feasible but is much
more complicated as described in the beginning paragraph

R̃−1
ω (n+ 1) =

[(
R̃ω(n)− rn−ωr

T
n−ω

)
+ rnr

T
n

]−1

=
(
R̃ω(n)− rn−ωr

T
n−ω

)−1

−

[(
R̃ω(n)− rn−ωr

T
n−ω

)−1

rn

] [
rTn

(
R̃ω(n)− rn−ωr

T
n−ω

)−1
]

1 + rTn

(
R̃ω(n)− rn−ωrTn−ω

)−1

rn

(8)

of Section III-B. In particular, it must repeatedly implement
Woodbury’s identity as many times as it brings out excluded as
well as included data sample vectors. In addition, this number
is also determined by the size of the used causal window. So,
it is practically not worthwhile. By contrast, the use of causal
sliding array window requires only two implementations of
Woodbury’s identity regardless of its width as shown in (8) and
(9). Such a significant benefit arises from the recursive nature
in (8) and (9).

According to (8), it only requires calculations of three quan-
tities:

1) an L× 1 vector calculated by ϕ = (R̃ω(n)
− rn−ωr

T
n−ω)

−1rn;
2) an L× L matrix calculated by an outer product of ϕ:
ϕϕT ;

3) a scalar calculated by an inner product: rTnϕ.

where
(
R̃ω(n)− rn−ωr

T
n−ω

)−1

can be calculated by (9)

and also requires another three similar quantities:
1) an L× 1 vector calculated by ψ = R̃−1

ω (n)rn−ω;
2) an L× L matrix calculated by an outer product of ψ:
ψψT ;

3) a scalar calculated by an inner product: rTnψ.
So, the computational complexity of processing a single data

sample vector using a causal sliding window W specified by
its window size ω requires calculations of two L× 1 vectors
required by (1) and (a), two outer products of an L× 1 vector
by (2) and (b), and two inner products of two L× 1 vectors
by (3) and (c). In addition to that, it only needs to calculate its
initial condition, the inverse of R̃ω(n0) once. It should be also
noted that R̃−1

ω (n) is updated by (8), where its initial condition
n0 must guarantee that R̃ω(n0) is of full rank to avoid singular-
ity. In other words, the size of the used causal sliding window
W, ω must at least equal to or greater than the total number of
spectral bands.

Three comments are worthwhile.
1) The causal sliding window should not include the cur-

rent data sample vector r(n,m) or rn, because it will cause
r(n,m) or rn to be suppressed in the background [15].

2) The sliding causal sliding array window defined in Fig. 3
can be made sample-variant. More specifically, the width
ω can be made a function of the data sample vector rn to
be processed, denoted by ω (rn). For example, if ω(rn) =
n− 1, then the anomaly detection using sliding windows
with width n− 1 is reduced to causal anomaly detection
developed in [18].

3) Like R̃ω(n) the causal sample covariance matrix, K̃(n)
in (5) can be also obtained by recursive update equa-
tions similar to (8) and (9) but their derivations are more
complicated than (8)–(9) (see the derivations of CK-RXD
in [18]) and are not included here.
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Fig. 7. (a) HYDICE panel-vehicle scene and (b) its ground truth; abundance fractional maps by two commonly used global anomaly detectors: (c) K-RXD;
(d) R-RXD; (e) K-RXD in db; (f) R-RXD in db.

VI. REAL IMAGE EXPERIMENTS

To demonstrate that anomaly detection using causal slid-
ing windows works in real hyperspectral imagery, a size of
200× 74 pixels HYDICE image scene shown in Fig. 7(a) along
with its ground truth provided in Fig. 7(b) where the center
and boundary pixels of objects are highlighted by red and yel-
low, respectively, is used for the experiment. It was acquired by
210 spectral bands with a spectral coverage from 0.4 to 2.5µm
where the spatial resolution is 1.56 m and spectral resolution
is 10 nm. Low signal/high noise bands: bands 1–3 and bands
202–210; and water vapor absorption bands: bands 101–112
and bands 137–153 were removed. So, a total of 169 bands were
used in experiments.

There are several advantages of using this HYDICE image
scene in Fig. 7(a). First, the ground truth provides precise
spatial locations of all man-made target pixels which allow
us to evaluate performance of anomaly detection pixel by
pixel. Second, the provided ground truth enables us to perform
receiver operating characteristic (ROC) analysis for anomaly
detection via ROC curves of detection rate versus false alarm
rate. Third, the scenes has various sizes of objects that can be
used to evaluate ability of an anomaly detector in detecting
anomalies with different sizes, an issue that has not been really
addressed in many reports. Finally and most importantly, the
natural background and known targets make visual assessment
more easily to see various degrees of background be suppressed
by an anomaly detector.

In order to verify the effectiveness of local causal anomaly
detectors, only causal sliding array window was implemented
as the reasons discussed at the end of Section V. Two recursive
causal anomaly detectors described in Section V were imple-
mented using various sizes of causal sliding array windows
as shown in Fig. 7(c)–(f) in db for background assessment

where db is defined by 20log10x according to signal process-
ing. Apparently, the global anomaly detectors had very good
performance especially for the panels of the upper part shown
in Fig. 7(e) and (f), where the subpanel pixels in the third
column were actually detected. However, they cannot be imple-
mented in real time due to the calculation of global covariance
matrix or correlation matrix, which is implemented by the
global sample spectral correlation formed by the entire image
data.

Anomaly detection using causal sliding array windows is
implemented in a real-time and causal manner. This causal
anomaly detector is different from the commonly used dual
local detectors with inner window and outer window centered
by the pixel being processed. Due to the need of real-time pro-
cess, the local window is designed causally which only uses
pixels in a causal sliding array window of a fixed size up to
the data sample being processed. It should be noted that the
width of the causal sliding array window must be greater or
equal to the total band number to avoid a singularity prob-
lem in the inversion of the correlation matrix. In order to see
how anomaly detection using causal sliding array windows of
various widths from 200 up 900 with step size of 100 pixels,
Fig. 8(a)–(h) shows the detection abundance fractional maps
with their detected abundance fractions shown in db scale in
Fig. 9. Figs. 8 and 9 show the gray scale detection map in orig-
inal scale and dB scale for the two detectors. It seems that db
scale gives a better visual inspection.

According to our experiments, the detection result was poor
using causal sliding array window width = 200, whereas the
performance began to improve as the causal sliding array win-
dow width increases. When the causal sliding array window
width becomes very large, their detection performances were
similar by visual inspection as shown in Fig. 8(e)–(h), with the
causal sliding array window width greater than or equal to 600.
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Fig. 8. Detection abundance fractional maps by causal anomaly detectors with different causal sliding array window width where (a) width = 200 pixels;
(b) width 300; (c) width = 400; (d) width = 500; (e) width = 600; (f) width = 700; (g) width = 800; and (h) width = 900.

Fig. 9. Detection abundance fractional maps in db scale shown in Fig. 8.

Fig. 9(a)–(h) also shows detection maps in db of Fig. 8(a)–(h)
for comparison.

In order to further quantitatively measure detection perfor-
mance, a three-dimensional (3-D) ROC analysis is performed
using the ground truth provided by Fig. 7(b). In doing so, an
idea similar to that proposed in [23] and [24] can be derived by
converting real values to hard decisions as follows.

Assume that δAD(r) is the detected abundance fraction
obtained by operating an anomaly detector on a data sam-
ple vector r. We then define a normalized detected abundance
fraction δ̂AD

normalized(r) by

δ̂AD
normalized(r) =

δ̂AD(r)−minrδ̂
AD(r)

maxrδ̂AD(r)−minrδ̂AD(r)
. (10)

More specifically, δ̂AD
normalized(r) in (10) can be regarded as a

probability vector which calculates the likelihood of the data
sample vector r to be detected as anomaly according to its

detected abundance fraction, δAD(r). By virtue of (10) we can
develop an abundance percentage anomaly converter (ACV)
with a% as a thresholding criterion, referred to as a%ACV,
χa%ACM(r) similar to one proposed in [1], [25] as follows:

χa%ACM(r) =

{
1, if δ̂AD

normalized(r) ≥ τ = a
100

0, otherwise.
. (11)

If δ̂AD
normalized(r) in (11) exceeds τ = a%/100, then the r will

be detected as an anomaly. So, a “1” produced by (11) indi-
cates that the pixel r is detected as an anomaly; otherwise, it is
considered as a background pixel.

In context of (11), we consider the Neyman Pearson detec-
tion theory for a binary hypothesis testing problem to perform
signal detection [16], where δ̂AD

normalized(r) in (10) can be used
as a Neyman Pearson detector to perform the ROC analysis
as a performance evaluation tool. For example, for a partic-
ular threshold, a detection probability/power, PD and a false
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Fig. 10. 3-D ROC curve and its three corresponding 2-D ROC curves for HYDICE panel-vehicle scene. (a) 3-D ROC curve of (PD, PF, τ ). (b) 2-D ROC curve
of (PD, PF). (c) 2-D ROC curve of (PD, τ ). (d) 2-D ROC curve of (PF, τ ).

alarm probability, PF can be calculated. By varying the thresh-
old τ = a%/100 in (11), we can produce an ROC curve of PD

versus PF and further calculate the area under the ROC curve
for quantitative performance analysis. Interestingly, the thresh-
old is absent in the traditional ROC curve. But according to
(11) the values of PD and PF are actually calculated through
the threshold τ . In order to address this issue, a 3-D ROC anal-
ysis was recently developed in [23], where a 3-D ROC curves
can be generated by considering PD, PF, and τ as three param-
eters, each of which represents one dimension. In other words,
a 3-D ROC curve is a three dimensional curve of (PD, PF, τ )
from which three two-dimensional (2-D) ROC curves can be
also generated, i.e., 2-D ROC of (PD, PF) which is the tradi-
tional ROC curve discussed in [16] along with two other new
2-D ROC curves, 2-D ROC curve of (PD, τ ), and 2-D ROC
curve of (PF,τ ).

There are advantages of using 3-D ROC analysis. First
of all, it allows users to evaluate PD versus τ independent
of PF. Similarly, users can also use the 2-D ROC curve of
(PF, τ ) without referring to PD. Consequently, by varying the
value of τ we are able to observe progressive changes in PD

and PF individually, which the traditional 2-D ROC curve of
(PD, PF) cannot offer. Second, in the traditional 2-D ROC
curve of (PD, PF) PD is expressed as a function PF. So, there
is no direct information of PD specified by the threshold τ .

The 2-D ROC curve of (PD, τ ) can profile progressive detection
power as the threshold τ changes, Finally, the 2-D ROC curve
of (PF, τ ) actually provides crucial information of progressive
background suppression as the threshold τ varies when it comes
to interpretation of anomaly detection by visual inspection with
no availability of ground truth. This issue was investigated in
[26] and will be demonstrated in the following experiments.

Fig. 10 plots 3-D ROC curves along with their corresponding
three 2-D ROC curves produced by the global, K-RXD, R-RXD
anomaly detector, and causal local detectors using different
causal sliding array window widths in Fig. 8 for the HYDICE
panel-vehicle scene in Fig. 7(a). For a further quantitative anal-
ysis, the area under curve (AUC) are calculated, denoted by
Az, for each of 2-D ROC curves produced in Fig. 10(b)–(d)
by global and local anomaly detectors, and their results are
tabulated in Table I, where the best results of causal local detec-
tors are highlighted and the results of global anomaly detector
K-RXD and R-RXD is also included for comparison. For 2-
D ROC curves of (PD, PF) and (PD, τ ), the higher the value
of Az, the better is the detector. Conversely, for 2-D ROC
curves of (PF, τ ), the lower the value of Az, the better is the
detector.

Based on the results in Figs. 10 and 11 and Table I, as
the causal sliding array window width goes up, a higher
Az(PD,PF), which is the traditional 2-D ROC analysis, is
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TABLE I
VALUES OF THREE AREAS UNDER 2-D ROC CURVES Az PRODUCED BY GLOBAL ANOMALY DETECTOR AND LOCAL

CAUSAL ANOMALY DETECTOR WITH DIFFERENT SLIDING CAUSAL SLIDING ARRAY WINDOW WIDTH

CW, Causal sliding array window width.

Fig. 11. Values of three areas under 2-D ROC curves using global detector and
different sliding causal sliding array window widths.

obtained. This indicates a better detection power. Furthermore,
a larger causal sliding array window width will also have a
smaller Az(PF, τ), which indicates a better background sup-
pression. However, a higher Az(PD, PF) does not necessarily
imply a higher Az(PD, τ) as shown in Table I. Unfortunately,
such two pieces of information are not provided by the tradi-
tional 2-D ROC analysis Az(PD, PF).

For a better representation of Table I and a better interpre-
tation of Fig. 10, Fig. 11 further plots the results in Table I as
histograms, where several conclusions can be made as follows.

1) The results showed that K-RXD and R-RXD performed
nearly the same. There was no visible difference between
these two.

2) From Fig. 11, the area under the 2-D ROC curve of detec-
tion power versus the threshold τ specified by (9), i.e.,
AZ(PD, τ) calculated from causal anomaly detectors with
causal sliding array windows is always greater than that
obtained by K-RXD and R-RXD. However, this was also
traded for a higher value of AZ(PF, τ) as also shown in
Fig. 11. By contrast, both K-RXD and R-RXD produced
lowest values of AZ(PD, τ) and AZ(PF, τ).

3) According to Fig. 11, as causal sliding array win-
dow width W increased the value of AZ(PD, PF) also
increased. On the other hand, as the causal sliding array
window W increased the values of both AZ(PD, τ) and
AZ(PF, τ) decreased. So, as W became very large and
was close to the global window size, all the three values of

AZ(PD, PF), AZ(PD, τ), and AZ(PF, τ) would converge
to their corresponding values of K-RXD and R-RXD.
This indicates that detection maps produced by a causal
anomaly detector using various causal sliding array win-
dows provide progressive anomaly detection maps of
K-RXD and R-RXD as the causal sliding array win-
dow width W is progressively increased. Such progressive
anomaly maps have been shown to be very valuable for
visual inspection as they also provide progressive back-
ground suppression [26]. As an alternative interpretation,
the progressive anomaly detection maps can be viewed as
stage-by-stage slow motions of a detection map produced
by a global anomaly detector. For example, detection
maps in Fig. 8(a)–(h) and Fig. 9(a)–(h) can be considered
as slow motions of the detection maps of Fig. 7(d) and (f)
as the causal sliding array window size ω is slowly
changing its size from 200 to 900.

Finally, we would like to point out that the experiments using
the same HYDCE scene in Fig. 7(a) and (b) were conducted in
detail in [18] for real-time causal anomaly detectors, CR-RXD
and CK-RXD, without using causal sliding windows. It will be
great beneficial if this paper is studied with [18] as a companion
paper.

VII. CONCLUSION

While anomaly detection has been studied extensively in the
literature, causal anomaly detection seems to receive little inter-
est. For an anomaly detector to be implemented in real time,
causality is a required process and must be included as a pre-
requisite to any anomaly detection real-time process [18]. This
is particularly true for those adaptive or local anomaly detec-
tors using sliding windows which are actually not causal. So,
theoretically speaking they are not real-time anomaly detec-
tors. This paper addresses this issue and further designs three
types of causal sliding windows: 1) causal sliding square matrix
window; 2) causal sliding rectangular matrix window; and
3) causal sliding array window. In order to implement causal
anomaly detectors in real-time, recursive causal anomaly detec-
tors are also developed for this purpose. As a result of real-time
causal anomaly detection, progressive detection maps can be
produced for visual assessment. In addition, causal anomaly
detection also provides progressive background suppression
that can be further used for image interpretation. In particu-
lar, there may be some weak anomalies detected earlier but
later overwhelmed by subsequently detected strong anomalies.
Under such circumstances, these weak anomalies will not be
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shown in the final detection maps but rather be captured in a
certain stage during progressive anomaly detection; a fact was
also demonstrated in [26].
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