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ABSTRACT 

Anomaly detection using sliding windows is not new but 

using sliding causal windows has not been explored in the 

past. The need of causality arises from real time processing 

where the used sliding windows should not include future 

data samples that have not been visited, i.e., data samples 

come in after the currently being processed data sample. This 

paper develops an approach to anomaly detection using 

sliding causal windows that has capability of being 

implemented in real time. In doing so two types of causal 

windows are defined, causal matrix window and causal array 

window from which a causal sample covariance/correlation 

matrix can be derived. As for the causal array window 

recursive update equations are also derived and thus, speed 

up real time processing. 

Index Terms—Causal anomaly detection, Causal matrix 

window, Causal window, Causal array window, K-RXD, R-

RXD 

1. INTRODUCTION 

Anomaly detection has been a major task in hyperspectral 

data exploitation [1] since a hyperspectral imager can 

uncover many subtle targets which are not known a priori or 

cannot be visualized by inspection. It is particularly crucial 

when anomalies may appear in a short period and vanish 

thereafter such as moving targets in which case timely 

detection is necessary and real time processing of anomaly 

detection becomes inevitable. Unfortunately, many anomaly 

detection algorithms reported in the literature are actually not 

real time processing algorithms even though some of them 

claim to be. For example, the most widely used anomaly 

detector, known as RX detector (RXD) developed by Reed 

and Yu in [2] along with its many variants cannot be 

implemented in real time due to its use of covariance matrix 

which requires entire data samples to calculate the sample 

mean. In addition, many local or adaptive anomaly detectors 

which make use of sliding windows to capture local statistics 

to improve anomaly detection are not real time processing 

detectors either because their used sliding windows include 

future data samples come after the currently being processed 

data sample. All these types of anomaly detection algorithms 

violate a key element required for real time processing, 

which is causality [3]. According to [3] a causal signal 

processing algorithm can only process data samples up to the 

data sample currently being processed. In other words, the 

data samples used for data processing can be only those 

which have been visited and any future data sample which 

comes in after the current data sample should not be included 

in data processing. Recently, such issue in causal anomaly 

detection has been investigated for real time processing [4]. 

However, anomaly detection using sliding causal windows 

remains unresolved and has received little interest. This is 

mainly due to the fact that if a sliding window to be used by 

anomaly detection is relatively small, its processing time is 

negligible. In this case, it can be processed in near real-time, 

but it is still not a real time processing algorithm because the 

used window centered at the current data sample includes 

future data samples which come after the center pixel of the 

window. Another issue is the size of the used sliding window. 

If it is small and can be implemented in near real time, the 

resulting performance may not be desirable. If it is too large, 

the resulting performance may be better but it cannot be 

implemented in real time since the processing time may 

exceed time constraints. To resolve this issue this paper 

develops an approach to anomaly detection using sliding 

causal windows, which can be implemented in a causal 

manner where a causal sample covariance/correlation matrix 

can be defined by data, sample vectors embraced in a sliding 

causal window. Two types of causal windows are defined, 

causal matrix window and causal array window. While 

causal matrix windows require bookkeeping to keep track of 

data sample vectors, causal array windows works like a 

queue. As a result, recursive equations can be derived for 

causal array windows so that anomaly detection using a 

sliding causal array window can be updated recursively by 

only including the new incoming data sample vector for data 

processing without reprocessing the entire previously visited 

data sample vectors. Accordingly, this capability provides 

feasibility of real time processing. 

2. CAUSAL ANOMALY DETECTION 

In this section we design a new type of anomaly detectors 

derived from K-RXD and R-RXD, which can adjust K or R 
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dynamically to capture sample by sample changes in 

background so as to achieve sample varying background 

suppression as opposed to sample invariant anomaly 

detectors such as K-RXD and R-RXD. It is called causal 

anomaly detectors which are defined as follows. 

2.1 Causal Matrix Windows 

Let  n

ii 1
r  be a set of data sample vectors up to the currently 

being processed data sample vector rn. Assume that a sliding 

square window W is specified by a fixed size of www 2 . 

This sliding window has its center located at the currently 

being processed sample rn and moved along with rn as the 

process goes on. A sliding causal matrix window with size 

given by 2/)1( 2  wa  is then defined by a window which 

includes only all data sample vectors in the square window 

W with size of  www 2  that precede the rn and have 

been visited, while a non-causal matrix window with size of 

2/)1( 2  wa  includes only those future data sample 

vectors yet to be visited within the square window W. Fig. 1 

illustrates its concept by specifying the window W with size 

of 55ww  and 122/)1( 2  wa  where the causal 

matrix window comprise of all the data sample vectors 

  1



n

aniir  with the size of a = 12 pixels and the non-causal 

matrix window is also made up of all the future data sample 

vectors yet to be processed in the W,   an

nii


 1
r  with size of a 

= 12 pixels. 

 
Figure 1. Causal and non-causal of a window with size ww  

 
Figure 2.  causal matrix windows at rn  and rn+1 

So, when the sliding square window in Fig. 1 moves its 

center to the next data sample vector rn+1, the causal matrix 

window also moves and the data sample vectors included in 

this moved causal matrix window are shown in Fig. 2 where 

the two sliding causal matrix windows at rn and rn+1 are 

specified by dotted and dashed lines respectively.  

2.2 Causal Array Windows 

As we can see from Fig. 2, all data sample vectors excluded 

from the causal matrix window are not removed in sequence.  

For example, in Fig. 2 the rn-a, rn-m and rn-2 in the causal 

matrix window centered at rn are removed from the causal 

matrix window centered at rn+1, while rn-m-1 and rn-3 which 

are not included in the causal matrix window centered at rn 

are now added to the causal matrix window centered at rn+1. 

Obviously, it requires bookkeeping to keep track of which 

pixels should be removed and which pixels should added as 

a causal matrix window moves on. In order to resolve this 

issue we can stretch out the causal matrix window in Fig. 1 

as a linear array shown in Fig. 3. 

 
Figure 3. Causal array window with width specified by a 

By virtue of Fig. 3 we define a causal array window of width 

a sliding along with a processed pixel rn as a linear array, 

which embraces a pixels,   1



n

aniir , preceding the processed 

pixel rn. In other words, the causal array window of width a 

defined in Fig. 3 is formed by a linear array which consists of 

pixels preceding the current processed pixel rn. It is no 

longer a square window shown in Fig. 1. It should be also 

noted that the current pixel rn is not included in the causal 

array window. So, when a causal array window moves along 

with the pixels, the linear array simply performs like a queue, 

first in and first out. Fig. 4 shows the causal array window at 

rn depicted by dotted lines and the causal array window at 

rn+1 depicted by dashed lines where the farthest pixel rn-a in 

the causal array window at rn is removed from the causal 

array window, while the most recent data sample vector rn is 

then added to the causal array window at rn+1.  

 
Figure 4.  Causal array window at rn+1 with width specified by a 

The difference between the causal matrix window shown in 

Fig. 2 and the causal array window shown in Fig. 4 is that the 

former includes rn, rn-m-1, rn-3 but excludes rn-a, rn-m and rn-2, 

while the latter includes rn but excludes rn-a. 

2.3 Causal Anomaly Detection 

A causal R-RXD (CR-RXD), denoted by 
CR-RXD

(r), can be 

derived from (3) and specified by  

n
T
nn n rRrr

1RXD-CR )(
~

)(δ                             (4) 

where rn is the n
th

 data sample vector currently being 

processed. )(
~

nR is called “causal” sample correlation matrix 
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formed by data sample vectors if it is defined by 

  


n

i

T
iinn

1
/1)(

~
rrR . 

In analogy with (4) a causal version of the K-RXD in (1) 

can be re-expressed as  

   )(~)(
~

)(~(δ 1RXD-CK nnn) n
T

nn μrKμrr              (5) 

where   


n

i
inn

1
/1)(~ rμ  is the “causal” sample mean of 

samples   1

1





n

iir and      


n

i

T
ii nnnn

1
)(~)(~/1)(

~
μrμrK  is 

the “causal” covariance matrix of samples   1

1





n

iir .   

3. RECURSIVE CAUSAL ANOMALY DETECTION  

Technically speaking, (4) can be implemented in real time. 

However, the causal sample correlation, )(
~

nR  in (4) varies 

with pixels to be processed and must be re-calculated each 

time when comes to a new pixel. This processing time 

generally goes beyond time constraints required for real time 

implementation. In order to resolve this issue, this section 

derives a cursive causal information update equation which 

only needs to update causal anomaly detection by including 

innovations information provided by the new data sample 

vector and its correlation with processed information 

obtained from previous data sample vectors. 

Assume that the width of a sliding causal array window is 

specified by a and the data sample vector to be processed is 

rn. To emphasize the width of a and the processed data 

sample vector rn, we re-write )(
~

nR  in (4) as )(
~

naR . Then 

)1(
~

naR  can be further expressed as 

  T
nn

T
ananaa nn rrrrRR  )(

~
)1(

~
.               (6) 

Now, in order to calculate the inverse of )1(
~

naR , i.e., 

)1(
~ 1  naR  we repeatedly make use of the following 

Woodbury matrix identity [3] twice 

    
uAv

AvuA
AuvA

1

1

11
1

1 





T

T
T                   (7) 

to first bring out T
nnrr  with  T

anana n  rrRA )(
~

 and 

nrvu  ; then bring out T
anan  rr  by letting )(

~
naRA   

and an rvu  as follows: 

  

       
  n

T

anana

T

n

T

anana

T

nn

T

ananaT

anana

T

nn

T

ananaa

n

nn
n

nn

rrrRr

rrRrrrrR
rrR

rrrrRR

1

11
1

11

)(
~

1

)(
~

)(
~

)(
~

)(
~

)1(
~




























 (8) 

where   1
)(

~ 

 T
anana n rrR  can be further updated recursively by 

    
ana

T
an

a
T

anana
a

T
anana

n

nn
nn
















rRr

RrrR
RrrR

)(
~

1

)(
~

)(
~

)(
~

)(
~

1

11
11

 (9) 

By virtue of (8) and (9) )1(
~

naR  can be updated 

recursively by )(
~

naR  via deleting the information rn-a and 

adding the new information rn. 

The advantage of using the causal array window over the 

causal matrix window is derivations of recursive equations (8) 

and (9) where deriving similar recursive equations for using 

causal matrix windows is feasible but is much more 

complicated. In particular, it must repeatedly implement 

Woodbury’s identity as many times as it brings out excluded 

as well as included data sample vectors. In addition, this 

number is also determined by the size of the used causal 

window. So, it is practically not worthwhile. By contrast the 

use of causal array window requires only two 

implementations of Woodbury’s identity regardless of its 

width as shown in (8-9). Such a significant benefit arises 

from the recursive nature in (8-9). 

4. REAL IMAGE EXPERIMENTS 

In order to see whether this theory works in real 

hyperspectral imagery, a size of 74200 pixels HYDICE 

image scene shown in Fig. 5(a) along with its ground truth 

provided in Fig. 5(b) where the center and boundary pixels 

of objects are highlighted by red and yellow respectively is 

used for the experiment. There are several advantages of 

using this HYDICE image scene in Fig. 5(a). The scene has 

various sizes of objects that can be used to evaluate ability of 

an anomaly detector in detecting anomalies with different 

sizes, an issue that has not been really addressed in many 

reports. Most importantly, the clean natural background and 

targets make visual assessment more easily to see various 

degrees of background be suppressed by an anomaly detector. 

In order to verify the effectiveness of local causal anomaly 

detectors, two commonly used global anomaly detectors, K-

RXD and R-RXD are implemented first, shown in Fig. 5(c) - 

(d). The global anomaly detectors have very good 

performance especially for the panels of the upper part. But 

they cannot be implemented in real-time due to the 

calculation of global covariance matrix or correlation matrix 

formed by the entire image data samples. 

Anomaly detection using causal sliding windows is 

implemented in a real-time and causal manner. This causal 

anomaly detector is different from the commonly used dual 

local detectors with inner window and outer window 

centered by the pixel being processed. Due to the need of 

real-time process, the local window is designed causally 

which only uses pixels in a fixed size causal array window up 

to the data sample being processed. It should be noted that 

the width of the causal array window must be greater or 

equal to the total band number to avoid a singularity problem 

in the inversion of the correlation matrix. In order to see how 

anomaly detection using causal array windows of various 

widths from 200 up 900 with step size of 100 pixels, Fig. 

6(a-h) shows the detection abundance fractional maps.  

According to our experiments, the detection result was 

very poor using causal array window width = 200, while the 

performance began to improve as the causal array window 

width increases. When the causal array window width 

becomes very large, the detection performance were similar 
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by visual inspection as shown in Fig. 6(e)-(h), with the causal 

array window width greater than or equal to 600. 

5. CONCLUSION  

Anomaly detection using causal sliding windows has not 

been explored in the past. Despite that many local and 

adaptive anomaly detectors have been proposed to claim to 

be real time they actually not causal detectors. So, 

technically speaking they cannot be implemented in real time. 

This is particular true for those which use sliding windows. 

This paper develops a new approach to designing anomaly 

detection using causal sliding windows to satisfy the 

necessity of real time processing and further provides a 

feasibility of hardware implementation for future FPGA 

design. 
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                                                               (a)                                     (b)                                   (c)                                     (d) 

Figure 5. (a-b) HYDICE panel-vehicle scene in (a) and its ground truth in (b), (c-d) abundance fractional maps by two commonly used global 

anomaly detectors, which are KRXD used in (c) and RRXD used in (d) 

                      
                          (a)                        (b)                          (c)                    (d)                        (e)                       (f)                         (g)                     (h)  

Figure 6. Detection abundance fractional maps by causal anomaly detectors with different causal array window width where (a) width = 200 

pixels, (b) width 300, (c) width = 400, (d) width = 500, (e) width = 600, (f) width = 700, (g) width = 800, (h) width = 900. 

 

4603

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on November 25,2025 at 09:22:39 UTC from IEEE Xplore.  Restrictions apply. 


