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ABSTRACT

Anomaly detection using sliding windows is not new but
using sliding causal windows has not been explored in the
past. The need of causality arises from real time processing
where the used sliding windows should not include future
data samples that have not been visited, i.e., data samples
come in after the currently being processed data sample. This
paper develops an approach to anomaly detection using
sliding causal windows that has capability of being
implemented in real time. In doing so two types of causal
windows are defined, causal matrix window and causal array
window from which a causal sample covariance/correlation
matrix can be derived. As for the causal array window
recursive update equations are also derived and thus, speed
up real time processing.

Index Terms—Causal anomaly detection, Causal matrix
window, Causal window, Causal array window, K-RXD, R-
RXD

1. INTRODUCTION

Anomaly detection has been a major task in hyperspectral
data exploitation [1] since a hyperspectral imager can
uncover many subtle targets which are not known a priori or
cannot be visualized by inspection. It is particularly crucial
when anomalies may appear in a short period and vanish
thereafter such as moving targets in which case timely
detection is necessary and real time processing of anomaly
detection becomes inevitable. Unfortunately, many anomaly
detection algorithms reported in the literature are actually not
real time processing algorithms even though some of them
claim to be. For example, the most widely used anomaly
detector, known as RX detector (RXD) developed by Reed
and Yu in [2] along with its many variants cannot be
implemented in real time due to its use of covariance matrix
which requires entire data samples to calculate the sample
mean. In addition, many local or adaptive anomaly detectors
which make use of sliding windows to capture local statistics
to improve anomaly detection are not real time processing
detectors either because their used sliding windows include
future data samples come after the currently being processed
data sample. All these types of anomaly detection algorithms
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violate a key element required for real time processing,
which is causality [3]. According to [3] a causal signal
processing algorithm can only process data samples up to the
data sample currently being processed. In other words, the
data samples used for data processing can be only those
which have been visited and any future data sample which
comes in after the current data sample should not be included
in data processing. Recently, such issue in causal anomaly
detection has been investigated for real time processing [4].
However, anomaly detection using sliding causal windows
remains unresolved and has received little interest. This is
mainly due to the fact that if a sliding window to be used by
anomaly detection is relatively small, its processing time is
negligible. In this case, it can be processed in near real-time,
but it is still not a real time processing algorithm because the
used window centered at the current data sample includes
future data samples which come after the center pixel of the
window. Another issue is the size of the used sliding window.
If it is small and can be implemented in near real time, the
resulting performance may not be desirable. If it is too large,
the resulting performance may be better but it cannot be
implemented in real time since the processing time may
exceed time constraints. To resolve this issue this paper
develops an approach to anomaly detection using sliding
causal windows, which can be implemented in a causal
manner where a causal sample covariance/correlation matrix
can be defined by data, sample vectors embraced in a sliding
causal window. Two types of causal windows are defined,
causal matrix window and causal array window. While
causal matrix windows require bookkeeping to keep track of
data sample vectors, causal array windows works like a
queue. As a result, recursive equations can be derived for
causal array windows so that anomaly detection using a
sliding causal array window can be updated recursively by
only including the new incoming data sample vector for data
processing without reprocessing the entire previously visited
data sample vectors. Accordingly, this capability provides
feasibility of real time processing.

2. CAUSAL ANOMALY DETECTION

In this section we design a new type of anomaly detectors
derived from K-RXD and R-RXD, which can adjust K or R
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dynamically to capture sample by sample changes in
background so as to achieve sample varying background
suppression as opposed to sample invariant anomaly
detectors such as K-RXD and R-RXD. It is called causal
anomaly detectors which are defined as follows.

2.1 Causal Matrix Windows

Let {ri };’:1 be a set of data sample vectors up to the currently
being processed data sample vector r,. Assume that a sliding

square window W is specified by a fixed size of w2 = wxw.
This sliding window has its center located at the currently
being processed sample r, and moved along with r, as the
process goes on. A sliding causal matrix window with size

given by a = (w? — 1)/2 is then defined by a window which
includes only all data sample vectors in the square window

W with size of w? =wxw that precede the r, and have
been visited, while a non-causal matrix window with size of

a=(w*—1)/2 includes only those future data sample
vectors yet to be visited within the square window W. Fig. 1
illustrates its concept by specifying the window W with size
of wxw=>5x5 and a=(w*—-1)/2=12 where the causal
matrix window comprise of all the data sample vectors
{r; = with the size of a = 12 pixels and the non-causal

matrix window is also made up of all the future data sample

n+a

vectors yet to be processed in the W, {r; }i:n \; With size of a

= 12 pixels.
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Figure 2. causal matrix windows at r, and r,.;
So, when the sliding square window in Fig. 1 moves its
center to the next data sample vector r,;, the causal matrix
window also moves and the data sample vectors included in
this moved causal matrix window are shown in Fig. 2 where

the two sliding causal matrix windows at r, and r,,; are
specified by dotted and dashed lines respectively.

2.2 Causal Array Windows

As we can see from Fig. 2, all data sample vectors excluded
from the causal matrix window are not removed in sequence.
For example, in Fig. 2 the r,, r,.,, and r,, in the causal
matrix window centered at r, are removed from the causal
matrix window centered at r,.;, while r,,,., and r,3; which
are not included in the causal matrix window centered at r,
are now added to the causal matrix window centered at r,;.
Obviously, it requires bookkeeping to keep track of which
pixels should be removed and which pixels should added as
a causal matrix window moves on. In order to resolve this
issue we can stretch out the causal matrix window in Fig. 1
as a linear array shown in Fig. 3.

causal array window of width a

Figure 3. Causal array window with width specified by a
By virtue of Fig. 3 we define a causal array window of width
a sliding along with a processed pixel r, as a linear array,
which embraces a pixels, {r,}7~! , preceding the processed

pixel r,. In other words, the causal array window of width a
defined in Fig. 3 is formed by a linear array which consists of
pixels preceding the current processed pixel r,. It is no
longer a square window shown in Fig. 1. It should be also
noted that the current pixel r, is not included in the causal
array window. So, when a causal array window moves along
with the pixels, the linear array simply performs like a queue,
first in and first out. Fig. 4 shows the causal array window at
r, depicted by dotted lines and the causal array window at
r,+ depicted by dashed lines where the farthest pixel r,., in
the causal array window at r, is removed from the causal
array window, while the most recent data sample vector r, is
then added to the causal array window at r,.;.

Figure 4. Causal array window at r,.;; with width specified by a
The difference between the causal matrix window shown in
Fig. 2 and the causal array window shown in Fig. 4 is that the
former includes r,, r,.,.;, r,; but excludes r,_,, r,., and r,.,
while the latter includes r, but excludes r,,_,.

2.3 Causal Anomaly Detection

A causal R-RXD (CR-RXD), denoted by
derived from (3) and specified by

SRR y=r/R(n)'r, (4)

where r, is the n™ data sample vector currently being
processed. R(n)is called “causal” sample correlation matrix

CR-RXD(y), can be

4601
Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on November 25,2025 at 09:22:39 UTC from IEEE Xplore. Restrictions apply.



formed by data sample vectors if it is defined by
R =(/n)> " rx/ -
In analogy with (4) a causal version of the K-RXD in (1)
can be re-expressed as
KD (r, )= (r, ~fi(m) K(m)'(r, ~(m)  (5)

where ﬁ(n):(l/n)Z':lrl_ is the “causal” sample mean of

samples {r,|/"' and K(n)= (l/n)z;ll(r[—ﬁ(n))(r[—ﬁ(n))T is

« » . . -1
the “causal” covariance matrix of samples {r, }?:1 .

3. RECURSIVE CAUSAL ANOMALY DETECTION

Technically speaking, (4) can be implemented in real time.
However, the causal sample correlation, R(n) in (4) varies
with pixels to be processed and must be re-calculated each
time when comes to a new pixel. This processing time
generally goes beyond time constraints required for real time
implementation. In order to resolve this issue, this section
derives a cursive causal information update equation which
only needs to update causal anomaly detection by including
innovations information provided by the new data sample
vector and its correlation with processed information
obtained from previous data sample vectors.

Assume that the width of a sliding causal array window is
specified by a and the data sample vector to be processed is
r,. To emphasize the width of a and the processed data
sample vector r,, we re-write R(n) in (4) as R,(n). Then

R, (n+1) can be further expressed as
R, 1+ =R, 00 -1, ], )+l | ©)
Now, in order to calculate the inverse of Ra(n+1), ie
ﬁ;l(n+1) we repeatedly make use of the following
Woodbury matrix identity [3] twice
A_lulvT A_Il
1+vi A
to first bring out r,r! with A= (R (n)—r,_,r. a) and
r, ., by letting A=R «(n)

[A +uv’ ]>1 =A- (7

u=v=r,; then bring out r,

and u=v=r,_, as follows:

R (n+1)=[[R

n—a

T 1
R, (-t 17, by |

RO
1+r(R(n) r r’ )r

n-a n-a n

(n)rr

n—a_n- a

=R, -1, 17 - [( l (8)

where ( R, (n)-1, r" J can be further updated recursively by
( R, (n)-r, nT_a)l [ﬁil(”)r n—a llT—aﬁl (”)]

1+r R (n)r,_

By virtue of (8) and (9) R,(n+1) can be updated

=R.!(n)-

)

recursively by R, (n) via deleting the information r,., and
adding the new information r,,.

The advantage of using the causal array window over the
causal matrix window is derivations of recursive equations (8)
and (9) where deriving similar recursive equations for using
causal matrix windows is feasible but is much more
complicated. In particular, it must repeatedly implement
Woodbury’s identity as many times as it brings out excluded
as well as included data sample vectors. In addition, this
number is also determined by the size of the used causal
window. So, it is practically not worthwhile. By contrast the
use of causal array window requires only two
implementations of Woodbury’s identity regardless of its
width as shown in (8-9). Such a significant benefit arises
from the recursive nature in (8-9).

4. REAL IMAGE EXPERIMENTS

In order to see whether this theory works in real
hyperspectral imagery, a size of 200 x 74 pixels HYDICE
image scene shown in Fig. 5(a) along with its ground truth
provided in Fig. 5(b) where the center and boundary pixels
of objects are highlighted by red and yellow respectively is
used for the experiment. There are several advantages of
using this HYDICE image scene in Fig. 5(a). The scene has
various sizes of objects that can be used to evaluate ability of
an anomaly detector in detecting anomalies with different
sizes, an issue that has not been really addressed in many
reports. Most importantly, the clean natural background and
targets make visual assessment more easily to see various
degrees of background be suppressed by an anomaly detector.

In order to verify the effectiveness of local causal anomaly
detectors, two commonly used global anomaly detectors, K-
RXD and R-RXD are implemented first, shown in Fig. 5(c) -
(d). The global anomaly detectors have very good
performance especially for the panels of the upper part. But
they cannot be implemented in real-time due to the
calculation of global covariance matrix or correlation matrix
formed by the entire image data samples.

Anomaly detection using causal sliding windows is
implemented in a real-time and causal manner. This causal
anomaly detector is different from the commonly used dual
local detectors with inner window and outer window
centered by the pixel being processed. Due to the need of
real-time process, the local window is designed causally
which only uses pixels in a fixed size causal array window up
to the data sample being processed. It should be noted that
the width of the causal array window must be greater or
equal to the total band number to avoid a singularity problem
in the inversion of the correlation matrix. In order to see how
anomaly detection using causal array windows of various
widths from 200 up 900 with step size of 100 pixels, Fig.
6(a-h) shows the detection abundance fractional maps.

According to our experiments, the detection result was
very poor using causal array window width = 200, while the
performance began to improve as the causal array window
width increases. When the causal array window width
becomes very large, the detection performance were similar
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by visual inspection as shown in Fig. 6(e)-(h), with the causal
array window width greater than or equal to 600.

5. CONCLUSION

Anomaly detection using causal sliding windows has not
been explored in the past. Despite that many local and
adaptive anomaly detectors have been proposed to claim to
be real time they actually not causal detectors. So,

technically speaking they cannot be implemented in real time.

This is particular true for those which use sliding windows.
This paper develops a new approach to designing anomaly
detection using causal sliding windows to satisfy the
necessity of real time processing and further provides a
feasibility of hardware implementation for future FPGA
design.
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Figure 5. (a-b) HYDICE panel-vehicle scene in (a) and its ground truth in (b), (c-d) abundance fractional maps by two commonly used global

@) ®) T ©
Figure 6. Detection abundance fractional maps by causal anomaly detectors with different causal array window width where (a) width = 200
pixels, (b) width 300, (c) width =400, (d) width = 500, (e) width = 600, (f) width = 700, (g) width = 800, (h) width = 900.
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