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Abstract— This paper presents a new approach, called band
subset selection (BSS)-based hyperspectral anomaly detec-
tion (AD), which selects multiple bands simultaneously as a
band subset rather than selecting multiple bands one at a
time as the tradition band selection (BS) does, referred to as
sequential multiple BS (SQMBS). Its idea is to first use virtual
dimensionality (VD) to determine the number of multiple bands,
nBS needed to be selected as a band subset and then develop two
iterative process, sequential BSS (SQ-BSS) algorithm and suc-
cessive BSS (SC-BSS) algorithm to find an optimal band subset
numerically among all possible nBS combinations out of the full
band set. In order to terminate the search process the averaged
least-squares error (ALSE) and 3-D receiver operating charac-
teristic (3D ROC) curves are used as stopping criteria to evaluate
performance relative to AD using the full band set. Experimental
results demonstrate that BSS generally performs better back-
ground suppression while maintaining target detection capability
compared to target detection using full band information.

Index Terms— 3-D receiver operating characteristic (ROC)
analysis, averaged least-squares error (ALSE), band selec-
tion (BS), band subset selection (BSS), dimensionality reduc-
tion (DR), sequential BSS (SQ-BSS), sequential multiple
BS (SQMBS), simultaneous MBS (SMMBS), single BS (SBS),
successive BSS (SC-BSS).
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I. INTRODUCTION

HYPERSPECTRAL imaging sensors use hundreds of con-
tiguous spectral channels to reveal subtle material sub-

stances in the data. As a consequence, hyperspectral imagery
generally has enormous data volume and contains vast amount
of spectral information which is also expected to be highly
correlated among bands. Two common practices are generally
taken [1]. One is data dimensionality reduction (DR) [1]
which compacts data in a lower dimensional space via various
transforms. The other is band selection (BS) [1]–[33] which
selects appropriate bands from the original set of spectral
bands that can well represent original data, while discarding all
unselected bands. Compared to DR which transforms data, BS
has an advantage of preserving original information from the
data. This paper is mainly focused on BS and presents a new
simultaneous multiple BS (SMMBS) approach to BS, to be
called band subset selection (BSS), which selects multiple
bands simultaneously as a band set instead of other MBS,
referred to as sequential MBS (SQMBS), which selects one
single band at a time sequentially via the conventional single
band selection (SBS). Therefore, SBS can be considered as a
special case of BSS where the band subset used by BSS is
simply a singleton set.

There are several crucial differences between SQMBS and
BSS. First and foremost is how multiple bands are selected.
BSS is designed to select multiple bands altogether at once
simultaneously, while SQMBS selects multiple bands one at
a time sequentially. As a result, a second major difference is
that SQMBS is generally performed by SBS which requires
band prioritization (BP) to rank individual single bands as
well as band decorrelation (BD) to remove highly correlated
bands, whereas BSS considers selection of multiple bands as
a whole in which case it already takes care of BP and BD.
A third important difference is that SBS used to perform
SQMBS usually takes advantage of data statistics and
properties as BP criteria such as variance, signal-to-noise
ratio (SNR), entropy, and so on to prioritize bands [2], [3].
Therefore, SBS has nothing to do with applications. That
is, once bands are selected, the selected bands will be
used for all different applications. By contrast, BSS is
primarily determined by various applications and thus,
different applications select different sets of bands. A fourth
difference is that since SQMBS selects bands sequentially,
it requires BD to decorrelate with previously selected bands
to avoid selecting redundant bands. However, this leads to a
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challenging issue in how to select an appropriate threshold
to determine BD for which BSS does not have such issue.
A fifth difference is that many SQMBS applications are
supervised such as classification using training samples to
generate features for BP [4], [7], [14]–[20], whereas BSS
is completely unsupervised. Finally and most importantly,
BSS and SQMBS are completely different problems; thus,
they require different approaches. Specifically, there is an
issue arising in BSS which does not exist in SBS. That is
how to effectively select simultaneous multiple bands as an
optimal band subset. Interestingly, this issue is similar to
endmember extraction. If we interpret each data sample vector
as an individual single band, then the issue of extracting a
set of endmembers from the entire data space is same as
the issue of finding an optimal set of multiple bands from
the full band set. With this interpretation, the well-known
N-finder algorithm (N-FINDR) developed by Winter [34] is an
excellent candidate to be used for BSS. Since N-FINDR needs
to conduct an exhaustive search for all possible endmember
sets, two sequential versions of N-FINDR, sequential
N-FINDR (SQ N-FINDR), and successive N-FINDR
(SC N-FINDR) were developed for this purpose in [1]
and [35]–[37]. By taking advantage of these two algorithms,
we can also develop their counterparts for BSS, to be called
sequential BSS (SQ-BSS) algorithm and successive BSS
(SC-BSS) algorithm, respectively, for finding an optimal BSS
to avoid an exhaustive search for all possible band subsets.

It is known that BS is generally performed in either
an unsupervised or a supervised manner. When it comes
to unsupervised BS, the bands to be selected are usually
determined by data characteristics or statistics such as vari-
ance, SNR, entropy, and information divergence (ID) [2], [3].
As a result, the selected bands are basically independent of
applications. When it comes to applications, BS methods are
generally supervised and require training samples to generate
BS features such as classification features in [14]–[16],
[23], [24], and [26]–[29], target detection [19], [20],
endmember extraction [22], and spectral unmixing [31]. Inter-
estingly, BS for anomaly detection (AD) has not received
much interest [5], [24]. This may be due to the fact that
AD is unsupervised, and there are no training samples that
can be used to find anomaly features to select bands. Most
importantly, according to a recent study [38], background sup-
pression is a very important and crucial factor in effectiveness
of AD. This is because without prior knowledge as ground
truth AD is generally evaluated by visual inspection where
background suppression plays a key element in assessing per-
formance of AD. Specifically, a better background suppression
can bring up weak anomalies which could be overwhelmed
and compromised by other stronger anomalies, while also
reducing falsely alarmed targets. This paper takes up this issue
to explore two major anomaly detectors since many currently
being used anomaly detectors are variants of one of these two
anomaly detectors. One is developed by Reed and Yu [39],
referred to as K-anomaly detector (K-AD) with K specified
by a sample covariance matrix K. The other is the R-anomaly
detector (R-AD) with R specified by a sample correlation
matrix [40]. Although K-AD and R-AD using SBS have been

also studied in the literature, this paper extends the work
in [41] which is believed to be the first work using BSS to
select multiple bands simultaneously for K-AD. In particular,
in order to evaluate the issue of background suppression, a 3-D
receiver operating characteristic (3-D ROC) analysis developed
in [1] and [42] is further used for background suppression
performance analysis for K-AD as well as R-AD, both of
which are not found [41].

II. BAND SUBSET SELECTION

Since different spectral bands provide different levels of
the information of interest, the primary goal of BS is to
select an appropriate band subset from the original band set
to represent the original data in some sense of optimality.
Therefore, the information preserved by BS has significant
impact on data analysis because the information of unselected
bands will be completely discarded after BS. So, a key success
in BS is how to design effective criteria for BS to meet various
applications.

Solving a general BS problem generally requires an exhaus-
tive search for all possible �BS-combinations out of the total
number of spectral bands, L in � where |�BS| is the number
of bands to be selected in �BS.

More specifically, assume that J (.) is a generic objective
function of �BS for BS to be optimized. For a given number of
selected bands, nBS, a BS technique is to find an optimal band
subset, �∗BS with |�∗BS| = nBS which satisfies the following
optimization problem:

�∗BS = arg{max/min�BS⊂�,|�BS|=nBS J (�BS)}. (1)

Depending upon how the objective function J (�BS) is
designed, the optimization in (1) can be performed by either
maximization or minimization over all possible band subsets
�BS in � with |�BS| = nBS.

Over the past years, many BS techniques have been inves-
tigated by designing various criteria or features to define
J (�BS) in (1). In what follows, we describe a rather different
BS technique, which is based on the concept of finding
endmembers.

A. Interpretation of BSS as Endmember Finding

Finding endmembers has received considerable interests in
recent years [1] since an endmember is assumed to have purity
signature present in the data that can be used to specify a
particular spectral class. Let E p be a set of p endmembers
to be found in the data set S with total number of data
sample vectors denoted by N , i.e., |S| = N . Then finding an
optimal set of p endmembers requires exhausting all possible
p-combinations out of N data sample vectors. For exam-
ple, if N-FINDR [34] is used as a desired endmember
finding algorithm (EFA), the objective function in (1) can
be interpreted as finding the maximal volume of sim-
plexes embedded in the data set S. In this case, (1)
can be expressed as

E N-FINDR
p = arg{maxE p⊂SSVembedded(E p)} (2)

where SVembedded is defined as the volume of a simplex formed
by E p embedded in the data set S. Comparing (1) to (2)
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immediately realizes that finding an optimal set of p bands
by (1) is similar to finding an optimal set of p endmem-
bers. With this interpretation, the well-established theory of
N-FINDR developed in [1] is readily applied to BS provided
that J (�BS) in (1) can be defined appropriately.

B. Band Subset Selection Algorithms

In order to take advantage of the N-FINDR theory to
solve the BS problem, we need to appropriately define the
J (�BS) in (1). This can be done by specifying a particular
application. In other words, we define ηA as an application-
based performance measure to replace J (�BS) in (1) for BS
where the subscript of ηA, “A” is used to specify a particular
application. For example, if an application is specified by
AD, the subscript A in ηA will be specified by AD or a
particular algorithm used to implement AD. Then performance
measure, ηA can be the area under ROC curve, denoted by area
under curve (AUC) for evaluation of detection performance.
As another example, if an application is specified by finding
endmembers, the subscript “A” in ηA will be replaced by
simplex volume (SV) as defined in (2). However, when there is
no ground truth available for performance evaluation, a more
general performance criterion is to measure the difference
such as least-squares error (LSE), denoted by ηLSE (�BS;�)
between the results produced by full bands and the results by
selected bands.

Using ηA as a general performance measure for BS, we
develop two numerical search algorithms to select BSS simul-
taneously from all possible nBS-combinations out of L bands
to avoid an exhaustive search. Since N-FINDR suffers from the
same issue of an exhaustive search for (2) as BS does for (1),
two sequential versions of N-FINDR developed in [1], called
SQ N-FINDR and SC N-FINDR, were developed to avoiding
conducting an exhaustive search for an optimal p-endmember
set E p . By interpreting finding p endmembers as finding an
optimal p-band subset SQ N-FINDR and SC N-FINDR can
be modified and rederived for finding optimal set of bands to
be selected.

1) Sequential Band Subset Selection Algorithm: The first
algorithm is derived from SQ N-FINDR and called SQ-BSS
algorithm which can be described in Algorithm 1.

It should be noted that ηA(B(l)
1 , . . . , B(l)

j−1, B j , B(l)
j+1, . . . ,

B(l)
p ;�) is determined by various applications specified by the

subscript of ηA.
2) Successive Band Subset Selection Algorithm: The second

algorithm to be developed from SC N-FINDR is called
SC-BSS and its detailed implementation is given in
Algorithm 2.

III. BSS-BASED ANOMALY DETECTION

Applications are generally used to justify the utility of
BS. Specifically, classification has been widely used for this
purpose [4], [7], [9], [10], [15]–[17], [23]–[30], [33]. However,
AD seems to have received little attention in BS except some
experiments done in [24]. Accordingly, this paper has mainly
focused on AD [38], [43] and conducted extensive experiments
in performance evaluation for BSS.

Algorithm 1 SQ-BSS Algorithm
1. Initialization:

a. Let p be the number of selected bands determined by
VD.

b. Let
{

B(0)
1 , B(0)

2 , · · · , B(0)
p

}
be a set of initial bands

randomly selected from the entire band set �. Set l =
1.

2. Outer Loop: (using index l as a counter to keep track
band Bl )
Check l = L. If it is, the algorithm terminated. Otherwise,
let l ← l + 1 and continue.

3. Input the l th band, Bl . (Note that the Bl here is now the
l + 1st band, Bl+1).

4. Inner Loop: (using m as a counter to keep track the j th

band B j )
For 1 ≤ j ≤ p, we re-calculate
ηA(B(l)

1 , · · · , B(l)
j−1, B j , B(l)

j+1, · · · , B(l)
p ;�) for the

band B j . If any of these p recalculated the
performance measure, ηA(Bl , B(l)

2 , · · · , B(l)
p ;�),

ηA(B(l)
1 , Bl , B(l)

3 , · · · , B(l)
p ;�), . . . , ηA(B(l)

1 , · · · , B(l)
p−1,

Bl;�), is greater than ηA(B(l)
1 , B(l)

2 , · · · , B(l)
p ;�), go to

step 5. Otherwise, go to step 2.
5. Replacement rule:

Find an index j∗ by

j∗ = arg

⎧⎪⎨
⎪⎩

min1≤ j≤pηA(B(l)
1 , · · · , B(l)

j−1, Bl︸︷︷︸
j

,

B(l)
j+1, · · · , B(l)

p ; ;�)

⎫
⎪⎬

⎪⎭
(3)

which specified the band be replaced by the l th band Bl .
Assume that such an band is now denoted by B(l+1)

j .

A new set of bands is then produced by letting B(l+1)
j∗ =

Bl and B(l+1)
j = B(l)

j for j �= j∗ and go to step 3.

In order to effectively detect anomalies, an algorithm
developed by Reed and Yu [39] referred to as Reed-Xiaoli
detector (RXD) has been widely used. Since its devel-
opment, many RXD-like anomaly detectors have been
proposed [36]–[38]. Of particular interest are anomaly detec-
tors which modify RXD by replacing the global sample covari-
ance matrix, K, with the global sample correlation matrix R.
In this case, the resulting RXD is called R-AD, while RXD
using K is denoted by K-AD for distinction.

Assume that {ri }Ni=1 where N is the total number of entire
data sample vectors in the data and ri = (ri1, ri2, . . . , ri L )T is
the i th data sample vector where L is the total number of spec-
tral bands. The K-AD, denoted by δK−AD(r), is specified by

δK-AD(r) = (r − μ)T K−1(r − μ) (5)

where μ is the global sample mean given by μ =
(1/N)

∑N
i=1 ri and K is the global sample data covari-
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Algorithm 2 SC-BSS Algorithm
1. Initialization:

Let p be the number of endmembers required to generate
and

{
B(0)

1 , B(0)
2 , · · · , B(0)

p

}
be a set of initial bands ran-

domly selected from � where � = {Bl}Ll=1 is the set of
all spectral bands.

2. Outer Loop
For 1 ≤ j ≤ p find B(∗)

j to replace B(0)
j .

3. Inner Loop for a given j in the outer loop:
For 1 ≤ l ≤ L calculate ηA =
(B(∗)

1 , · · · , B(∗)
j−1, Bl , B(0)

j+1, · · · , B(0)
p ;�) for all {Bl}Nl=1,

while fixing other bands B(∗)
i with i < j and B(0)

i with
i > j . Find

B(∗)
j = arg

{
minBi ηA(B(∗)

1 , · · · , B(∗)
j−1, Bi ,

B(0)
j+1, · · · , B(0)

p ;�)
}

. (4)

4. Stopping rule:
If j ≤ p, then j ← j + 1 and go step 2. Otherwise,
the final set of

{
B(∗)

1 , B(∗)
2 , · · · , B(∗)

p

}
is the desired p

bands.

ance matrix given by K = (1/N)
∑N

i=1 (ri − μ)(ri − μ)T .
Interestingly, the form of δK−RXD(r) in (6) is actually the
well-known Mahalanobis distance. Another is R-AD, denoted
by δR−AD(r), is specified by

δR-AD(r) = rT R−1r (6)

with R = (1/N )
∑N

i=1 ri rT
i .

In regard to AD two stopping criteria for SQ/SC-BSS
algorithm can be defined for ηA . One is that we assume ground
truth is available for performance evaluation in which case
ηA = (AUC). In this case, we can find

�K−AD/R-AD
BS = arg{max�BS⊂�AUCK-AD/R-AD(�BS)} (7)

with |�BS| = nBS = p where AUC(�BS) is calculated by the
area under the ROC curve produced by K-AD/R-AD using
only bands selected from �BS.

The other is that we assume no ground truth is available
for performance evaluation. In this case, ηA = LSE. In this
case, we need to calculate LSE between the results produced
by full bands and the results by selected bands, �BS, that is

�K−AD/R-AD
BS = arg{max�BS⊂�LSEK-AD/R-AD(�BS)}. (8)

The two stopping rules specified by (7) and (8) will be used
in the experiments performed in this paper.

IV. DISCUSSION ON MULTIPLE BAND SELECTION

Generally, MBS can be carried out in two ways, one band
at a time sequentially as SQMBS does and multiple bands
simultaneously as SMMBS does by selecting multiple bands
to be a band subset as a whole. In theory, most SBS-based
approaches can be extended to SQMBS such as BP criterion-
base BS methods [3], constrained band selection (CBS) [5],
and most recently, sequential feature search/sequential feature

forward search-based algorithms [11] by augmenting selected
bands gradually [13], [14]. However, as for SMMBS there
is a more complicated issue, which is requirement of an
exhaustive search for finding an optimal set of bands. For
selecting an optimal set of p bands among the total number of
L bands, it requires running through all p-band combinations(

L
p

)
= (L!/(p!(L − p)!)). Practically, this is impossible

to do so if L is large such as hyperspectral imagery. In
order to mitigate this problem, several approaches have been
studied. One approach is to use band clustering to group
all L bands into a predetermined number of clusters where
the cluster centers or representatives are selected as desired
bands [24], [30]. In particular, the concept in [25] is similar
to Fisher’s ratio using mutual information as a BP criterion
for clustering. As an alternative, some approaches based on
band groups or band combinations are proposed in [15],
[16], [23], and [24]. For example, [23] is a band group-
wise method which uses compressive sensing along with the
multitasks sparsity pursuit (MTSP)-based criterion to select
band combinations based on linear sparse representation where
the used search strategies are evolution-based algorithms.
Unfortunately, such methods did not rung through all possible
band combinations because each band combination is consid-
ered as antibody and the set of antibody populations was fixed
at a predetermined parameter N = 10. In other words, for a
p-band combination, the approach in [23] only runs through
a predetermined number of antibody populations specified
by N . However, in order to conduct an exhaustive search,

this N must be sufficiently enough to represent

(
L
p

)
=

(L!/(p!(L − p)!)) p-combinations. So, technically speaking,
this algorithm is practically impossible to be implemented in
this way. This same problem also arises in [15] and [16] where
an antibody specified in [23] is replaced by a firefly in [16]
and a swam in [15] with antibody populations N replaced by
the total number of swarm particles, M = 25, used by particle
swarm optimization (PSO) in [15] and the total number of
fireflies, m = 10, used by the firefly algorithm (FA) in [16],
both of which have exactly the same issue as N had in [23].
This implies that all the approaches in [15], [16], and [23] only
run through band combinations with fixed M = 25 or m = 10
or N = 10, all of which are empirically predetermined.
There were no provided guidelines of how to determine these
values. Most recently, Yuan et al. [24] proposed a graph-
based SMMBS method, called multigraph determinantal point
process (MDPP) which makes use of multiple graphs to
discover a structure and diverse band subset from a graph
where each band is considered as a node and the edge is
specified by similarity between bands. Accordingly, a path
represents a possible band subset. Then a search algorithm,
called mixture DPP was further developed to find a diverse
subset that can be a potential optimal band combination.
Compared to the aforementioned works our proposed BSS
belongs to a completely new category which is particularly
designed to directly search for an optimal p-band subset out

of

(
L
p

)
= (L!/(p!(L − p)!)) p-band combinations. It does
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Fig. 1. (a) HYDICE panel scene which contains 15 panels. (b) Ground truth
map of spatial locations of the 15 panels.

not use any linear representation form or minimum estimated
abundance covariance in [14]–[16] or sparse representation
in [23] or m, number of spectral subspaces in multigraph
in [24]. Most importantly, it does not require parameters, m,
M , or N required by [15], [16], [23], and [24]. As a matter
of fact, BSS runs through all possible p-band subsets among
all L spectral bands via SQ and SC search processes without
fixing a particular number specified by M , m, or N . It is our
brief that MDPP in [24], MTSP in [23], PSO in [15], and FA in
[16] cannot work this way practically because they only run
for specific values of M , m, and N with 1 ≤ M , m, N ≤(

L
p

)
= (L!/(p!(L − p)!)). So, to our best knowledge,

the proposed BSS is probably the only one algorithm designed
for running through all p-band combination among all L bands
by numerical search algorithms.

V. REAL IMAGE EXPERIMENTS

A real image scene collected by the Hyperspectral
Digital Imagery Collection Experiments (HYDICE) shown
in Fig. 1 was used for experiments. It has a total of 169 bands
along with spatial resolution 1.56 m and spectral resolution
10 nm. Its detailed description can be found in [1] with a
size of 64× 64 pixel vectors and 15 panels in the scene. The
ground truth map is provided in Fig. 1(b). The reason that
this scene was selected for experiments is because it provides
complete ground truth of small 15 man-made panels which
can be considered as anomalies. In this case, we can use
ROC analysis to evaluate detection performance in terms of
detection probability PD and false alarm probability PF .

First of all, we need to determine the number of bands, p,
required to be selected, which can be estimated by virtual
dimensionality (VD) [44], [45]. If we assume that each
signature can be accommodated by a single band, the number
of signatures can be then used to estimate the number of
bands nBS. For our experiments, VD for this scene was chosen
to be 9 according to [1], [44], and [45]. Four experiments
were conducted according to two criteria, AUC and LSE. Also,
K-AD and R-AD are used for AD. Since AD is completely
unsupervised, it is blind target detection. So, in order to
conduct a fair comparison, all supervised BS methods are
excluded from the study and only uniform band selection
(UBS) as well as SBS using various BP criteria, variance,
SNR, entropy, and ID considered in [3] was compared for
performance analysis.

A. ηA = AUC

In this section, we assume that the ground truth is provided
such that AUC can be used for ηA as a stopping rule to
terminate SQ/SC-BSS algorithms. Table I tabulates nine bands
selected by UBS, SBS using various BP criteria, variance,
SNR, entropy, ID, and SQ/SC-BSS algorithms where “/” is
used to separate two selected bands. In the last two columns
of Table I, we also calculated AUC produced by K-AD
and R-AD using corresponding nine bands. As we can see
SQ/SC-BSS algorithms selected much better band subsets than
those selected by SBS. Most interestingly, K-AD and R-AD
using bands selected by SQ/SC-BSS algorithms produced
better AUC values than using full bands. These experimental
results demonstrated that selecting effective nine bands could
perform better than blindly using full bands in terms of AUC
values.

According to [38], one crucial measure to assess effec-
tiveness of AD is background suppression which cannot be
simply analyzed by AUC values in Table I. Figs. 2 and 3 show
the respective detection maps of K-AD and R-AD using full
bands and nine bands selected in Table I where it is very
obvious that the detection maps produced by K-AD and R-AD
using nine bands selected by SQ/SC-BSS algorithms had better
background suppression compared to other BS algorithms.
It is also interesting to note that the detection map using
full bands actually produced worst background suppression
despite that it produced better AUC values than those produced
by SBS using various BP criteria. In order to better explain
these phenomena, 3-D ROC analysis provides evidence of all
the answers. Figs. 4(a)–(d) and 5(a)–(d) plot 3-D ROC curve
of (PD , PF , τ ) and three 2-D ROC curves, 2-D ROC curves
of (PD , PF ), 2-D ROC curves of (PD , τ ), and 2-D ROC
curves of (PF , τ ) produced by K-AD and R-AD, respectively.
By looking at Figs. 4(d) and 5(d), PF produced by using full
bands produced highest PF and did not converge to 0, which
indicated poor background suppression. In addition to AUC
obtained by 2-D ROC curve of (PD , PF ) tabulated in Table I,
we set the threshold value τ less than 0.05 for 2-D ROC curves
generated by K-AD and R-AD using nine bands selected by
SQ/SC-BSS algorithms. In this case, PF would be close to
0 according to Figs. 4(d) and 5(d), and PD would be approach-
ing to 1 according to Figs. 4(c) and 5(c). This implies that if
a threshold τ is selected appropriately around 0.05, we could
have PF → 0 and PD → 1.

B. ηA = LSE

Following the same experiments conducted in Section V-A
which used AUC as a stopping rule, similar to experiments
were also performed for SQ/SC-BSS algorithms using LSE
for ηA as a stopping rule where we assumed that there was no
ground truth available to calculate AUC values. In this case,
we used the results produced by full bands as a gold standard
for comparison. Table II tabulates nine bands selected by UBS,
SBS using various BP criteria, variance, SNR, entropy, ID
as well as SQ/SC-BSS algorithms. In the last two columns
of Table II, we also calculated LSE produced by K-AD and
R-AD using corresponding nine bands. Once again, we can
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TABLE I

K-AD AND R-AD USING AUC AS A CRITERION WITH NINE BANDS SELECTED BY FULL BANDS,
UBS, VARIOUS SBS METHODS, AND SQ/SC-BSS ALGORITHMS

TABLE II

K-AD AND R-AD USING LSE AS A CRITERION WITH NINE BANDS SELECTED BY FULL BANDS,
UBS, VARIOUS SBS METHODS, AND SQ/SC-BSS ALGORITHMS

also see SQ/SC-BSS algorithms selected much better band
subsets than those selected by SBS in the sense of producing
smaller LSE.

Similarly, Figs. 6 and 7 show the respective detection
maps of K-AD and R-AD using full bands and nine
bands selected in Table II where the detection maps pro-
duced by K-AD and R-AD using nine bands selected by
SQ/SC-BSS algorithms had better background suppression
compared to other BS algorithms. Furthermore, as shown in
Figs. 2(g) and (h) and 3(g) and (h) for the case of AUC,
both SQ/SC-BSS algorithms had nearly the same background
suppression. But this was not true for the case of LSE.
SQ-BSS algorithm produced better band subsets than
SC-BSS algorithm did in terms of background suppression.
It is also interesting to note that the detection map using
full bands actually produced worst background suppression
despite that it was used as a gold standard for compari-
son. Finally, if we used the ground truth to calculate AUC
using the nine bands selected by LSE as a stopping rule,
Figs. 8(a)–(d) and 9(a)–(d) plot 3-D ROC curve of (PD , PF , τ )
and three 2-D ROC curves, 2-D ROC curve of (PD , PF ),
2-D ROC curve of (PD , τ ), and 2-D ROC curve of (PF , τ )
produced by K-AD and R-AD, respectively. Like Figs. 4 and 5,
using full bands did produce highest PF , which indicated
poor background suppression. If we set the threshold value
τ less than 0.05 for 2-D ROC curves generated by K-AD and
R-AD using nine bands selected by BSS SQ/SC algorithms.
In this case, PF would be close to 0 according to
Figs. 8(d) and 9(d). On the other hand, if the threshold τ
is chosen to be less than 0.05, PD would be approaching
to 1 according to Figs. 8(c) and 9(c). This implies that if
a threshold τ is selected appropriately around 0.05, we could
have PF → 0 and PD → 1. Finally, Tables III and IV tabulate

the AUC values for 2-D ROC curves of (PD , PF ) obtained by
K-AD and R-AD using the nine bands in Table II. As we can
see from the table, the best result was the one produced by
SQ-BSS algorithm.

As concluding remarks, several observations from the exper-
imental results are noteworthy.

1) The conducted experiments demonstrated that if the
ground truth was available, AUC would be a better
stopping rule than LSE. If there was no ground truth,
there was no way to compute AUC in which case LSE
must be used.

2) According to the above experimental results, BSS could
find much better bands as a band subset than SBS did
for individual bands since the former selects multiple
bands simultaneously as a band subset compared to SBS
which makes use of BP to rank all bands and then selects
multiple bands one single band at time.

3) Using simultaneously selected multiple bands by
SQ/SC-BSS algorithms produced the best results among
all test SBS algorithms including UBS.

4) It seems a general understanding that using spectral infor-
mation provided by full bands is supposed to produce
the best results. Our experiments showed otherwise via
3-D ROC analysis. This is mainly due to the fact that
background suppression was never been considered as
an evaluation criterion as discussed in [38]. SQ/SC-BSS
algorithms always have better background suppression
compared to full bands producing the worst background
suppression. This implies that using full bands may not
be necessary to produce the best results.

5) It is important to note that AD cannot be evaluated solely
by 2-D ROC analysis as commonly done in the past.
Background suppression is a crucial element to assess
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Fig. 2. Detection maps of K-AD using AUC as a criterion and nine bands selected by UBS, various SBS methods, and SQ/SC-BSS algorithms.
(a) Full bands. (b) UBS. (c) Variance. (d) SNR. (e) Entropy. (f) ID. (g) SC-BSS-K-AD. (h) SQ-BSS-K-AD.

Fig. 3. Detection maps of R-AD using AUC as a criterion and nine bands selected by UBS, various SBS methods, and SQ/SC-BSS algorithms.
(a) Full bands. (b) UBS. (c) Variance. (d) SNR. (e) Entropy. (f) ID. (g) SC-BSS-R-AD. (h) SQ-BSS-R-AD.

TABLE III

AUC CALCULATED FROM FIG. 8

effectiveness of AD as clearly shown in Figs. 2–9 by
visual inspection.

6) As also shown by experiments, 3-D ROC analysis is

a better evaluation tool than the traditional 2-D ROC
analysis in the sense that it can use 2-D ROC curves
of (PF , τ ) and (PD , τ ) to measure background sup-
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Fig. 4. Three-dimensional ROC and three 2-D ROC curves of K-AD. (a) Three-dimensional ROC curves. (b) Two-dimensional ROC curves of PD versus PF .
(c) Two-dimensional ROC curves of PD versus τ . (d) Two-dimensional ROC curves of PF versus τ .

Fig. 5. Three-dimensional ROC and three 2-D ROC curves of R-AD. (a) Three-dimensional ROC curves. (b) Two-dimensional ROC curves of PD versus PF .
(c) Two-dimensional ROC curves of PD versus τ . (d) Two-dimensional ROC curves of PF versus τ .

Fig. 6. Detection maps of K-AD using LSE as a criterion and nine bands selected by UBS, various SBS methods, and SQ/SC-BSS algorithms.
(a) Full bands. (b) UBS. (c) Variance. (d) SNR. (e) Entropy. (f) ID. (g) SC-BSS-K-AD. (h) SQ-BSS-K-AD.

pression and detection power with the threshold τ as
a parameter compared to 2-D ROC curve of (PD , PF )
which only evaluates PD relative to PF , both of which

are actually functions of the threshold parameter τ . As a
consequence, 2-D ROC curve completely discards the
issue of background suppression because the false alarm
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Fig. 7. Detection maps of R-AD using LSE as a criterion and nine bands selected by UBS, various SBS methods, and SQ/SC-BSS algorithms.
(a) Full bands. (b) UBS. (c) Variance. (d) SNR. (e) Entropy. (f) ID. (g) SC-BSS-R-AD. (h) SQ-BSS-R-AD.

Fig. 8. Three-dimensional ROC and three 2-D ROC curves of K-AD. (a) Three-dimensional ROC curves. (b) Two-dimensional ROC curves of PD versus PF .
(c) Two-dimensional ROC curves of PD versus τ . (d) Two-dimensional ROC curves of PF versus τ .

Fig. 9. Three-dimensional ROC and three 2-D ROC curves of R-AD. (a) Three-dimensional ROC curves. (b) Two-dimensional ROC curves of PD versus PF .
(c) Two-dimensional ROC curves of PD versus τ . (d) Two-dimensional ROC curves of PF versus τ .

TABLE IV

AUC CALCULATED FROM FIG. 9
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probability PF is used as an independent parameter to
measure the detection probability, PD and itself cannot
be used to measure background suppression. On the other
hand, 3-D ROC analysis is developed to treat τ as an
independent variable of the 3-D ROC curve of (PD ,
PF , τ ) from which three types of 2-D ROC curves
of (PD , PF ), (PD , τ ) and (PF , τ ) can be generated for
performance evaluation, specifically, (PF , τ ) can be used
to assess the background suppression.

VI. CONCLUSION

This paper develops a new approach for BSS-based AD
which selects multiple bands as a band subset simultaneously.
There are several contributions made in this paper. First
of all, it extends the conventional SBS to select multiple
bands altogether as a band subset. Its idea is very close
to that used for endmember extraction where the search
algorithm for finding an optimal endmember set can be
considered to be equivalent to algorithms that are used to
find an optimal band subset. Second, two sequential algo-
rithms, SQ N-FINDR, and SC N-FINDR developed for
N-FINDR are further used to derive for BSS as their coun-
terparts, SQ-BSS and SC-BSS algorithms. Third, since the
criterion used for BSS is determined by a particular application
of interest, AD is chosen for this purpose due to the fact that
very little work has been done for AD using BS. Two reasons
are attributed to this cause. One is that anomaly is a blind
target detection with no required target knowledge. In this
case, ROC analysis is not applicable and it is very challenging
to evaluate its performance without ground truth. Another is
that how can we evaluate effectiveness of AD without prior
knowledge? As a matter of fact, as shown in [38], this issue
can be addressed by background suppression. Fourth, in order
to effectively evaluate the effect of background suppression
on AD, we extend traditional 2-D ROC analysis to 3-D ROC
analysis for AD where two more 2-D ROC curves of (PD , τ )
and (PF , τ ) can be further generated to analyze target detection
probability PD and false alarm probability PF individually
and separately via a threshold parameter τ . Finally and most
importantly, the experimental results showed that using full
bands produced the worst background suppression even though
PD is very high. Such phenomenon can be only addressed
by PF which has been overlooked and never reported in the
literature. Furthermore, the experiments also demonstrated that
BSS found better band subsets than SBS did for AD and also
performed better than using full bands in terms of background
suppression with lower PF . It is our belief that BSS is indeed
a promising BS technique in many other applications yet to
explore.
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