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Class Information-Based Band Selection for
Hyperspectral Image Classification

Meiping Song, Xiaodi Shang, Student Member, IEEE, Yulei Wang, Chunyan Yu, Member, IEEE,

and Chein-I Chang , Fellow, IEEE

Abstract— This paper presents a class information (CI)-based
band selection (BS) approach to hyperspectral image classifica-
tion (HSIC). It introduces a new concept from an information
theory point of view, CI which can be used to determine an
appropriate weight imposed on each class of interest. Specifi-
cally, two types of criteria, intraclass information criterion (IC)
and interclass IC are derived as CI probabilities to measure
CI that can be used to determine the number of training
samples required to be selected for each class. With such
CI-calculated probabilities, another new concept called class self-
information (CSI) is also defined for each class that can be
further used to define the class entropy (CE) so that CSI and
CE can be used to determine the number of bands required
for BS, nBS. In order to find desired nBS bands, two types
of BS methods based on CSI and CE are custom-designed,
called single class signature-constrained BS (SCSC-BS) which
utilizes the constrained energy minimization (CEM) to constrain
each individual class signature to select bands for a particular
class according to its CSI-determined nBS and a multiple class
signatures-constrained BS (MCSC-BS) which takes advantage of
linearly constrained minimum variance (LCMV) to constrain all
class signatures to select CE-determined nBS bands for all classes.
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These SCSC-BS and MCSC-BS selected bands are then used to
perform classification and evaluated by CI-weighted classification
measures by real image experiments. The results show that HSIC
using judiciously selected partial bands as well as CI-weighted
measures can improve HSIC with using full bands.

Index Terms— Band selection (BS), between class distance
(BCD), class entropy (CE), class information (CI), class self-
information (CSI), class Fisher’s ration (CFR), constrained
energy minimization (CEM), information criterion (IC), lin-
early constrained minimum variance (LCMV), multiple class
signatures-constrained BS (MCSC-BS), single class signature-
constrained BS (SCSC-BS), within class distance (WCD).

NOMENCLATURE

BS Band selection.
BCD Between class distance.
CD Class density.
CE Class entropy.
CI Class information.
CSI Class self-information.
CFR Class Fisher’s ratio.
CEM Constrained energy minimization.
IC Information criterion.
LCMV Linearly constrained minimum variance.
MCSC-BS Multiple class signatures-constrained BS.
SB-MCSC-BS Sequential backward MCSC-BS.
SF-MCSC-BS Sequential feed forward MCSC-BS.
SB-SCSC-BS Sequential backward SCSC-BS.
SF-SCSC-BS Sequential feed forward SCSC-BS.
SCSC-BS Single class signature-constrained BS.
SR Sample ratio.
WCD Within class distance.

LIST OF SYMBOLS

Symbol Definitions
Ci i th class.
Ĉ j Classified j th class by a classifier.
M Total number of classes to be classified.
{Ci }M

i=1 All classes of interest.
N Total number of data samples.
ni Total number of data samples in Ci .
nii Total number of data samples in Ci correctly

classified in Ci .
n j i Total number of data samples in Ci but classi-

fied into C j .
N training Total number of training samples for all

classes.
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ntraining
i Total number of training samples used for the

i th class, Ci .
N̂ Total number of classified data samples.
n̂ j Total number of data samples classified

into C j .
n̂i j Total number of data samples classified in C j

which are supposed to in Ci .
nBS Number of bands to be selected.
nCSI

BS Number of bands determined by CSI.
nCSI

BS (Ci ) Number of bands determined by CSI for the
i th class, Ci .

nCE
BS Number of bands determined by CE for

{Ci }M
i=1.

I CSI(Ci ) CSI for Ci .
pCI

i Generic CI probability calculated for class Ci

using CI as a criterion.
PA(Ci ) Accuracy of Ci , see (18).
PAA Average accuracy, see (19).
PCI-OA(Ci ) Accuracy using CI as a criterion, see (20).
POA Overall accuracy, see (16).
PPR(Ci ) Precision of Ci , see (21).
PCI-PR Precision using CI as a criterion, see (22).
ϑCI

BCD(Ci ) BCD measure for Ci see (4).
ϑCI

CD(Ci ) CD for Ci , see (2).
ϑCI

CFR(Ci ) CFR for Ci , see (5).
ϑCI

WCD(Ci ) WCD measure for Ci , see (1).

ϑCI
SR(Ci ) SR for Ci , see (3).

�CSI
BS (Ci ) Band subset determined by CSI for the

i th class, Ci .
�CSI

BS Band subset determined by CSI for all classes,
{Ci }M

i=1, see (26).
V( �BS) (dT

�BS
R−1

�BS
d�BS)

−1, see (36).
V(bl) (μT

bl
R−1

bl
μbl

)−1, see (38).

I. INTRODUCTION

IN RECENT years, BS for hyperspectral image classi-
fication (HSIC) has received considerable interest, for

example, [1]–[26]. In general, BS can be performed by sev-
eral approaches. One is band prioritization (BP) [1] which
uses a custom-designed criterion to calculate a priority
score of every single band for its ranking. BS selects
bands according to their assigned priority scores [1]–[5].
Such BP-based BS is generally unsupervised regardless of
a specific application. It makes use of a BP criterion
to select bands according to data characteristics or statis-
tics such as variance, signal-to-noise ratio (SNR), entropy,
Jeffries–Matusita (JM) distance [16], [18], [27], and informa-
tion divergence (ID) [3], [6], [18]. Unfortunately, a BP crite-
rion suffers from at least four drawbacks. First of all, it does
not provide a means of determining how many bands needed
to be selected, nBS. Second, it must prioritize all bands because
it does not know nBS. Third, it requires band decorrelation to
remove bands highly correlated with already selected bands.

However, how to select an appropriate threshold for band
decorrelation is a challenging issue. Fourth, the bands selected
by a BP criterion such as variance, SNR, JM measure and
ID are completely characterized by data statistics regardless
of applications. In other words, such BP-selected bands are
fixed and cannot vary with different applications. To address
this issue, another approach is to use an application-based
criterion to generate band features that can be used to select
bands. Consequently, it requires a feature selection algorithm
to find an optimal set of features that determine bands to
be selected. BS of this type is generally supervised because
it usually requires prior knowledge about the data to be
processed such as training samples, the number of classes
of interest to be classified [10]–[15]. In this case, the main
focus of BS is placed on design and development of strategies
for searching bands. On the other hand, BS can be also
categorized into three groups. One group is band clustering,
which clusters bands into a finite number of clusters [13]–[15].
Another group is sequential multiple band selection (SQMBS)
which selects multiple bands “sequentially” [5], [16], [17].
Specifically, SQMBS generally starts off with either one
band or two, and then begins to grow the selected band
sets by adding one band at a time according to a searching
strategy in which case the well-known sequential floating
forward selection (SFFS) [11] is generally used to select
bands such as [16] and [17]. A third group is simultaneous
multiple band selection (SMMBS) which selects multiple
bands “simultaneously” [18]–[25] in the sense that all bands
must be selected at the same time, not one after another as
does SQMBS.

However, two major issues arising from BS generally have
a significant impact on classification results and in [1]–[26].
One is determining the number of bands to be selected, nBS.
The other is selecting desired bands for classification once
nBS is determined. As for the first issue, one commonly
used approach is to take advantage of virtual dimensionality
(VD) developed in [27]–[32], target specified VD (TSVD)
in [33] and [34] and band specified VD (BSVD) [35]. Since
determining nBS is very challenging, over the past years BS
has mainly focused on the second issue that is to develop
algorithms for finding desired bands with nBS being deter-
mined empirically or other criteria such as VD. Interestingly,
to the authors’ best knowledge there is no work reported in
the literature on how to determine nBS, particularly for the
classification. For example, VD in [27]–[32] was specifically
developed for determining the number of spectrally distinct
signatures using correlation-covariance eigenvalues analysis
by the Harsanyi–Farrand–Chang (HFC) method [36]. On the
other hand, TSVD in [33] and [34] was designed for tar-
gets of interest specified by a particular application, whereas
BSVD [35] was specifically developed for selecting bands
of interest according to the mutual orthogonality of bands
regardless of applications.

This paper takes an interesting twist by looking into the
information provided by each of classes of interest which can
be used to determine nBS specifically for classification. Its
idea is to introduce CI that can be used to measure the infor-
mation contained in each class of interest for classification.
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The concept of CI is new and derived from information
theory [37] which has never been explored in the classification
literature. To make this approach work, two key issues need
to be addressed: 1) to design a criterion to measure CI of
each class and; 2) to utilize CI to determine nBS for each of
M classes, {Ci }M

i=1.
In order to resolve the first issue, five criteria are partic-

ularly designed to measure CI, which are WCD, CD, SR,
BCD, and CFR, all of which are derived from a classifica-
tion perspective [38], viz. between-class variance, within-class
variance, SNR and FR. Despite the fact that WCD, BCD,
and FR have been used for pattern classification, they are
particularly used as criteria to design and develop classifiers
but not to measure CI as proposed in this paper. Specifically,
these five criteria can be grouped into two categories, intraclass
IC which measures class variability of data samples within a
class and interclass IC which measures class separability of
data samples in a class from other classes. The concepts of
intraclass variability and interclass separability are new and
cannot be found in the existing literature. With this interpreta-
tion, WCD and CD can be considered as intraclass IC, while
BCD and CFR can be regarded as interclass IC. Interestingly,
the commonly used SR used in classification, defined as the
ratio of class size to the entire data size, can also be viewed
as an intraclass IC. These defined ICs can be further used to
calculate CI probabilities for two purposes. One is to determine
the number of training samples required to be selected for each
class of interest. The other is to weigh the significance of each
class when it comes to evaluating classification performance.

To take up the second issue, another new concept, called
CSI borrowed from information theory [36], is also introduced
to measure self-information contained in each of the classes,
{Ci }M

i=1 using CI-calculated probabilities from intraclass ICs
and interclass ICs. In other words, the higher the CI probability
is, the less the information is contained in a class and also
the less uncertainty the class to be characterized. Such CI
probabilities can be further used to define CSI that determines
how many bands should be selected to classify each class. With
different values of CSI, the number of bands selected for each
class, referred to as nCSI

BS (Ci ) for the i th class Ci , is expected
to be different; accordingly, in order to classify M classes,
it will require a total of bands, denoted by nCSI

BS no greater than∑M
i=1 nCSI

BS (Ci ) since there may have the same bands selected
for multiple classes. If a class contains no uncertainty, its CSI
value is zero, which indicates no information contained in the
class. Consequently, no band is needed to classify this class.
On the other hand, if the CSI of a class has a large value, this
implies that the class has greater uncertainty, in which case
more bands will be needed for BS to classify the class.

As an alternative to nCSI
BS , the self-information of each

class, nCSI
BS (Ci ), can be also used to define CE in the same

way as self-information used to define entropy in information
theory [37]. The resulting CE calculated from nCSI

BS (Ci ) can be
considered as the ensemble average CSI per class, denoted by
nCE

BS. As a result, the number of bands, nBS, required to classify
for all M classes would be nBS = nCE

BS × M . Obviously, the
nCSI

BS derived from CSI is different from nCE
BS × M obtained

from CE with the latter assuming that nCSI
BS (Ci ) = nCE

BS for

1 ≤ i ≤ M without calculating nCSI
BS (Ci ) for an individual

class, i th class Ci .
Once the value of nCSI

BS (Ci ) or nCE
BS is determined, a follow-

up task is to select desired bands for classification. When
nCSI

BS (Ci ) is used for each of M classes, {Ci }M
i=1, an SCSC-BS

is developed by constraining each of class mean vectors,
{μi }M

i=1 to find nCSI
BS (Ci ) bands, denoted by �CSI

BS (Ci ), and
then fuses the obtained {�CSI

BS (Ci )}M
i=1 by finding their union

�CSI
BS = ⋃M

i=1 �CSI
BS (Ci ) as the final band subset to be

used to classify M classes, {Ci }M
i=1. In this case, the total

number of bands to be used to classify all M classes,
{Ci }M

i=1, denoted by |�CSI
BS |, is bounded below and above

by max1≤i≤M nCSI
BS (Ci ) ≤ |�CSI

BS | ≤ ∑M
i=1 nCSI

BS (Ci ). On the
other hand, when nCE

BS is used, another BS algorithm dif-
ferent from SCSC-BS is developed, called MCSC-BS by
constraining all the M class mean vectors, {μi }M

i=1, together
simultaneously with no need of fusion to find a final band
subset �CE

BS to classify M classes, {Ci }M
i=1. To evaluate perfor-

mance of SCSC-BS and MCSC-BS for HSIC, two recently
developed iterative classifiers, called iterative constrained
energy minimization (ICEM) in [39] and iterative linearly
constrained minimum variance (ILCMV) classifier developed
HSIC in [40] and [41] are used due to the fact that both ICEM
and ILCMV are also designed by constraining individual class
signature and all class signatures, respectively, as SCSC-BS
and MCSC-BS are designed.

As a summary, there are several unique novelties derived
from this paper which cannot be found in the literature.
First and foremost is the introduction of CI to calculate the
information of each of M classes of interest in terms of
probability. Such CI-calculated probabilities give rise to three
new ideas in applications. One is to determine the number of
training samples required to be selected for each class. Another
is to weigh the significance of each class in classification
measures. A third one is to define CSI of each of the classes
that can be used to determine the number of bands required
to be selected, nCSI

BS (Ci ) for the i th class Ci with 1 ≤ i ≤ M .
Such CSI can be then used to define CE to determine the
number of bands, nBS = nCE

BS × M for all classes where
the CE is calculated by averaging CSI over all the classes.
Unlike nCSI

BS (Ci ), which requires fusing {�CSI
BS (Ci )}M

i=1 to find
final �CSI

BS = ⋃M
i=1 �CSI

BS (Ci ) bands for all the M classes,
the obtained CE determines nBS for all the classes {Ci }M

i=1 all
together without band fusion. Finally, to find appropriate bands
for classification two types of BS methods, SCSC-BS and
MCSC-BS are custom-designed according to the determined
values of nCSI

BS and nBS = nCE
BS × M , respectively. These BS

methods constrain class signatures as band features to find
desired bands, a new idea which has not been investigated in
the literature.

II. MEASURES OF CLASS INFORMATION

Assume that there are M classes of interest to be classi-
fied, {Ci }M

i=1. Let μi be the sample mean of the i th class, Ci .
Obviously, not all M classes provide the same amount of
information. According to information theory [37], the infor-
mation of a class describes how much certainty contained in
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the class. It is this uncertainty that determines how many bands
required to classify the class. Interestingly, by far, no work
reported in the literature has been directed to the exploration
of CI in BS. The five criteria presented in the following are
particularly designed to measure CI from a classification point
of view. These five criteria can be grouped into two categories,
i.e., intraclass IC and interclass IC.

A. Intraclass Information Criteria
The criteria in this category are solely based on independent

classes with no interaction from other classes and can be used
to measure the variability of data samples within a single
individual class.

1) Class Variability IC: A simple means of measuring the
variability of a class is its class variance, σ 2. In other words,
if a class has zero variance, it indicates that the class provides
no CI at all and thus, it has no uncertainty. This means that the
class contains all data samples with the same identical spectral
signature. Hence, no band is needed to classify this class.
Conversely, if a class has a large variance, it implies that the
data samples in the class are widely spread in terms of spectral
variability, in which case its CI described as uncertainty is
large. This indicates that this class requires a large number
of bands for its classification. Hence, class variability can be
used to measure CI contained in a class. The WCD, which
serves the purpose, is defined as follows:

ϑCI
WCD(Ci ) =

∑
r∈Ci

(r − μi )
T (r − μi ) = σ 2

i (1)

2) Class Density IC: The class variability, WCD in (1) only
focuses on class variance as the second order statistics without
including the first order statistics, i.e., the sample mean. The
CD defined here combines sample mean and sample variance
(1) into a criterion. It can be also considered as SNR derived
from communications/signal processing. It is the ratio of the
class mass considered as signal energy specified by ||μ||2 with
μ as the sample means to the class area considered as noise
energy measured by σ 2. The CD is defined as

ϑCI
CD(Ci ) = μT

i μi

σ 2
i

(2)

which can be used to address this need. Hence, according
to (2), the higher the density of a class is, better clustered
the data samples in the class are, thus the less CI the class
contains and the less uncertainty the class has.

3) Sample Ratio IC: In the traditional HSIC, a commonly
used criterion is SR which can also be used as a CI measure
defined by

ϑCI
SR(Ci ) = ni

N
(3)

where ni is the number of data samples in the i th class, Ci and
N is the total number of data samples in the data set. Since
SR is calculated only based on the size of an individual single
class relative to the entire data size, N which is fixed, it has
nothing to do with other classes, thus it can be considered as
an intraclass IC. More specifically, higher the SR of a class,
more likely a data sample to be selected from the class, which
leads to the less uncertainty of the class.

B. Interclass Information Criteria
Unlike intraclass IC which describe the variability of data

samples within a single class, the interclass IC presented in
this section measure the separability of data samples among
classes.

1) Class Separability IC: The simplest criterion of CI to
measure class separability is to consider a class represented
by its class center specified by its sample mean. Afterward,
the separability of a class from all other classes can be
measured by BCD among all class centers (sample means)
defined by

ϑCI
BCD(Ci ) = min

1≤ j �=i≤M
||μ j − μi || (4)

which indicates that the larger the BCD is, the better the
separability of the class from other classes is; and thus,
the class has less information and the less uncertainty.

2) Class Fisher’s Ratio IC: Since BCD and WCD are
developed independent intraclass IC and interclass IC without
referring one to the other, the following criterion is actually
designed by combining the strengths of both BCD and WCD
into a single criterion. Its idea is originated from the well-
known FR widely used for classification [38]. By taking
advantage of FR, we can define CFR as

ϑCI
CFR(Ci ) = ||μi − μi∗ ||2

σ 2
i + σ 2

i∗
(5)

where

i∗ = arg
{

min
1≤ j �=i≤M

||μi − μ j ||
}

(6)

and

σ 2
k = 1

|Ck |
∑
r∈Ck

(r − μk)
T (r − μk) (7)

is the variance of class Ck where |Ck | is the number of
elements in Ck . That is, ||μi − μi∗ || is the minimal distance
of μi between other class centers, {μ j }M

j=1, j �=i .
Interestingly, JM distance [16], [18], [27] can also be used

as an alternative to CFR since it also takes care of intraclass
variability and interclass separability as CFR does. However,
the JM distance makes an underlying assumption that it works
when class data samples are Gaussian distributed, which is
not required by CFR. This Gaussian class data distribution
assumption runs into several issues. First of all, it requires
an effective estimation technique to reliably find Gaussian
statistics. Most importantly, it is generally not applicable to
small classes. For example, classes 1, 7, 9, and 16 of the
Purdue data (see Fig. 2), all of which have less than 100 data
samples (see Table I). Hence, compared to the total number
of data samples, 10 249, the class data samples of each
of these four classes have less than 0.5% of entire data
samples. Accordingly, the class data distribution of each of
these four classes may not be appropriately described by a
Gaussian distribution, especially class 9 and class 7, which
have only 20 and 28 data samples, respectively. Hence, the JM
distance is inapplicable to these four classes. On the other
hand, a second issue is that even though the Gaussian class
data distribution assumption may be true for large classes,
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for example, classes 2, 11, and 14 of the Purdue data, all
of which have more than 1000 data samples, how do we
know that the given Gaussian class distribution is a single
Gaussian distribution or a Gaussian mixture distribution by
a number of Gaussian distributions? Therefore, in the latter
case, in addition to estimating Gaussian statistics, we also run
into a third issue of how to estimate the number of Gaussians
used for such Gaussian mixture. Most recently, when the JM
distance is used for HSIC, it has been shown to be ineffective
in [42]. Finally, despite the fact that the JM distance measures
separability of two classes on a more convenient scale [0-2] in
terms of Bhattacharyya distance [16], [18], [27]. However, it is
also known that the Bhattacharyya distance used as a measure
of separability has the disadvantage that it continues to grow
even after the classes have become so well separated that
any classification procedure could distinguish them perfectly.
In contrast to the JM distance, our proposed CFR does not
have all of the above-mentioned issues. Even though the idea
of CFR is originated from the FR used by the Fisher linear
discriminant analysis, CFR is defined differently based on one
class against the rest of classes instead of FR defined between
two classes. From this point of view, CFR is indeed a new
concept modified from FR.

It should be noted that according to (5) the criteria, WCD
defined in (1) and BCD defined in (4), seem special cases
of (5). As a matter of fact, it is generally not true and is
demonstrated by experiments in Table IX(a), (d), and (e).
This is because CFR in (5) constraints both (1) and (4) in
one equation, while WCD in (1) and BCD in (4) can stand
alone by themselves as individual and separate criteria without
constraining one on another.

By virtue of CI criteria defined in (1)–(5), we can calculate
CI probabilities associated with each of classes in terms of
probabilities by

pWCD
i = pWCD(Ci ) = ϑCI

WCD(μi )∑M
j=1 ϑCI

WCD(μ j )
(8)

pCD
i = pCD(Ci ) = ϑCI

CD(μi )∑M
j=1 ϑCI

CD(μ j )
(9)

pSR
i = pSR(Ci ) = ϑCI

SR(Ci ) = nii

ni
(10)

pBCD
i = pBCD(Ci ) = ϑCI

BCD(μi )∑M
j=1 ϑCI

BCD(μ j )
(11)

pCFR
i = pCFR(Ci ) = ϑCI

CFR(μi )∑M
j=1 ϑCI

CFR(μ j )
(12)

all of which can be considered as CI probability assigned
to class Ci . However, it is worth noting that a higher pWCD

i
in (8) indicates more information on class Ci . In order to be
consistent with other criteria, we take its reciprocal (pWCD

i )−1

to ensure that the probability (pWCD
i )−1 is proportional to the

information of class Ci . In this case, (8) is replaced by

p̃WCD
i = (pWCD(Ci ))

−1

∑M
j=1 (pWCD(Ci ))−1

. (13)

Now, using (9)–(13), higher the pCI(Ci ) is, less uncertainty the
class Ci has, and thus, fewer the bands required to identify the
class.

To simplify notations, let pCI
i be a generic CI probability

calculated for class Ci using a CI criterion which can be one
of the five criteria, WCD, CD, SR, BCD and CFR, specifically,
CI = WCD with pCI=WCD(Ci ) = p̃WCD

i . Using pCI
i , we can

further define CSI of each class as

I CSI(Ci ) = I CSI
i = − log2 pCI

i . (14)

Two comments on CI and CSI are noteworthy.
1) The values of CI and CSI are inversely proportional to

each other. That is, for a class, the large value of its
CI is, less uncertainty of the class has and the smaller
the value of its CSI is. For example, if pCI

i = 1/2,
then I CSI

i = − log2 pCI
i = 1bit, in which case it only

needs one bit to clarify the class. On the other hand, if a
class has pCI

i = 1/4, then I CSI
i = − log2 pCI

i = 2 bits,
in which case it requires two bits to specify the class.
In summary, smaller the CI probability of a class, more
uncertainty the class has, and thus, higher its CSI value.

2) If a class has a higher CI probability, i.e., pCI
i , it indi-

cates that it has a lower CSI value, I CSI(Ci ), calcu-
lated from (14). Interpreting one bit in (14) as one
band implies that it requires fewer bands classifying
this particular class and vice versa. Thus, if a class
contains no uncertainty at all, its CI probability is one,
pCI(Ci ) = pCI

i = 1, which indicates that its CSI value
is zero, i.e., I CSI(Ci ) = 0. In this case, the entire data
set contains only one single class. This means that no
information contained in the data set because it can
be specified by a single class and thus, no band is
needed to classify this data set. Conversely, if a data set
contains all classes which have equal CI probabilities,
i.e., pCI

i = 1/M . This indicates that all classes have the
same value of CSI that will require the same number of
bands to classify each individual class. By virtue of CSI
defined in (14), a class has a lower value of CI, pCI

i ,
it will have a higher CSI value, I CSI(Ci ), which will
require more resources in the sense of using more bands
to identify the class.

Furthermore, we can also introduce a new concept of CI,
the entropy of CI defined as the averaged CSI over all the
classes of interest by

H CE({Ci }M
i=1) =

M∑
i=1

pCI
i I CSI(Ci ) = −

M∑
i=1

pCI
i log2 pCI

i .

(15)

III. CLASSIFICATION MEASURES

Assume that
M = the number of classes;
ni = the number of data samples in the i th class according

to ground truth, i.e., ni = ∑M
j=1 n j i ;

N = total number of data samples, N = ∑M
i=1 ni ;

n j i = the number of data samples in the i th class to be
classified into the j th class;
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nii = the number of data samples in the i th class correctly
classified into the i th class;

Ĉ j = the set of data samples being classified in the
j th class C j ;

n̂ j i = the number of data samples classified in the j th class,
which are supposed to in the i th class, Ci ;

n̂ j = the number of data samples classified in the j th class,
C j , i.e., n̂ j = ∑M

i=1 n̂ j i ;
N̂ = total number of classified data samples in M classes =∑M
i=1 n̂i ;
p(Ĉ j ) = (n̂ j/N̂ ) = probability of Ĉ j = SR of Ĉ j ;
In the traditional HSI classification, a widely used criterion

is overall accuracy (OA). PO A , defined as

POA = 1

N

M∑
i=1

nii (16)

where nii is the number of signal samples in the i th class,
Ci correctly to be classified into the i th class, Ci and N is
the total number of data samples in the data set. Interestingly,
we can re-express (16) as

POA = 1

N

M∑
i=1

nii =
M∑

i=1

(ni

N

) nii

ni
=

M∑
i=1

pSR
i

nii

ni
(17)

which shows that PO A actually uses SR as CI in (3) to measure
the information contained in each class. Now, if we further
define

PA(Ci ) = accuracy of the i th class = nii

ni
(18)

then a criterion called average accuracy (AA) can be defined as

PAA = paverage-accuracy
({Ci }M

i=1

)

= 1

M

M∑
i=1

nii /ni = 1

M

M∑
i=1

PA(Ci ). (19)

By virtue of (14), PO A in (17) can be further extended to

PCI-OA =
M∑

i=1

pCI
i PA(Ci ) (20)

where CI can be specified by one of the five CI IC specified
by (9)–(13).

For an M-classes classification, an M-class confusion
matrix can be constructed in Fig. 1.

As shown in Fig. 1, new classification measures will be used
for experiments are summarized as follows [43]:

PPR(Ĉ j ) = precison rate of the j th class,C j

= p(Ĉ j |classification) = n̂ j j

n̂ j
. (21)

Using (21), we can further derive

PCI-PR =
M∑

i=1

pCI(Ĉi )pPR(Ĉi ) (22)

which will be used to calculate CI-weighted precision
rate (PR).

Fig. 1. M-class confusion matrix.

As also noted in (3), pCI(Ci ) = pCI
i = (ni/N), i.e., SR,

(20) is reduced to traditional OA specified by (17). Also, when
pCI(Ci ) = pCI

i = (1/M), (20) is reduced PAA in (19).
As noted above, CI probabilities are calculated solely based

on the classes of interest with exclusion of BKG. We can also
calculate CI probabilities by including BKG as a single class.
In this case, as shown in the following experiments, it turns
out that except SR BKG class is one of the classes that yield
small pCI

BKG probabilities. This explains why many works on
HSIC reported in the literature on HSIC have excluded BKG
from consideration. However, it does not mean that the BKG
class should not be included for classification, since it has
been shown in [39]–[41] that BKG has a significant impact
on misclassification.

It should also be noted that PA(Ci ) in (18) and PPR(Ĉ j )
in (21) are referred to as producer’s accuracy (PA) and user’s
accuracy (UA), respectively, in traditional remote sensing
community [44]–[46].

IV. DETERMINATION OF TRAINING SAMPLES FOR EACH

OF THE CLASSES OF INTEREST BY CI

A commonly used approach to selecting training samples
is random sampling, particularly for cross-validation. In this
case, it assumes that the information of all classes is equally
likely. It seems that no work is devoted to taking CI into
account for determining how many training samples should
be selected for each class, ntraining

i . This section develops an
effective means of determining ntraining

i by taking advantage
of CI probabilities.

Suppose that there are a total of N training training sam-
ples required for classification. A conventional approach is
to randomly select training samples according to a certain
percentile such as 5% and 10%. from each of the class. There
are two major problems associated with this approach. One is
the determination of how much percentile needs to be used
for training sample selection in the first place. The other
is the same chosen percentile be applied to each of classes
regardless of their information. Particularly, if a class with
a small number of data samples, it runs into an issue that
there will be no or very few training samples can be selected.
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By contrast, if a class with a large number of data samples,
it may result in over-sampling with too many training samples
selected than it needs.

The proposed approach presented in this section resolves
this issue. It first determines the total number of training sam-
ples, N training required for classification. Instead of using per-
centile, it selects the number of training samples in accordance
with their CSI probabilities. Specifically, for each class, Ci ,
the number of training samples ntraining

i , can be defined as
the number of training samples required to be sampled for
class Ci by

ntraining
i = �N training × pCI(Ci )� (23)

where �x� is the smallest integer equal to or greater than x ,
i.e., x ≤ �x� < x + 1 and pCI(Ci ) is the CI probability of Ci .
For example, if CFR in (5) is used, pCFR(Ci ) in (12) is used
to calculate (23).

As a result of (23), the total number of training samples
required to be used for classification is

N training ≤
M∑

i=1

ntraining
i ≤ N training + M. (24)

However, on some occasions, ntraining
i ≥ ni/2. In this case,

we set the upper bound, nupper
i = ni/2. On the other hand,

if ntraining
i < ni/100, then we set the lower bound, nlower

i =
ni/100. Nevertheless, these upper and lower bounds can be
chosen empirically to avoid over-sampling and under-sampling
training data. They can be adapted if there is a need.

It is known that determining the number of training samples
for classes of interest is a very challenging issue. Interestingly,
the CI in (23) indeed provides a guideline for this purpose.
Specifically, it shows by experiments conducted in Section IX
that the number of training samples selected for the four
smallest classes 9, 7, 1 and 16 in the Purdue data by EPF-based
methods in [46] must be at least 50% of total class samples
according to Table V(a). Unfortunately, such selection was
done empirically with no justification given in [46]. The CI
in (23) offers the explanation for their selection.

V. CLASS ENTROPY-DETERMINED NBS

While CI of each class determines the number of training
samples required to be selected for the class, CSI of each class
can also determine the number of bands required to be selected
for classifying the class.

According to (14), we can interpret I C S I (Ci ), which is the
CSI of the i th class, Ci , as the band rate of Ci and determine
the number of bands required for classification of the i th class
Ci as

nCSI
BS (Ci ) = �I CSI(Ci )� = �− log2 pCSI

i �. (25)

That is, it will require at least nCSI
BS (Ci ) bands to accommodate

information of Ci . Let �CSI
BS (Ci ) be the set of bands selected

for the i th class, Ci , by a BS method with its size determined
by nCSI

BS (Ci ). Then,

�CSI
BS =

⋃M

i=1
�CSI

BS (Ci ) (26)

will be the set of desired bands selected for the processed
hyperspectral image for classification and its size can be
bounded below and above by

max
1≤i≤M

nCSI
BS (Ci ) ≤ |�CSI

BS | ≤
M∑

i=1

nCSI
BS (Ci ). (27)

where |A| is the size of set A.
On the other hand, the entropy defined by (15),

H CE({Ci }M
i=1) is the CE which can be considered as band

rate/per class required to the classification of M classes and
defined by

nCE
BS = H CE({Ci }M

i=1

)
. (28)

With this interpretation, the number of bands, nBS, required
to perform M-class classification will be

nBS = ⌈
nCE

BS × M
⌉
. (29)

It should be noted that nBS in (29) is different from nCSI
BS (Ci ) in

(25) in the sense that (29) does not require calculating nCSI
BS (Ci )

for each class with nCE
BS = nCSI

BS (Ci ) for 1 ≤ i ≤ M .
Once nCSI

BS (Ci ) or nCE
BS is determined by (25) or (29) a

follow-up task is to develop a BS method to find an appropriate
band subset with its size, nBS to perform classification.

Although many BS methods have been reported and avail-
able in the literature, the two BS approaches to be presented
in the following two sections are particularly designed to
take advantage of class signatures CSI probabilities. Both
are derived from adaptive beamforming arising array signal
processing. Their idea considers each class signature vector,
denoted by d, as a desired signal and then constrains the d by
locking in its direction via a constraint. Two different ratio-
nales can be designed along with this line. One is developed
from target detection perspective by considering each class
signature vector as a desired target signal source arriving from
its specific direction via a scalar constraint. The other is from
a target classification point of view which considers all the
M class signature vectors as multiple target signal sources
arriving from M desired detections simultaneously and makes
use of a vector or matrix constraint to classify M target signal
sources as separate classes. Each of these two approaches is
described in the following two sections.

VI. SINGLE CLASS SIGNATURE-CONSTRAINED BS

The first approach is derived from the well-known sub-
target detection algorithm, called CEM developed in [27]
and [48]–[50].

Suppose that a hyperspectral image is represented by a
collection of image pixel vectors, denoted by {r1, r2, . . . , rN }
where ri = (ri1, ri2, . . . , ri L )T for 1 ≤ i ≤ N is an
L-dimensional pixel vector, N is the total number of pixels
in the image and L is the total number of spectral channels.
Furthermore, assume that d = (d1, d2, . . . , dL)T is specified
by a desired signature of interest to be used for target
detection. The goal is to find a target detector that can detect
data samples specified by the desired target signal d via a
finite impulse response (FIR) linear filter with L filter coeffi-
cients, {w1, w2, . . . , wL}, denoted by an L-dimensional vector
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w = (w1, w2, . . . , wL)T which minimizes the filter output
energy subject to the constraint dT w = wT d = 1. Let yi

denote the output of the designed FIR filter resulting from the
input ri . Then yi can be expressed by

yi =
L∑

l=1

wlril = (w)T ri = rT
i w (30)

and the average energy of the filter output is given by

(1/N)

N∑
i=1

y2
i = (1/N)

N∑
i=1

(rT
i w)

2

= wT [(1/N)

N∑
i=1

ri rT
i ]w = wT RL×Lw (31)

where R = (1/N)
∑N

i=1 ri rT
i is the sample auto-correlation

matrix of the image. The goal is to solve the following linearly
constrained optimization problem:

min
w

{wT Rw} s.t. dT w = wT d = 1 (32)

where wT Rw can be considered as either variance resulting
from signals not passing through the filter. The optimal solu-
tion to (32) is shown in [27] and [48]–[50] to be

wCEM = (dT R−1d)−1R−1d (33)

and

min
w

wR−1w = (wCEM)T R−1wCEM = (dT R−1d)−1 (34)

which is the minimum variance resulting from unwanted signal
sources impinging upon an array of sensors [51], referred to
as CEM error. With the optimal weight, wCEM specified by
(33) a filter called CEM, denoted by δCEM(r) was derived [48]
specified by

δCEM(r) = (wCEM)T r = (dT R−1d)−1(R−1d)T r. (35)

Now, assume that {bl}L
l=1 is a set of band images

representing a hyperspectral image cube where bl is the
lth spectral band represented by a column vector, bl =
(bl1, bl2, . . . , blN )T and {bli }N

i=1 is the set of all N pixels in the
lth band image, bl . In addition, we also assume that {μi }M

i=1
are class signature vectors where μi is the signature vector
representing the i th class, for example, class mean vector as
the desired signature d, i.e., d = μi .

By taking advantage of the CEM error derived from (31),
we can define the following new measure that can be used as
a criterion for SCSC-BS:

V(�BS) = (
dT

�BS
R−1

�BS
d�BS

)−1 (36)

which is the minimum variance specified by (34) but uses only
those bands in a band subset �BS. Most importantly, we can
prove by the following theorem that

{V(� j )}L
j=1 (37)

is a monotonically decreasing sequence where � j =
{bl1 , bl2 , . . . , bl j } is any j -band subset containing j bands,
bl1 , bl2 , . . . , bl j .

A. Sequential Feed Forward SCSC-BS

For each single band bl , we can replace the full band set
�BS in (33) with the single band bl to yield

V(bl) = (
μT

bl
R−1

bl
μbl

)−1 (38)

which can be used as a criterion to measure the variance
caused by data sample vectors not specified by μ using only
one single band, bl . Now, if we consider a band as a feature
vector, SFFS developed in [11] can be used to develop an
SFFS-based BS to augment bands to be selected one at a
time sequentially by (38). The resulting BS is referred to as
SF-SCSC-BS.

More specifically, SF-SCSC-BS selects the first band,
denoted by b∗

l1

b∗
l1 = arg{min

bl∈�
V(bl)} = arg

{
min
bl∈�

(
dT

bl
R−1

bl
dbl

)−1}
.

(39)

Then it selects the second band, denoted by b∗
l2

which yields
the minimal variance by removing b∗

l1
from the full band set

� as follows:
b∗

l2 = arg{ min
bl∈�−{bl1 } V(bl)}

= arg
{

min
bl∈�−{bl1

}

(
dT

bl
R−1

bl
dbl

)−1}
. (40)

The same process is repeated over and over again by con-
tinuously removing selected bands from the full band set �.
The details of implementing SF-SCSC-BS step by step are
summarized below.

SF-SCSC-BS
1. Initial condition:

Determine nBS.
Find

bl1 = arg
{

min
bl∈�

(
dT

bl
R−1

bl
dbl

)−1} (39)

�1 = {bl1}.
2. Band augmentation

bl j = arg
{

min
bl∈�c

j−1

(
dT

� j−1∪{bl }R
−1
� j−1∪{bl }d� j−1∪{bl }

)−1}

(41)

where � j−1 = {bl1 , bl2 , . . . , bl j−1} and �c
j−1 = �−� j−1.

3. If j < nBS,

� j = {bl1, bl2 , . . . , bl j } = � j−1 ∪ {bl j } (42)

and go step 2. Otherwise, BS is terminated. The final set
of selected bands is given by {bl1, bl2 , . . . , blnBS

} where
nBS is the number of bands needed to be selected.

It should be pointed out that SF-SCSC-BS does not have
to run through all bands. It can terminate the augmentation
process as long as the number of bands to selected, nBS(Ci ) is
reached.
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B. Sequential Backward SCSC-BS
In contrast to SF-SCSC-BS, we can also develop a sequen-

tial backward search (SBS), which uses leave-one-out as a
technique to select optimal feature vectors. The resulting BS
is called SB-SCSC-BS. That is, for each single band, say
lth band, bl , we consider the band subset �− bl by removing
bl from the full band set � and then replace the band set �BS
in (36) with � − bl to derive

V(� − bl) = (
μT

�−{bl }R
−1
�−{bl }μ�−{bl }

)−1
. (43)

Specifically, the band which yields the maximal variance

b∗
l1 = arg{maxbl∈�V(� − {bl})}

= arg
{

maxbl∈�

(
dT

�−{bl }R
−1
�−{bl }d�−{bl }

)−1} (44)

will be selected as the first band, denoted by b∗
l1

to be the
most significant band since the variance in (44) produced the
maximal variance if b∗

l1
is removed from �. Now let �1 =

� − {bl1}. Then the second band which yields the maximal
variance again

b∗
l2 = arg{ min

�1−{bl }
V(�1−bl)}

= arg
{

min
�1−{bl }

(
dT

�1−{bl }R
−1
�1−{bl }d�1−{bl }

)−1} (45)

then selected as the second band, b∗
l2

. The same process
is repeated over and over again by continuously removing
selected bands from the full band set �. The resulting algo-
rithm is called SB-SCSC-BS described as follows.

SB-SCSC-BS
1. Initial Condition:

Determine nBS.
Find

bl1 = arg{max
bl∈�

(dT
�−{bl }R

−1
�−{bl }d�−{bl })−1} (44)

�1 = {l1}.
2. Band Reduction

bl j = arg{ max
bl∈�c

j−1

(dT
�−(� j−1∪{bl })R

−1
�−(� j−1∪{bl })

d�−(� j−1∪{bl }))−1} (46)

where � j−1 = {bl1 , bl2 , . . . , bl j−1} and �c
j−1 = �−� j−1.

3. If j < nBS,

� j = {bl1, bl2 , . . . , bl j } = � j−1 ∪ {bl j } (47)

and go step 2. Otherwise, BS is terminated. The final set
of selected bands is given by {bl1, bl2 , . . . , blnBS

} where
nBS is the number of bands needed to be selected.

It should be noted that SB-SCSC-BS is different
from SF-SCSC-BS in two different aspects. First of all,
SB-SCSC-BS ranks all bands individually compared to
SF-SCSC-BS which augments selected bands one at a time
using (39). Second, SB-SCSC-BS uses the sample correlation
matrix formed by data sample vectors using all bands except
the bands already selected, R�−� j , while SF-SCSC-BS only

uses the selected bands in � j to form the sample correlation
matrix R� j .

VII. MULTIPLE CLASS SIGNATURES-CONSTRAINED BS

The SCSC-BS presented in Section VI is designed to select
an optimal subset of bands, �CSI

BS (Ci ) for each individual class
Ci according to the number of bands, nCSI

BS (Ci ) determined
by its CSI of the i th class signature μi . As a result, for any
two different classes, Ci and C j with their class signatures
μi and μ j , their nCSI

BS (Ci ) and nCSI
BS (C j ) will be different and

so are their selected band subsets, �i and � j . The final band
subset used for classification will be determined by the union
of their selected band subsets. Unlike SCSC-BS, this section
develops a MCSC-BS which selects bands for all classes not
custom-designed for a particular class. Two key features that
differentiate MCSC-BS from SCSC-BS are: 1) criterion to
determine the number of bands, which is CE compared to
CSI used by SCSC-BS and 2) constrains all class signatures
simultaneously as opposed to SCSC-BS which constrains
single class signature one for each class. Accordingly, CEM
used to derive SCSC-BS cannot be directly applicable to
MCSC-BS. Fortunately, another well-known target detection
algorithm, called target-constrained interference-minimized
filter (TCIMF) developed in [52] which has also been recently
developed as multiple-class classification algorithm [40], [41]
can be used to replace CEM for this purpose.

Suppose that μ1,μ2, . . . ,μM are M specific class signa-
tures of interest, which can be either provided by a priori
knowledge or obtained by a posteriori knowledge, training
samples, etc., from class knowledge. Suppose that {ri }N

i=1 is
the set of data sample vectors in a hyperspectral image where
ri = (ri1, ri2, . . . , ri L )T is the i th L-dimensional data sample
vector and L is the total number of spectral bands.

Now, we interpret each of μ1,μ2, . . . ,μM as a desired
signal arrival direction in adaptive beamforming in [50] and
let DM = [μ1 μ2 · · ·μM ] be an L × M class signature matrix
where L is the total number of band. Assume that an FIR
linear filter is specified by L filter coefficients L × M , denoted
by an L-dimensional vector L × M . The LCMV problem
considered in [27], [50], and [51] can be later reformulated
as the following M-class constrained optimization problem:

min
w

{wT Rw} (48)

s.t. (DM )T w = cM (49)

where cM = (c1, c2, . . . , cM )T is an M-dimensional constraint
vector for a general purpose and R = (1/N)

∑N
i=1 ri rT

i is the
sample correlation matrix of size L × L. It should be noted
that each of M constraints, c1, c2, . . . , cM , in (49) is used
to impose on a particular class, i.e., the j th constraint, c j is
imposed on the j th class, C j and chosen to be any arbitrary
M-dimensional vector. For example, in adaptive beamforming
of array signal processing cM is only used to lock signal
arrivals in M desired directions. For simplicity, we can choose
cM to be the M-dimensional unity vector with ones in
all the M components, 1M = (1, . . . , 1︸︷︷︸ j

, · · · , 1︸︷︷︸M
)T .

In LCMV, these M signal arrival directions are specified by
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M class signatures. Hence, we can also use the M-dimensional
unity vector to constrain the class signature matrix DM . In this
case, the optimal solution to (48) and (49) with cM replaced
by 1M is solved by

w∗ = R−1DM ((DM )T R−1DM )−11M (50)

where (DM )T R−1DM is an M × M matrix. Substituting (50)
into (48) yields

(w∗)T Rw∗ = (1M)T ((DM )T R−1DM )−11M (51)

which can be considered as a generalization of (34).
Let {ri

l }N
i=1 be the total number of data sample vectors with

the first l bands. Now, we consider to reformulate (48) and
(49) using a partial band subset, �l = {Bb1, Bb2 , · · · , Bbl }
instead of the full band set � = {B1, B2, . . . , BL } and

R�l = 1

N

N∑
i=1

ri
l

(
ri

l

)T (52)

is the sample correlation matrix using a partial band subset
consisting of the first l band images. For simplicity of nota-
tion, let �l = {B1, B2, . . . , Bl } = {Bb1, Bb2, · · · , Bbl } (50)
becomes

(
w∗

�l

)T R�l w
∗
�l

= (1M)T ((
DM

�l

)T R−1
�l

DM
�l

)−11M . (53)

By virtue of (48) and (49), two MCSC-BS algorithms can
also be derived in a similar manner that SF-SCSC-BS and
SB-SCSC-BS are derived in Sections VI-A and VI-B.

A. Sequential Feed Forward MCSC-BS
Similar to SF-SCSC-BS the following LCMV-based

SF-MCSC-BS augment selected bands one at a time sequen-
tially based on (51) in a feed-forward manner.

SF-MCSC-BS
1. Initial condition

Determine nBS.
Find the first band

Bl1 = arg{min
Bl∈�

(1M )T ((DM
Bl

)T R−1
Bl

DM
Bl

)−11M } (54)

where RBl = 1
N

∑N
i=1 (r i

l )
2

Let �1 = {l1}.
2. Band Augmentation by SFBS:

Bl j = arg
{

min
Bl∈�c

j−1

(
1M)T (

(DM )T R−1
� j−1∪{Bl }D

M)−11M}

(55)

where �c
j−1 = � − � j−1.

3. If j < nBS,

� j = {Bl1 , Bl2 , . . . , Bl j } = � j−1 ∪ {Bl j } (56)

and go to step 2. Otherwise, BS is terminated. The final
set of selected bands is given by �nBS .

B. Sequential Backward MCSC-BS
In analogy with SB-SCSC-BS, we can replace �l in (53)

with �c
l = � − �l to derive

(
w∗

�c
l

)T R�c
l
w∗

�c
l
= (1M )T ((

DM
�c

l

)T R−1
�c

l
DM

�c
l

)−11M (57)

which measures the maximal variance caused by removing
the band image Bl from �. The resulting BS is referred to as
SB-MCSC-BS described in the following algorithm.

SB-MCSC-BS
1. Initial condition:

Determine nBS.
Find

Bl1 = arg{max
Bl∈�

(1M )T ((DM
�−{Bl })

T R−1
�−{Bl }D

M
�−{Bl })

−11M }
(58)

�1 = {Bl1}.
2. BS by SBBS

Bl j = arg
{

max
Bl∈�c

j−1

(
1M)T ((

DM
�−{Bl }

)T R−1
�−(� j−1∪{Bl })

DM
�−{Bl }

)−11M}
(59)

where � j−1 = {Bl1 , Bl2 , . . . , Bl j−1} and �c
j−1 = � −

� j−1.

3. If j < nBS,

� j = {Bl1 , Bl2 , . . . , Bl j } = � j−1 ∪ {Bl j } (60)

and go to step 2. Otherwise, BS is terminated. The final
set of selected bands is given by �nBS .

Finally, the discussions on the difference between
SB-SCSC-BS and SF-SCSC-BS made at the end of Section VI
can also be applied to SB-MCSC-BS and SF-MCSC-BS.

VIII. REAL IMAGE EXPERIMENTS

Three popular and widely used real hyperspectral images,
available on the website http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes, were used
for experiments, Purdue Indiana Indian Pines, Salinas, Univer-
sity of Pavia, Italy.

A. Purdue’s Indiana Indian Pines
The first real image to be used for experiments is an

agriculture scene. It is a well-known Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) image scene, Purdue Indiana
Indian Pine test site shown in Fig. 2(a), its ground truth
map in Fig. 2(b) along with different classes highlighted
by various colors in Fig. 2(c). Table I also tabulates all
the specific types of 16 classes with the number of data
samples in parentheses collected for each class. It has a size
of 145 × 145 pixel vectors taken from an area of mixed
agriculture and forestry in Northwestern Indiana, USA, with
details of band and wavelength is given in the caption.
The data set to be used for experiments is obtained from
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Fig. 2. AVIRIS image scene: Purdue Indiana Indian Pines test site. (a) Band 186 (2162.56 nm). (b) Ground truth map. (c) Classes by colors.

TABLE I

LABELS OF THE PURDUE INDIANA INDIAN PINES

Fig. 3. Ground truth of the Salinas scene with 16 classes. (a) Salinas scene.
(b) Ground truth image. (c) Classes by colors.

the website http://cobweb.ecn.purdue.edu/∼biehl/MultiSpec/
documentation.html. It was recorded in June 1992 with
220 bands with including 20 water absorption bands (bands
104–108 and 150–163, 220).

B. Salinas
The Salinas image shown in Fig. 3 is also an AVIRIS

image collected over an agriculture area in Salinas Valley,
California, and with a spatial resolution of 3.7 m per pixel
with a spectral resolution of 10 nm. The image cube has
size a of 512 × 217 × 224. This scene is very similar to
the Purdue Indiana Indian Pines scene which also includes
20 water absorption bands, 108–112, 154–167, and 224.
Fig. 3(b) and (c) shows the color composite of the Sali-
nas image and the corresponding ground truth map shown

in Fig. 3(b) along with color class labels in Fig. 3(c). Table II
tabulates the number of data samples (in parentheses) collected
for each class among all the 16 classes.

C. University of Pavia

The third hyperspectral image data shown in Fig. 4(a) was
collected by the ROSIS-03 satellite sensor over an urban area
surrounding the University of Pavia, Italy. It is the size of
610 × 340 × 115 with a spatial resolution of 1.3 m per pixel
and a spectral coverage ranging from 0.43 to 0.86 μ m with
a spectral resolution of 4 nm (12 most noisy channels were
removed before experiments). Nine classes of interest are
considered for this image. Fig. 4(b) shows its ground-truth
map along with color class labels in Fig. 4(c). Table III also
tabulates the number of data samples in parentheses collected
for each of the nine classes.

IX. DETERMINING NUMBER OF BANDS AND FINDING

BANDS BY CLASS INFORMATION

Table IV(a)–(c) tabulates CI probabilities and nCSI
BS (Ci ) of

all the classes including BKG that were calculated by WCD,
CD, SR, BCD and CFR for Purdue’s Indian Pines, Salinas
and University of Pavia, respectively, where CSI probabilities
greater than 0.1 are highlighted for comparison. As shown
in Table IV(a)–(c), small classes are generally ranked very
high by CI probabilities compared to SR which ranks large
classes with high probabilities. For example, among 16 classes
in the Purdue data each of the five smallest classes, class 9
(20 samples), class 7 (28 samples), class 1 (46 samples),
class 16 (93 samples) and class 13 (205 samples) is ranked
with CSI probabilities greater than 0.1 (boldfaced) by at least
two of four CI measures as opposed to class 11 (2455 sam-
ples), class 2 (1428 samples) and class 14 (1265 samples)
which are ranked by SR with probabilities greater than 0.1 but

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 13,2023 at 12:13:56 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: CI-BASED BS FOR HSIC 8405

TABLE II

LABELS OF SALINAS

Fig. 4. Ground truth of the University of Pavia scene with nine classes. (a) University of Pavia scene. (b) Ground truth map. (c) Classes by colors.

TABLE III

LABELS OF PAVIA

very low probabilities by all the four CI measures. Using the
CI probabilities in Table IV(a)–(c) and (19) and (20), we can
further find the number of training samples required for each
class.

Table V(a)–(c) tabulates the number of training and test
samples for each of the three image scenes used for exper-
iments. Interestingly, CI IC except SR provides a guideline
for how to determine the number of training samples for each
class. For example, according to Table V(a), the number of
training samples selected for the four smallest classes in the
Purdue data (i.e., classes 9, 7, 1, 16) with less than 100 data
samples was determined by CI IC, WCD, CD, BCD and CFR
as 50% of each class size. Interestingly, the same numbers of
training samples selected for these four classes by EPF in [47]
happened to be also 50% of each class size. But unfortunately,
there was no explanation given in [47]. Our proposed CI IC
in Table V(a) indeed offer such justification.

Table VI calculates class entropies of Purdue’s Indian Pines,
Salinas and University of Pavia. Table VII calculates the
number of bands, nBS, by class entropies in Table VI with

BKG excluded and included where nBS is determined by
nCSI

BS (Ci ) in Table IV(a)–(c) and nBS = �nCE
BS × M� with

�x� defined as the smallest integer ≥ x . According to
nCSI

BS (Ci ) found in Table IV(a)–(c) and nBS = �nCE
BS × M�

in Table VII with BKG included, Table VIII(a)–(c) list bands
selected by SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS and
SB-MCSC-BS using three intraclass ICs, WCD, CD, SR and
two interclass ICs, BCD, CFR all the three image scenes with
and without BKG.

X. EXPERIMENTS CONDUCTED ON

PURDUE’S INDIAN PINES SCENE

The experiments conducted in this section constitute a very
important part of this paper since the results provide many
interesting findings that have never been explored in the
past and reported in the literature. It is also noted that CI
is completely determined by data itself, not by a classifier.
Hence, the conclusions drawn from the conducted experiments
can also be applied to any classifier. In addition, for the
three image scenes in Section VIII, the same experiments
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TABLE IV

(a) CI PROBABILITIES AND nCSI
BS (Ci ) CALCULATED BY BCD, WCD, CD, CFR, AND SR USING (25) FOR PURDUE’S INDIAN PINES.

(b) CI PROBABILITIES AND nCSI
BS (Ci ) CALCULATED BY BCD, WCD, CD, CFR, AND SR USING (25) FOR SALINAS.

(c) CI PROBABILITIES AND nCSI
BS (Ci ) CALCULATED BY BCD, WCD, CD, CFR, AND SR

USING (25) FOR UNIVERSITY OF PAVIA

conducted for one image scene can also be applied to the
other two image scenes. Hence, in this section, we will only
focus our experiments and discussions on the Purdue Indiana

Indian Pines scene. For those who are interested in Salinas and
University of Pavia scenes the results in Tables IV(b) and (c),
V(b) and (c), and VI and VII and the bands selected
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TABLE V

AQ:11 (a) NUMBERS OF TRAINING AND TEST SAMPLES FOR PURDUE’S DATA. (b) NUMBERS OF TRAINING AND TEST SAMPLES FOR SALINAS.
(c) NUMBERS OF TRAINING AND TEST SAMPLES FOR UNIVERSITY OF PAVIA
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TABLE VI

CLASS ENTROPIES CALCULATED BY WCD, CD, SR, BCD, AND CFR FOR PURDUE’S INDIAN PINES, SALINAS, AND UNIVERSITY OF PAVIA

TABLE VII

�nCE
BS × M� DETERMINED BY CLASS ENTROPIES CALCULATED BY WCD, CD, SR, BCD, AND CFR

FOR PURDUE’S INDIAN PINES, SALINAS, AND UNIVERSITY OF PAVIA

in Table VIII(b) and (c) should provide sufficient information
for them to carry out all details of necessary experiments
without any difficulty. Since similar conclusions can also be
drawn, their results are not included here due to limited space.

According to [47], a comprehensive and comparative analy-
sis was conducted among the most existing spectral-spatial
techniques and the four EPF-based techniques, EPF-B-c,
EPF-G-c, EPF-B-g, and EPF-G-g were shown to be the
best classification techniques where “B” and “G” are used
to specify bilateral filter and guided filter, respectively, and
“g” and “c” indicate that the first principal component and
color composite of three principal components are used as
reference images [47]. Accordingly, in the following exper-
iments the four EPF-based methods in [47], which can be
considered as classification without CI (w/o CI) will be
evaluated in comparison with the five proposed CI IC in
terms of CI-overall accuracy (CI-OA). PCI-OA in (20) along
with the commonly used AA, PAA in (19) OA, PO A in (17)
and PC I−P R in (22). The computer environment used for
experiments was specified by Intel Xeon E5-2650 2.6 GHz,
64 GB, 1600 MHz.

As for BS, there are many techniques have been proposed in
the literature. A detailed comparative study and analysis was
conducted in [25] where most updated and recent BS methods
were discussed and compared for HSIC using PO A and PP R

as criteria to measure the classification performance. To avoid
unnecessary redundant experiments, the results in [25] were
used as references to compare with the results obtained by
our proposed methods. Nevertheless, it should be noted that
the results of PP R in [39] and [41] were calculated with BKG
excluded, in which case, the values of PP R in [39] and [40]
is generally higher than PP R with BKG included calculated
in the following experiments. The prime reason is that the
two classifiers (ICEM and ILCMV) and two BS methods
(SCSC-BS and MSCS-BS) are all designed by inverting the
sample correlation matrix R to effectively suppress BKG com-
pared to EPF-based which cannot be shown in the experiments.

Now, we implemented ICEM and ILCMV using bands
selected in Table VIII(a)–(c) to perform classification.
Table IX tabulates the PA , PO A , PAA , PP R , PC I−O A ,
and PC I−P R calculated by ICEM and ILCMV using bands
selected by SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, and
SB-MCSC-BS for Purdue’s data where the three intraclass
ICs, WCD, CD, SR and two interclass ICs, BCD, CFR were
used as CI measures to select bands and calculate PC I−O A

and PC I−P R . Table X also tabulates the PA, PO A , PAA ,
PP R , PC I−O A , and PC I−P R calculated by four EPF-based
methods [47], ICEM and ILCMV using full bands for the
Purdue data. Comparing the results in Table IX(a)–(e) to
that in Table X, ICEM and ILCMV using bands selected
by SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, SB-MCSC-
BS in Table VIII(a) generally performed better than their
counterparts using full bands in all the three measures, PAA ,
PO A , and PP R . From Table X, ICEM and ILCMV clearly
outperformed four EPF-based methods in terms of all the three
measures, PAA , PO A , and PP R , specifically, PO A (ranging
from 5% to 7% improvements) and PP R (nearly 37% improve-
ment). For further comparison, the results in [25, Table 3] were
used for comparison where the highest values of PO A obtained
by using bands selected by various BS methods ranged from
94.91 to 95.89. Table IX(a)–(e) shows that the values of
PCI-OA generally performed better than PO A without factoring
CI into PO A calculation, i.e., with CI = SR. Specifically,
the PCI-OA produced by the four CI IC, WCD, CD, BCD, and
CFR were higher than 97% and were better than PO A obtained
in [25, Table 3] with 1.5% to 2.5% improvements. It is also
noted from Table X that the performance of the EPF-based
methods was much worse than that reported in [47] because
the results in Table X were obtained by including all 20 water
bands which were removed in [46]. As for PP R its values in
Table IX(a)–(e) were lower than the values in [25, Table 3].
This is also because the PP R calculated in Table III was only
based on 16 classes according to the ground truth without
including BKG to account for its effect on 16 classes.
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TABLE VIII

(a) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(a) AND SF-MCSC-BS AND SB-MCSC-BS USING CE
IN TABLE VII FOR PURDUE’S DATA. (b) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(b)

AND SF-MCSC-BS AND SB-MCSC-BS USING CE IN TABLE VII FOR SALINAS. (c) BANDS SELECTED BY

SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(c) AND SF-MCSC-BS AND

SB-MCSC-BS USING CE IN TABLE VII FOR UNIVERSITY OF PAVIA
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TABLE VIII

(Continued.) (a) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(a) AND SF-MCSC-BS AND SB-MCSC-BS USING

CE IN TABLE VII FOR PURDUE’S DATA. (b) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(b) AND

SF-MCSC-BS AND SB-MCSC-BS USING CE IN TABLE VII FOR SALINAS. (c) BANDS SELECTED BY SF-SCSC-BS

AND SB-SCSC-BS USING CSI IN TABLE IV(c) AND SF-MCSC-BS AND SB-MCSC-BS

USING CE IN TABLE VII FOR UNIVERSITY OF PAVIA

Several intriguing and interesting conclusions can be made
on observations from Tables IX(a)–(e) and X.

1) In general, ICEM performed better than ILCMV with
two major reasons. One is that ICEM is designed to

classify one class at a time by constraining a single
class signature while suppressing all other class sig-
natures compared to ILCMV which classify all classes
of interest simultaneously by constraining all the class
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TABLE VIII

(Continued.) (a) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(a) AND SF-MCSC-BS AND SB-MCSC-BS USING

CE IN TABLE VII FOR PURDUE’S DATA. (b) BANDS SELECTED BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(b)

AND SF-MCSC-BS AND SB-MCSC-BS USING CE IN TABLE VII FOR SALINAS. (c) BANDS SELECTED

BY SF-SCSC-BS AND SB-SCSC-BS USING CSI IN TABLE IV(c) AND SF-MCSC-BS

AND SB-MCSC-BS USING CE IN TABLE VII FOR UNIVERSITY OF PAVIA

signatures and only suppressing BKG. As a result,
ICEM suppressed effects resulting from BKG and all
classes other than the particular class which is currently
being classified. The other is that the bands selected
by SCSC-BS are specifically designed for a particular
class to be classified, whereas the bands selected by
MCSC-BS are designed for all the classes of interest,
not a particular class as SCSC-BS does.

2) There are three different versions of implementing
ICEM. One is implemented in [39] which updates the
mean of the class currently being classified and feeds
back its Gaussian filtered classification map after each
iteration. In order to improve its performance, it must
use BS and nonlinear expansion (BSNE) as it was done
in [39]. A second version is to retain the spatial locations
of ground truth class samples and update the mean of
the class currently being classified and feeds back its
Gaussian filtered classification map after each iteration.
A third version is the same as the second version but
does not feed back the Gaussian filtered classification
map for each class after each iteration as the second
version does. Instead, it waits until all the classes are
processed by CEM and feeds back all of the Gaussian
filtered CEM-classification maps after each iteration.

In this case, the ICEM works like ILCMV except that the
ILCMV classifies all the classes together simultaneously
compared to ICEM which classifies one class at a time.
Since both versions use the ground truth to update class
means, it does not need BSNE. It also turns out that
the best version of ICEM is the 3rd version which
implements CEM in a similar manner as ILCMV does.
In this case, this version of ICEM can be viewed as a
class-independent version of ILCMV. The worst version
is the 1st version which updates classified samples not
ground truth samples after each iteration. Accordingly,
this version of ICEM can be considered as a posteriori
ICEM as opposed to the 2nd and 3rd versions which
can be regarded as a priori ICEM.

3) Interestingly, if we examine Tables IX(a)–(e) and X,
the values of PO A via all the four CI measures along
with SR for all classes are very high. But this is not
true for PP R . As a matter of fact, PP R using the five CI
measures performed comparably for larger classes such
as the three largest classes, 2, 11, and 14 but completely
in an opposite manner for smaller classes such as the
three smallest classes, 1, 7, and 9, all of which have less
than 50 data samples, that is, the smaller the class is,
the lower the PP R is. These results demonstrate that PP R
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TABLE IX

(a) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS,
SF-MCSC-BS, AND SB-MCSC-BS WITH WCD USED AS THE CI MEASURE FOR PURDUE’S DATA. (b) PA , PO A , PC I−O A , PAA , PP R

AND PC I−P R CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND

SB-MCSC-BS WITH CD USED AS THE CI MEASURE FOR PURDUE’S DATA. (c) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R
CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND

SB-MCSC-BS WITH SR USED AS THE CI MEASURE FOR PURDUE’S DATA. (d) PA , PO A , PC I−O A , PAA , PP R AND

PC I−P R CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS,
SF-MCSC-BS, AND SB-MCSC-BS WITH BCD USED AS THE CI MEASURE FOR PURDUE’S DATA. (e) PA ,
PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV BANDS SELECTED BY

SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND SB-MCSC-BS WITH CFR USED AS THE CI MEASURE

FOR PURDUE’S DATA
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TABLE IX

(Continued.) (a) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS,

SB-SCSC-BS, SF-MCSC-BS, AND SB-MCSC-BS WITH WCD USED AS THE CI MEASURE FOR PURDUE’S DATA. (b) PA , PO A , PC I−O A ,

PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS,

AND SB-MCSC-BS WITH CD USED AS THE CI MEASURE FOR PURDUE’S DATA. (c) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED

BY ICEM AND ILCMV USING BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND SB-MCSC-BS WITH SR USED AS

THE CI MEASURE FOR PURDUE’S DATA. (d) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV USING

BANDS SELECTED BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND SB-MCSC-BS WITH BCD USED AS THE CI MEASURE FOR

PURDUE’S DATA. (e) PA , PO A , PC I−O A , PAA , PP R AND PC I−P R CALCULATED BY ICEM AND ILCMV BANDS SELECTED

BY SF-SCSC-BS, SB-SCSC-BS, SF-MCSC-BS, AND SB-MCSC-BS WITH CFR USED AS THE

CI MEASURE FOR PURDUE’S DATA
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TABLE X

PA , PO A , PAA , AND PP R CALCULATED BY FOUR EPF-BASED METHODS, ICEM, AND ILCMV USING FULL BANDS FOR PURDUE’S INDIAN PINES

can be used in conjunction with CI measures and SR to
dictate performance of a classifier on smaller classes,
while PO A cannot.

4) Furthermore, by taking advantage of CI probabilities,
PC I−O A can improve PO A . In contrast, PC I−P R is
worse than PP R by adding more weights to the smaller
classes and less weights to larger classes compared to
PP R which adds more weights to larger classes than
that to smaller classes. This implies that PC I−P R makes
the difference between larger classes and smaller classes
even more pronounced, a task which PO A cannot do.

5) It should be noted that the performance of the EPF-based
methods was much worse than reported in [47] because
full bands were in our experiments compared to [46]
which removed water bands. Also, it has been shown
in [39]–[41] that EPF-based methods performed very
well in PO A but very poorly in PP R . In addition,
EPF-based methods cannot be further improved by BS
due to their use of principal component analysis (PCA).

XI. CONCLUSION

This paper presents a CI-based BS approach to HSIC which
is quite different from conventional BS approaches reported in
the literature. It takes advantage of information theory to define
two new concepts. One is CI which can be used to determine
the number of training samples required to be selected for
each class as well as to weigh classes of interest. The other
is CSI which can be used to determine the number of bands
to be selected for each of the classes. In order to measure CI,
five CI-based IC are also introduced, WCD, CD, SR, BCD,
and CFR, all of which can be grouped into two categories,
intraclass IC and interclass IC. These five ICs are then used to
calculate CSI for each class that determines how many bands
required to be selected nCSI

BS (Ci ) for each individual class and
nCE

BS for all classes. To select desired bands for various classes,
two types of BS methods are custom-designed, SCSC-BS
to select nCSI

BS (Ci ) bands for each class, the i th class Ci

and MCSC-BS to select nBS = �nCE
BS × M� bands for all

classes. Finally, to evaluate classification performance five
classification measures, AA, OA, PR along with two CI-based
criteria, CI-OA and CI-PR are used for performance analysis.
The experimental results show that CI-based BS can improve
classification using CSI-selected bands without using full
bands.

As a conclusion, we summarize important contributions
made in this paper as follows.

1) New concepts of CI and CSI are introduced for classi-
fication.

2) New class information measures, BCD, WCD, CD, and
CFR are developed for classification despite that BCD,
WCD and FR have been used in pattern classification.
However, their use to measure CI is new and has never
been explored in the classification literature. In particu-
lar, these five class measures can be grouped into two
categories, intraclass IC in the sense of class variability
and interclass IC in the sense of class separability.

3) Using CI to allocate the number of training samples for
each class is completely new.

4) Using CSI to determine the number of bands to be
selected for each class and using CE to determine the
number of bands for all classes is also completely new.

5) Based on CSI- and CE-determined number of bands, two
new separate BS algorithms, SCSC-BS and MCSC-BS
are particularly designed for classification.

6) Using CI-calculated probabilities as weights can extend
the traditional AA and OA to CI-weighted OA
(PC I−O A) which can improve classification accuracy.
No similar work has been reported in the classification
literature.
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