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ABSTRACT 

 

With the development and progress of deep learning, the use 

of deep learning technology for hyperspectral target detection 

has achieved excellent results. However, most deep-learning-

based methods do not effectively suppress background. This 

paper presents a contrastive learning-based hyperspectral 

target detection (CLHTD) for this purpose. The positive and 

negative pairs are constructed through data augmentation, 

and the backbone is used to extract the representative vectors 

of the augmented samples. Then the representative vectors 

are mapped to the spectral and the cluster contrast space using 

their corresponding contrastive head, respectively. In the 

contrast space, the similarity and dissimilarity of spectra and 

clusters are learned by maximizing the similarity of positive 

pairs while minimizing the similarity of negative pairs, to 

increase the difference between the representative vectors of 

target and background. Finally, the detection result is 

obtained through the cosine distance. Experimental results 

illustrate that the proposed CLHTD algorithm can achieve 

superior performances for hyperspectral target detection. 

 

Index Terms— Target Detection, contrastive learning, 

hyperspectral Imagery. 

 

1. INTRODUCTION 

 

Hyperspectral image (HSI) obtains the three-dimensional 

spectral image of the observation scene through the imaging 

spectrometer, including both spatial and spectral dimensions, 

and each pixel in the spatial space contains tens to hundreds 

of bands of spectral information. Given this advantage, target 

detection has been a major research area in hyperspectral 

image to effectively identify and distinguish substances by 

details of spectral information. 

Recently, deep learning has been gradually applied to 

hyperspectral target detection. In [1], Li et al. adopted the 

idea of transfer learning, using a reference HSI with labeled 

information to expand the training samples by pairing 

between same classes of pixels and between different classes 

of pixels. The training samples were used to train the deep 1D 

convolutional neural network (CNN), and the trained model 

of the deep 1D CNN was used to detect the target. In [2], 

Zhang et al. designed U-AE structure to generate potential 

target samples based on the idea of U-net. According to the 

known target samples, the background samples which are 

significantly different from the target are found by linear 

prediction algorithm. After pairing the target pixels with the 

target pixels and the target pixels with the background pixels, 

the training samples are expanded to train a 16 layers 1D deep 

CNN. In [3], it constructed the adversarial automatic encoder 

(AAE) based on the idea of generating adversarial network. 

The Constraint energy minimization algorithm was used to 

filter the HSI to obtain the background samples. The 

background samples were sent into AAE to learn until 

convergence. The loss function was added with the target 

suppression constraint loss to suppress the AAE 

reconstruction target. The HIS to be detected is reconstructed 

into a new HIS through the trained AAE, and the background 

reconstruction of the reconstructed HSI is good, but the 

difference of target reconstruction is large. In [4], a spectral 

regularization unsupervised network was designed to 

introduce spectral regularization into the autoencoder (AE) 

and the variational autoencoder (VAE) to enable hidden 

nodes to better represent the spectral information in HSI. The 

specific nodes that can distinguish the target from the 

background are selected based on the spectral angle 

difference between the a priori target and the input pixel 

spectra, and the discriminative map is obtained by adaptively 

weighting the feature maps output from the selected specific 

nodes through a structure tensor-based adaptive weighting 

method and suppressing the background and local smoothing 

by morphological open operation with guided filtering to 

obtain the final detection results. 

In this paper, a novel hyperspectral target detection 

algorithm named as CLHTD is proposed to better distinguish 

the target from the background. As shown in Fig. 1, the 

proposed CLHTD algorithm trains a backbone that can 

distinguish spectral similarity-dissimilarity through 

contrastive learning [5]. Then, the backbone is used to extract 

representative vectors of the HSI to be detected and the prior 

target spectrum. Finally, the similarity between the spectrum 

of each pixel in the HSI to be detected and the spectrum of 

prior target is judged by cosine similarity according to the 

representative vector, and the detection result is obtained. 

 

2. PROPOSED TARGET DETECTION METHOD 

 

2.1. Data augmentation 
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Since contrastive learning requires positive and negative 

sample pairs for training, and the HSI to be detected does not 

have any other label information except the prior target 

spectrum, so through data augmentation, two augmented 

samples of the HSI to be detected are obtained. Two 

augmented samples of the same pixel spectrum are paired to 

form a positive pair, and the augmented samples of different 

pixels are paired to form negative pairs. The data 

augmentation method is as follows. 

Firstly, due to the strong correlation between the adjacent 

bands of HSI, band sampling is performed on the HSI 
H W B X  to be detected, and two HSI composed of odd 

and even bands are obtained, denoted as oddH W B

odd

 
X  and 

evenH W B

even

 
X , respectively. Then the AAE is trained 

with oddX  and evenX , respectively. The training of AAE 

includes two parts: the autoencoder network and the 

adversarial network. During the autoencoder network 

training phase, the encoder  1G   and the decoder  2G   

make up the autoencoder network. The autoencoder 

network is optimized by minimizing the reconstruction 

loss. The reconstruction loss adopts the mean square error 

loss, which is defined as 

   
2

2 1
2

1

1 H W

r i i

i

L G G
H W





 


 x x   (1) 

In the training phase of the adversarial network, the 

generator G1(∙)  (encoder) and discriminator D(∙)  form the 

adversarial network. The goal of adversarial training is to 

make latent code output by generator  1G   get closer to 

prior distribution  p z , while making the discriminator 

 D   to better distinguish the feature vector from the latent 

code output of the generator or the vector sampled from the 

prior distribution. The prior distribution  p z  is a 

multivariate Gaussian distribution. The overall optimization 

goal of the adversarial training can be expressed as 

         
1

1min max log log 1
datap p

G D
E D E D G      z z x x

z x  (2) 

When the training is complete, two corresponding 

encoders  1AAEg   and  2AAEg   can be obtained. Regarding 

 1AAEg   and  2AAEg   as transformation functions that play 

the role of data augmentation. Then using them for data 

augmentation, the process can be expressed as follows: 

  1

a

AAE oddgD X   (3) 

  2

b

AAE evengD X   (4) 

where  
1 2, , ,

H W La a a a

H W

 


   D d d d  and 

 
1 2, , ,

H W Lb b b b

H W

 


   D d d d  are the final data 

augmentation samples. 

 
2.2. Contrastive head 

 

The contrastive head includes two parts, named as spectrum 

contrastive head and cluster contrastive head. The spectrum 

contrastive head is a two-layer non-linear multilayer 

perceptron (MLP), denoted as  Sg  , where the number of 

neurons in each layer is the same. The cluster contrastive 

head is also a MLP with two layers, denoted as  cg  , where 

the number of neurons in the second layer represents the 

number of clusters. To separate target and background, set the 

number of clusters to 2. In contrastive learning, formally, N 

augmented samples are taken from the same position in 
 H W La  

D  and  H W Lb  
D  respectively, expressed 

as 
1 , ,a a a N L

batch N

   D d d  and 

1 , ,b b b N L

batch N

   D d d . Then the backbone is used to 

extract representation vectors of 
a

batchD  and 
b

batchD , which can 

Band sampling

Odd bands

Even bands

AAE1

Encoder

AAE2

Encoder

 1AAEg

 2AAEg

H W B X

oddH W B

odd

 
X

evenH W B

even

 
X

Data Agumentation

Backbone

Backbone

F

C

F

C

F

C
F

C

spectralL

clusterL

Spectrum Contrastive Head

Cluster Contrastive Head

Weight Sharing

 H W La  
D

 H W Lb  
D

 
Fig. 1. The framework of the proposed hyperspectral target detection algorithm 
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be expressed as / 4

1 , ,a a a N L

N

   H h h  and 

/ 4

1 , ,b b b N L

N

   H h h . The backbone is a deep residual 

convolutional neural network with spectral residual channel 

attention, which is used to extract representation vectors from 

augmented data samples. For the spectrum contrastive head, 

the representation vector a

ih  is paired with another 

augmented sample of the pixel spectrum at the same position 

through the representation b

ih  extracted by the backbone to 

form a positive pair  ,a b

i ih h , and the remaining 

representation vectors form negative pairs. Then the spectrum 

contrastive head  Sg   is used to map the representations 

extracted by the backbone to the spectral contrast space via 

 a a

i s igz h  and  b b

i s igz h . The similarity between the 

pairs is measured by cosine distance, which can be expressed 

as 

  
  1 2

1 2

1 2

T

,

c c

i jc c

i j c c

i j

s 
z z

z z
z z

  (5) 

where  1 2, ,c c a b  and  , 1,i j N . The spectral contrast 

loss for the representation vector a

ih  can be defined as 

 
  

     1

exp , /
log

exp , / exp , /

a b

i i sa

i N a a a b

i j s i j sj

s
l

s s



 


 
 
 

z z

z z z z
(6) 

where 
s  is the spectral temperature parameter to control the 

softness. The spectral contrast loss is calculated for each 

representation vector, and the loss function of the spectrum 

contrastive head is obtained as 

  
1

1

2

N
a b

spectral i i

i

L l l
N 

    (7) 

For the cluster contrastive head, the cluster contrastive 

head  cg   is used to map the representations extracted by 

the backbone to cluster contrast space via  a a

cgY H  and 

 b b

cgY H . The dimension of the row vectors 
a

iy  and b

iy  

in the feature matrices 2

1 , ,a a a N

N

   Y y y  and 

2

1 , ,b b b N

N

   Y y y  are both 2. It can be considered 

that the jth element in the row vectors 
a

iy  and 
b

iy  represents  

the probability that the sample belongs to the jth cluster. As a 

result, from the perspective of feature matrix columns, let 
a

iy  

and 
b

iy  represent the ith column in feature matrixes a
Y and 

b
Y , respectively. Then the 

a

iy  is paired with 
b

iy  to positive 

cluster pair  ,a b

i iy y , while leaving other 2 pairs to be 

negative. To distinguish cluster 
a

iy  from all other clusters 

except 
b

iy , the cluster contrast loss is defined as  

  
     

2

1

exp , /
log

exp , / exp , /

a b

i i ca

i
a a a b

i j c i j cj

s
l

s s



 


 
 
 

y y

y y y y
(8) 

where c  is the cluster temperature parameter to control the 

softness. By traversing the target and background clusters, the 

loss function of the cluster contrastive head is  

  
2

1

1

2 2

a b

cluster i i

i

L l l


 

   (9) 

 

2.3. Objective function 

 

The spectrum contrastive head and the cluster contrastive 

head are simultaneously optimized, so that the backbone has 

the ability to distinguish between spectral similarity and 

dissimilarity. The objective function of the contrastive 

learning stage is 

 spectral clusterL L L    (10) 

After contrastive learning, the backbone is used to 

extract the representation vector of each pixel spectrum and 

the prior target spectrum in the HIS to be detected. Then the 

cosine distance is used to measure the similarity between the 

pixel spectrum in the HSI to be detected and the prior target 

spectrum, and the detection result is obtained. 

 

3. EXPERIMENT 

 

To evaluate the performance of the proposed CLHTD 

detector, several detection methods, including ACE, CEM, 

CSCR [6], ECEM [7] and CNNTD [1] are applied for 

comparison. The dataset is part of San Diego airport, 

California, USA. The spatial size is 120 120 . After 

removing low SNR and water absorption bands, 189 bands 

are reserved for hyperspectral target detection.  

Fig. 2 (a) and (b) show the pseudo color image and 

ground truth of San Diego dataset. For the proposed CLHTD 

method, data augmentation is first by sampling the odd and 

even bands, and then the two types of augmentation are 

obtained by the encoder in the trained AAE. When training 

AAE, the encoder and decoder are optimized by Adam 

optimizer, and the learning rate is set to 0.001. Then the 

generator and discriminator are trained, and the learning rate 

is set to 0.0001 and 0.00001 when SGD optimizer is used to 

optimize the generator and discriminator. The batch size and 

epoch when training the AAE are set to 240 and 20. In 

contrastive learning, the epoch, batch size, and learning rate 

are set to 100, 240, 0.05. The temperature parameter s  and 

c  are both set to 0.1. Fig. 2 (c) to (h) show the detection 

maps of different methods on the San Diego dataset. It can be 

observed that our CLHTD significantly highlights the target 
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and suppresses the background compared to other detection 

methods.  

To quantitatively analyze the detection algorithm, the 

ROC curve of  D F,P P  and ROC curve of  F ,P   are used 

to assess the detection and background suppression 

performance, as shown in Fig. 3 (a) and Fig. 3 (b), and the 

corresponding AUC value is shown in Table 1. 

By observing Fig. 3 (a) and Fig. 3 (b), it is obvious that 

the CLHTD showed superior detection and background 

suppression ability. Fig. 4 shows the separability graphs of 

detection results for six detection methods of San Diego 

dataset. The CLHTD can better separate the target from the 

background. 

 

  
(a) ROC curve of  D F,P P  (b) ROC curve of  F ,P   

Fig. 3. ROC curves of different algorithms on San Diego dataset. 

Table 1. Accuracy comparison of different methods. 
Method ACE CEM CSCR ECEM CNNTD CLHTD 

 D FP ,P
AUC  0.9558 0.9628 0.9936 0.7049 0.9580 0.9972 

 FP ,τ
AUC  0.0042 0.0385 0.2112 0.0870 0.4481 0.0058 

 

 
Fig. 4.  Separability graphs of detection results for six test methods 

based on San Diego dataset. 

 

4. CONCLUSION 

 

In this work, a hyperspectral target detection method based 

on contrastive learning is proposed. The positive and negative 

pairs are constructed through data augmentation.  In the 

contrastive learning phase, the backbone is used to extract the 

representation vector of the positive and negative pairs. Then, 

the representation vectors are mapped to the spectral contrast 

space by the spectrum contrastive head to learn spectral 

similarity and dissimilarity. At the same time, the cluster 

contrastive head maps the representation vector to the cluster 

contrast space to cluster them into two classes to increase the 

separation of the target and background. The backbone with 

the ability to distinguish spectral similarity and dissimilarity 

can then extract the representation vector of the prior target 

spectrum and the pixel spectrum in the HSI to be detected, 

and then measure the similarity by cosine distance to obtain 

target detection results. The experiments show that our 

CLHTD method is superior to other comparison detectors. 
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Fig. 2. San Diego dataset and detection maps. (a) Pseudo color 
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(g) CNNTD, (h) CLHTD 
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