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ABSTRACT

With the development and progress of deep learning, the use
of deep learning technology for hyperspectral target detection
has achieved excellent results. However, most deep-learning-
based methods do not effectively suppress background. This
paper presents a contrastive learning-based hyperspectral
target detection (CLHTD) for this purpose. The positive and
negative pairs are constructed through data augmentation,
and the backbone is used to extract the representative vectors
of the augmented samples. Then the representative vectors
are mapped to the spectral and the cluster contrast space using
their corresponding contrastive head, respectively. In the
contrast space, the similarity and dissimilarity of spectra and
clusters are learned by maximizing the similarity of positive
pairs while minimizing the similarity of negative pairs, to
increase the difference between the representative vectors of
target and background. Finally, the detection result is
obtained through the cosine distance. Experimental results
illustrate that the proposed CLHTD algorithm can achieve
superior performances for hyperspectral target detection.

Index Terms— Target Detection, contrastive learning,
hyperspectral Imagery.

1. INTRODUCTION

Hyperspectral image (HSI) obtains the three-dimensional
spectral image of the observation scene through the imaging
spectrometer, including both spatial and spectral dimensions,
and each pixel in the spatial space contains tens to hundreds
of bands of spectral information. Given this advantage, target
detection has been a major research area in hyperspectral
image to effectively identify and distinguish substances by
details of spectral information.

Recently, deep learning has been gradually applied to
hyperspectral target detection. In [1], Li et al. adopted the
idea of transfer learning, using a reference HSI with labeled
information to expand the training samples by pairing
between same classes of pixels and between different classes
of pixels. The training samples were used to train the deep 1D
convolutional neural network (CNN), and the trained model
of the deep 1D CNN was used to detect the target. In [2],
Zhang et al. designed U-AE structure to generate potential
target samples based on the idea of U-net. According to the
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known target samples, the background samples which are
significantly different from the target are found by linear
prediction algorithm. After pairing the target pixels with the
target pixels and the target pixels with the background pixels,
the training samples are expanded to train a 16 layers 1D deep
CNN. In [3], it constructed the adversarial automatic encoder
(AAE) based on the idea of generating adversarial network.
The Constraint energy minimization algorithm was used to
filter the HSI to obtain the background samples. The
background samples were sent into AAE to learn until
convergence. The loss function was added with the target
suppression constraint loss to suppress the AAE
reconstruction target. The HIS to be detected is reconstructed
into a new HIS through the trained AAE, and the background
reconstruction of the reconstructed HSI is good, but the
difference of target reconstruction is large. In [4], a spectral
regularization unsupervised network was designed to
introduce spectral regularization into the autoencoder (AE)
and the variational autoencoder (VAE) to enable hidden
nodes to better represent the spectral information in HSI. The
specific nodes that can distinguish the target from the
background are selected based on the spectral angle
difference between the a priori target and the input pixel
spectra, and the discriminative map is obtained by adaptively
weighting the feature maps output from the selected specific
nodes through a structure tensor-based adaptive weighting
method and suppressing the background and local smoothing
by morphological open operation with guided filtering to
obtain the final detection results.

In this paper, a novel hyperspectral target detection
algorithm named as CLHTD is proposed to better distinguish
the target from the background. As shown in Fig. 1, the
proposed CLHTD algorithm trains a backbone that can
distinguish ~ spectral  similarity-dissimilarity  through
contrastive learning [5]. Then, the backbone is used to extract
representative vectors of the HSI to be detected and the prior
target spectrum. Finally, the similarity between the spectrum
of each pixel in the HSI to be detected and the spectrum of
prior target is judged by cosine similarity according to the
representative vector, and the detection result is obtained.

2. PROPOSED TARGET DETECTION METHOD

2.1. Data augmentation
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Fig. 1. The framework of the proposed hyperspectral target detection algorithm

Since contrastive learning requires positive and negative
sample pairs for training, and the HSI to be detected does not
have any other label information except the prior target
spectrum, so through data augmentation, two augmented
samples of the HSI to be detected are obtained. Two
augmented samples of the same pixel spectrum are paired to
form a positive pair, and the augmented samples of different
pixels are paired to form negative pairs. The data
augmentation method is as follows.

Firstly, due to the strong correlation between the adjacent
bands of HSI, band sampling is performed on the HSI
X e R to be detected, and two HSI composed of odd

RHXWXB"dd

and even bands are obtained, denoted as X ,, € and

X e R Faa respectively. Then the AAE is trained

even

with X ,; and X, , respectively. The training of AAE
includes two parts: the autoencoder network and the
adversarial network. During the autoencoder network
training phase, the encoder G, () and the decoder G, ()

make up the autoencoder network. The autoencoder
network is optimized by minimizing the reconstruction
loss. The reconstruction loss adopts the mean square error
loss, which is defined as

1 2
L = HxW ; ||Xi —Gz(Gl (Xi))"z (H

In the training phase of the adversarial network, the
generator G, () (encoder) and discriminator D(+) form the
adversarial network. The goal of adversarial training is to

make latent code output by generator G, () get closer to
prior distribution p(z) , while making the discriminator

D() to better distinguish the feature vector from the latent

code output of the generator or the vector sampled from the
prior distribution. The prior distribution p (Z) is a

multivariate Gaussian distribution. The overall optimization
goal of the adversarial training can be expressed as

w[loeD(2)]+E,, o [log(1-D(G(x)))] @

When the training is complete, two corresponding

minmax E
G D»p P

encoders g,z () and g AAEZ(-) can be obtained. Regarding

8 uE () and g,z () as transformation functions that play

the role of data augmentation. Then using them for data
augmentation, the process can be expressed as follows:

D = 8 a1 (Xodd ) (3)

Db = gAAEZ (Xeven ) (4)

where D’ = [dl“,dg, d}’,xW} e R and
[d” d;,. d’;,xW] eR""  are the final data

augmentation samples.

2.2. Contrastive head

The contrastive head includes two parts, named as spectrum
contrastive head and cluster contrastive head. The spectrum
contrastive head is a two-layer non-linear multilayer

perceptron (MLP), denoted as g (), where the number of
neurons in each layer is the same. The cluster contrastive
head is also a MLP with two layers, denoted as g, () , where

the number of neurons in the second layer represents the
number of clusters. To separate target and background, set the
number of clusters to 2. In contrastive learning, formally, N
augmented samples are taken from the same position in

D* e R and D’ e R¥7)E respectively, expressed
as ) I [d } e RY* and

D). .. [d Ldb ]e RY*. Then the backbone is used to

extract representation vectors of D}, and D/, , which can

batch >

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on November 25,2025 at 09:27:59 UTC from IEEE Xplore. Restrictions apply.



be  expressed as H®= [hf:---’hﬁv} cRY M and

H’ = [hf’,...,hf\,] e R"**'* The backbone is a deep residual

convolutional neural network with spectral residual channel
attention, which is used to extract representation vectors from
augmented data samples. For the spectrum contrastive head,

the representation vector h; is paired with another
augmented sample of the pixel spectrum at the same position
through the representation h’ extracted by the backbone to
form a positive pair {hf,hf} , and the remaining
representation vectors form negative pairs. Then the spectrum
contrastive head g () is used to map the representations
extracted by the backbone to the spectral contrast space via
z{ =g, (h!) and z) = g (h!). The similarity between the

pairs is measured by cosine distance, which can be expressed

(#)(z:)

Z.

)

a Q) =
S(Zl. ,Zj )—

where ¢,¢, e{a,b} and I, e[l,N] . The spectral contrast

loss for the representation vector h{ can be defined as
exp(s(z,‘.‘,z[b ) /t, )

Zj’zl [exp(s(zf N ) /1, ) + exp(s(zj’,z’j ) /1, )

where 7 is the spectral temperature parameter to control the

I’ =~log ] (6)

softness. The spectral contrast loss is calculated for each
representation vector, and the loss function of the spectrum
contrastive head is obtained as

NI
EZ(I" +1) (7)

i=1

For the cluster contrastive head, the cluster contrastive

'spectral

head g, () is used to map the representations extracted by
the backbone to cluster contrast space via Y = g, (H” ) and
Y' =g, (H” ) . The dimension of the row vectors y; and y’
in the feature matrices Y* = [y;’,...,y‘]’v} eRY? and

Y’ = [y’f,...,yfv] e RY** are both 2. It can be considered

that the jth element in the row vectors y; and y’ represents
the probability that the sample belongs to the jth cluster. As a
result, from the perspective of feature matrix columns, let ¥,
and 5’? represent the ith column in feature matrixes Y*“ and
Y, respectively. Then the §; is paired with )7:) to positive

cluster pair {y;’,yf } , while leaving other 2 pairs to be

889

negative. To distinguish cluster ¥; from all other clusters

except ¥/ , the cluster contrast loss is defined as
exp(s(¥:.57) /7.

3 Lexn(s(57.99) 7. +exp(s(57.97) /. ) |

where 7, is the cluster temperature parameter to control the

Ta

[ =~log

®)

softness. By traversing the target and background clusters, the
loss function of the cluster contrastive head is

=$i(i“+2b) ©)

i=1

‘cluster

2.3. Objective function

The spectrum contrastive head and the cluster contrastive
head are simultaneously optimized, so that the backbone has
the ability to distinguish between spectral similarity and
dissimilarity. The objective function of the contrastive
learning stage is

L=L +L

'spectral ‘cluster ( 1 0)

After contrastive learning, the backbone is used to
extract the representation vector of each pixel spectrum and
the prior target spectrum in the HIS to be detected. Then the
cosine distance is used to measure the similarity between the
pixel spectrum in the HSI to be detected and the prior target

spectrum, and the detection result is obtained.
3. EXPERIMENT

To evaluate the performance of the proposed CLHTD
detector, several detection methods, including ACE, CEM,
CSCR [6], ECEM [7] and CNNTD [1] are applied for
comparison. The dataset is part of San Diego airport,
California, USA. The spatial size is 120x120 . After
removing low SNR and water absorption bands, 189 bands
are reserved for hyperspectral target detection.

Fig. 2 (a) and (b) show the pseudo color image and
ground truth of San Diego dataset. For the proposed CLHTD
method, data augmentation is first by sampling the odd and
even bands, and then the two types of augmentation are
obtained by the encoder in the trained AAE. When training
AAE, the encoder and decoder are optimized by Adam
optimizer, and the learning rate is set to 0.001. Then the
generator and discriminator are trained, and the learning rate
is set to 0.0001 and 0.00001 when SGD optimizer is used to
optimize the generator and discriminator. The batch size and
epoch when training the AAE are set to 240 and 20. In
contrastive learning, the epoch, batch size, and learning rate
are set to 100, 240, 0.05. The temperature parameter 7, and

T, are both set to 0.1. Fig. 2 (c) to (h) show the detection

maps of different methods on the San Diego dataset. It can be
observed that our CLHTD significantly highlights the target
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and suppresses the background compared to other detection
methods.
To quantitatively analyze the detection algorithm, the

ROC curve of (PD,PF) and ROC curve of (PF,T) are used
to assess the detection and background suppression

performance, as shown in Fig. 3 (a) and Fig. 3 (b), and the
corresponding AUC value is shown in Table 1.

Fig. 2. San Diego dataset and detection maps. (a) Pseudo color
image, (b) ground truth, (¢) ACE, (d) CEM, (e) CSCR, (f) ECEM,
(g) CNNTD, (h) CLHTD

By observing Fig. 3 (a) and Fig. 3 (b), it is obvious that
the CLHTD showed superior detection and background
suppression ability. Fig. 4 shows the separability graphs of
detection results for six detection methods of San Diego
dataset. The CLHTD can better separate the target from the
background.

0

(b) ROC curve of (£,7)
Fig. 3. ROC curves of different algorithms on San Diego dataset.

(a) ROC curve of (B,,R)

Table 1. Accuracy comparison of different methods.

Method ACE CEM CSCR ECEM CNNTD CLHTD
AUc(P 0 0.9558 0.9628 0.9936 0.7049  0.9580 0.9972
AUC(P ) 0.0042 0.0385 0.2112 0.0870  0.4481 0.0058
T Target
| I Background
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Fig. 4. Separability graphs of detection results for six test methods
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based on San Diego dataset.
4. CONCLUSION

In this work, a hyperspectral target detection method based
on contrastive learning is proposed. The positive and negative
pairs are constructed through data augmentation. In the
contrastive learning phase, the backbone is used to extract the
representation vector of the positive and negative pairs. Then,
the representation vectors are mapped to the spectral contrast
space by the spectrum contrastive head to learn spectral
similarity and dissimilarity. At the same time, the cluster
contrastive head maps the representation vector to the cluster
contrast space to cluster them into two classes to increase the
separation of the target and background. The backbone with
the ability to distinguish spectral similarity and dissimilarity
can then extract the representation vector of the prior target
spectrum and the pixel spectrum in the HSI to be detected,
and then measure the similarity by cosine distance to obtain
target detection results. The experiments show that our
CLHTD method is superior to other comparison detectors.
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