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Abstract— Change detection (CD) in remote sensing imagery
is identified as a pivotal task in the field of Earth observation,
while it usually confronts the dilemma of intricate data and
minor alterations. To address the stated challenge, this letter
presents an innovative frequency-temporal attention network for
CD (FTAN), which incorporates two advanced modules including
the multidimensional convolutional frequency attention module
(MCFA) and the interactive attention module (IAM). Specifically,
the MCFA module is essential for enhancing sensitivity in CD
by merging multiscale spatial and frequency domain features.
As a supplement to MCFA, the IAM aggregates category-
related tokens and processes cross-attention information from
different time phases. The seamless integration of MCFA and
IAM empowers the FTAN network with enhanced capabilities
to detect minor regions and edges accurately. Experiments on
datasets like LEVIR-CD and DSIFN-CD demonstrate superior
performance by outperforming existing models in F1 scores and
IoU metrics. Our code and pretrained models will be released at
https://github.com/chirsycy/FTAN.

Index Terms— Adversarial training, domain adaptation, hyper-
spectral image (HSI) classification, transfer learning.

I. INTRODUCTION

CHANGE detection (CD) [1] of remote sensing images
(RSI) refers to automatically detecting differences or

changes in multitemporal images of the same scene, which
has great significance to the development of land cover, urban
data collection, and environmental monitoring.

Generally speaking, RSI is characterized by nonlinear fea-
tures including spatial and spectral variability. Traditional
methods encounter challenges in dealing with the mentioned
complexities. In recent years, deep learning (DL) methods [2],
[3], [4], [5], [6], [7] have achieved great progress due to
automatic feature extraction and superior performance in the
fields of remote sensing applications. Nowadays, the attention-
based model [8] for CD promotes the recognition of specific
changed objects. In which, the self-attention mechanism, e.g.,
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transformer-based network [8] captures long-range depen-
dencies providing a more efficient way to encode spatial
information. Typically, many models have employed spatial-
temporal attention mechanisms to refine and improve features
for CD implementations. TinyCD [9] combines low-level
features for CD from global temporal and local spatial infor-
mation for spatiotemporal feature fusion. ChangeFormer [10]
directly extracts CD-related information from the input images
and performs context modeling to achieve efficient and
accurate detection results. Recently, some CD models have
focused on addressing edge detection challenges. In particular,
EGDE-Net [11] presents the edge-aware module for boundary
information refinement. Changer [12] builds a new CD pattern
with the interaction between bi-temporal features that is ben-
eficial to details and edges. Recently, in the computer vision
field, frequency domain learning has been a popular way to
increase channel attention, which captures global patterns and
long-range dependencies. Although the existing edge-based
CD models have produced impressive results, the absence of
frequency domain information results in incomplete or inaccu-
rate detection of boundaries and minor changes. The RS-CD
methods involved with the frequency domain effectively filter
noise and enhance significant features for subtle changes.

In this letter, we proposed a novel frequency-temporal atten-
tion network for CD (FTAN), in which the multidimensional
convolutional frequency attention module (MCFA) skillfully
integrates multiscale spatial features with frequency domain
characteristics. Notably, the frequency-domain masking-based
adaptive convolution (FDM-AC) that is the core of MCFA
excels at reducing noise and highlighting key signals, which
is crucial in boosting the sensitivity of CD. Moreover, the
interactive attention module (IAM) merges interactive spatial
data by adaptive attention mechanism and enriches local and
global feature representation, which is effective for region
continuity and promotes detection connectivity. The primary
contributions of this study are summarized as follows:

1) Distinguished from prior models, we propose a novel
frequency-spatial-temporal attention network to enhance
edge representation for CD of RSI. To the best of
our knowledge, it is the first attempt to combine the
frequency information in spatial-temporal extraction in
the CD framework. Notably, the core MCFA mechanism
integrates multiscale attention with frequency domain
information to strengthen the spatial-temporal feature,
which is beneficial for minor target detection.

2) Unlike the previous approaches, the presented IAM cap-
tures interactive long-range dependencies. As a critical
part of the model, the IAM aggregates category-related

1558-0571 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 16,2024 at 05:57:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9260-6629
https://orcid.org/0000-0002-7116-9327
https://orcid.org/0000-0002-4489-5470
https://orcid.org/0000-0001-6436-5883


5005305 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024

Fig. 1. Illustration of the proposed FTAN architecture.

tokens from multiple regions and adapts to the spa-
tiotemporal context.

II. PROPOSED APPROACH

The overall architecture of the proposed FTAN is illustrated
in Fig. 1. As observed, the encoder exploits novel frequency-
perception convolution attention to extract saliency, and the
decoder block with IAM is responsible for refining and gener-
ating the continuous detection map on partial regions. Further
details are outlined in Sections II-A and II-B.

A. Multidimensional Convolutional Frequency Attention
1) Encoder Design: We employ a convolutional saliency

extraction substituting for attention extraction. On the whole,
the encoder of our approach contains four stages for refined
saliency extraction with the decreasing resolution of H /4 ×

W /4, H /8 × W /8, H /16 × W /16, H /32 × W /32, where H and
W represent the height and width of the input image, respec-
tively. The pattern maintains the salient feature of the minor
changes with the self-attention supplied by the convolutional
saliency.

2) MCFA: As shown in Fig. 2, the primary elements of
MCFA consist of FDM-AC, partial convolution operation
(PConv), and multibranch depth-wise strip convolution block.
Specifically, four parallel blocks are built in FDM-AC. In each
block, a spatial domain image X is first converted into the
frequency domain representation via the fast Fourier transform
(FFT), as defined in the subsequent equation

X freq = F(X). (1)

Afterward, a frequency mask scaled by a predefined param-
eter is created to match the size of the X freq, and the mask is
defined as follows:

mask =

 1,

∣∣∣∣u −
M
2

∣∣∣∣ < scale and
∣∣∣∣v −

N
2

∣∣∣∣ < scale

0, otherwise

(2)

where M and N denote the row and column and u and v rep-
resent the horizontal and vertical coordinates of the frequency

Fig. 2. Illustration of the MCFA. Primarily, FDM-AC generates confused
features with frequency domain that is shown in the parallel structure,
PConv preserves information from the remaining channels, and multibranch
depth-wise strip convolution block employs 1 × n, n × 1 kernels for spatial
detail capture.

domain. With the mask, we obtain a filtered frequency domain
image of RSI denoted as Xmasked by the following equation:

Xmasked = X freq · mask. (3)

According to the inherent properties of the FFT, Xmasked
is decomposed of the real X real and imaginary X imag parts.
To further mine the frequency domain information of the RSI,
two convolutional operations with different weights denoted
as wr and wi are employed to process the real and imaginary
parts, respectively. Notably, wr , wi ∈ C1×c×1×1, where C
denotes the set of complex numbers and c is the number of
channels.

With the fusion operation, the output embedding X′ of
FDM-AC is yielded by (4), where ∗ means the convolution
operation and F−1 represents the inverse FFT

X ′
=

∣∣∣∣∣F−1 1
4

4∑
i=1

(
X real ∗ wr + i

(
X imag ∗ wi

))∣∣∣∣∣. (4)
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In MCFA, Pconv is adopted to preserve saliency information
to improve boundary and detail prediction due to the convo-
lution kernels only on a subset of input tensor channels. The
implementation formula for Pconv is shown as follows:

Wp
(

X f
)

= Concat(W3×3(X1), X2) (5)

where X f represents X ⊗ X ′ and ⊗ is a matrix multiplication
operator and W3×3 denotes the 3 × 3 convolutional operation.
X1 denotes the preceding portion of channels of X f , and X2
refers to the remaining channels of X f .

Additionally, the deep-wise strip convolution in RSI uti-
lizes 1 × n, n × 1 kernels for spatial detail capture in changed
objects. Specifically, the saliency information extracted from
MCFA is obtained with the following formula:

Xh = Wi
(

X f
)

(6)

X̃ h = Xh ⊕ Wp(Xh) ⊕
{

W ′

n(Wn(Xh))
}

(7)

where Wi denotes the convolutional operation with a kernel
size of 5 × 5, Xh denotes the output of the Wi applied to
X f and X̃ h is the concatenated maps with multiple branches.
⊕ is the concatenation operation and Wp represents Pconv.
Besides, Wn and W ′

n represent the convolutional operation
with the kernel size of 1 × n and n × 1, n ∈ {7, 11, 21},
respectively.

Last, the refined feature of X is achieved via an attention
mechanism that is guided by a 1 × 1 convolutional layer

Hout = Wo
(

X̃ h
)

⊗ X (8)

where Hout represents the output of MCFA, ⊗ is a matrix
multiplication operator, and Wo denotes the 1 × 1 operation.

B. Interactive Attention Module

As shown in Fig. 3, the IAM module is located at the end
of the decoder of the FTAN. Structurally, the decoder employs
a cascade of four upsampling stages to progressively increase
the spatial resolution, with the incorporated residual blocks
serving to refine the features. Specifically, the token sequences
are composed of Inter tokens and Cls tokens, where the Inter
tokens are obtained through a linear transformation of the
feature maps, and the Cls token is a category-related token
that is randomly initialized during the initialization process.
Eventually, the decoder concludes by processing the refined
feature maps via a 3 × 3 convolutional layer. Notably, the
Cls token is employed as an interactive bridge and effectively
integrates and compares data from different temporal images.
Besides, it only serves as keys and values in the self-attention
computation, which enables the model to directly access and
process spatiotemporal data, facilitating the handling of com-
plex spatiotemporal information. The self-context attention is
calculated as follows:

Ht = Softmax
T

(
q(st ) × k(st )

T
· C−

1
2

)
· v(st ) (9)

where st is the input from inter tokens, t denotes the pixel
position, q is the linear mapping from st to the query, k denotes
the linear mapping from st to the key, v denotes the linear
mapping from st to the value, T is the total number of pixels,
C is the number of channels of the input feature map st , and Ht
denotes the intermediate feature by self-attention mechanism.

Fig. 3. Illustration of the IAM. First, Inter tokens and CLS tokens
are obtained. Next, self-context and interactive spatiotemporal information
enhancement are implemented by (9)–(12). Subsequently, the feature fusion
layer is responsible for feature aggregation and acquires a map for the
following change prediction.

Specifically, the computation of cross-spatiotemporal infor-
mation enhancement is calculated as follows:

Mt,n = Softmax
N

(
q(sn) × k(hn)

T

√
C

)
(10)

Z t =

N∑
n=1

Mt,n (11)

Dt =
1
Z t

∑
n=1

Mt,n ⊙ v(hn) (12)

where n denotes the feature pixel position. hn represents the
input feature from cls tokens, k represents the linear mapping
from hn to the key, and v denotes the linear mapping from hn
to the value. Mt,n represents the similarity corresponding to the
pixel at the position t . Z t denotes the aggregate of n pairwise
similarities computed using the pixel t and ⊙ is the Hadamard
product of the matrix. Dt denotes the intermediate feature by
the cross-attention mechanism. After being processed by the
feature fusion layer, the outputs of Dt and Ht are added with
the input Inter tokens to constitute the final IAM feature map
denoted as F .

Subsequently, F is initially processed through an MLP layer
and unsampled to the size of H × W . Finally, the obtained
feature maps are processed through another MLP layer to
predict the change mask with a resolution of H × W× Ncls.
Usually, Ncls is set to 2 in the CD task.

III. EXPERIMENT AND RESULT ANALYSIS

A. Data Description

In this section, we evaluate the proposed FTAN with two
popular RSI datasets.

1) LEVIR-CD: The dataset comprises 637 pairs that cover
diverse building types with a resolution of 1024 × 1024.
We acquired samples with a size of 256 × 256 for model
training by cropping the original image. Separately, the train-
ing set, the validation set, and the testing set contain 7120,
1024, and 2048 samples in the following experiments.

2) DSIFN-CD: The dataset involves six categories of satel-
lite RSI pairs gathered by urban areas in China, and the
original resolution is 512 × 512. Similarly, we cropped the
image into samples with 256 × 256 resolution, and the training
set, validation set, and testing set include 14 400, 1360, and
192 pairs, respectively.
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Fig. 4. Comparison results of different CD methods on LEVIR-CD (the first two rows) and DSIFN-CD (the last two rows). (a) Pre-Img. (b) Post-Img.
(c) Label. (d) FC-EF. (e) DTCDSCN. (f) BIT. (g) TinyCD. (h) ChangeFormer. (i) FTAN. (Green indicates false detection, while red denotes missed detection).

B. Experimental Settings

All experiments were conducted on a computer in the plat-
form of PyTorch with an NVIDIA Quadro RTX 8000 GPU for
training. In the training phase, we perform data enhancement
by random flipping, rescaling operation adjusts the image size
by a factor randomly chosen between 0.8 and 1.2, cropping,
gaussian blurring, and random color dithering to increase
the number of training samples. Besides, the cross-entropy
loss and AdamW optimizer are adopted in the experimental
execution. Besides, the learning rate is initially set to 0. 0001,
and the batch size is fixed at 24. In particular, all the CD
approaches have no pretrained model for fair comparison in
the following experiments.

C. Results and Analysis

First, we verify the performance to demonstrate the supe-
riority of FTAN. First, we exploited a series of SOTA
methods for comparison with our proposed approach. Typi-
cally, TinyCD adopts Siamese U-Net architecture that employs
low-level features to achieve efficient CD. The ChangeFormer
model builds a hierarchical Transformer encoder and MLP
decoder to yield the detection map. The experiment results
with all the CD approaches on LEVIR-CD and DSIFN-CD
are reported in Table I and Fig. 4. As can be observed,
FTAN generates the highest F1 score and IoU. Specifically,
the F1 score and IoU on the LEVIR-CD dataset are 90.51%
and 82.78%, respectively. While for the DSIFN-CD dataset,
the values are 89.56% and 81.10%, respectively. As shown
in Fig. 4, both the green regions and the red regions of
the FTAN are the fewest, which indicates false and missed
detection rates are the lowest. Compared with the current
state-of-the-art ChangeFormer model, the proposed new CD
paradigm is beneficial for the sensitivity to the changed targets
with different scales and mottled regions. All the results and
analyses demonstrate the effectiveness and stability of our
model.

Next, the ablation study is performed to verify the con-
tribution of the two modules in the FTAN. Individually,

Tables I and II exhibit the ablation results. As demonstrated
in Table I, regarding the LEVIR-CD dataset, the presented
model that employed both MCFA and IAM yields the best
performance such as Precision, Recall, F1, and IoU. The
implementation with IAM is more competitive than the model
without it, and the precisions are 91.54% and 92.12%,
respectively. Although the implementation with either MCFA
generates an improvement in detection, the approach leads
to an improvement in detection, and the approach equipped
with both MCFA and IAM yields the best performance on the
four criteria. Specifically, Precision, Recall, F1, and IoU values
reach 92.41%, 88.82%, 90.51%, and 82.78%, respectively.

For the DSIFN-CD dataset, the ablation study reveals a
similar trend, where the fusion of MCFA and IAM mod-
ules significantly augment performance metrics. As detailed
in Table II, the dual-module configuration achieves enhanc-
ing Recall and IoU to 89.56% and 81.10%, respectively.
The results robustly validate that the combination of MCFA
and IAM not only amplifies the detection ability to subtle
variances within the dataset but also appreciably reduces
false positive rates. Briefly, as observed, for the LEVIR-
CD dataset, the MCFA module provides greater benefits
in terms of precision and IoU. For the two datasets, all
evaluation metrics are enhanced by the inclusion of the
IAM modules as shown in the first and third rows of
Tables II and III.

Moreover, we further undertook a study to evaluate the
efficacy of the FDM-AC within the MCFA component. Fig. 5
demonstrates the generated activation maps via the Grad-
CAM algorithm [16]. As can be observed, the visual maps in
Fig. 5(d) indicate the augmented detection precision facilitated
by FDM-AC, which aligns activation maps with predictive
outcomes. Compared to the model without FDM-AC, the
approach with FDM-AC yields a more interesting area of
CD and strengthens the difference between targets and noise.
As depicted in the figure, by effectively amplifying feature
representation, the FDM-AC empowers the MCFA to recog-
nize the subtle distinctions with multiple information involved,
which improves accuracy for CD of RSI.
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TABLE I
AVERAGE QUANTITATIVE RESULTS WITH DIFFERENT CD METHODS ON THE TWO DATA SETS

TABLE II
ABLATION STUDY ON LEVIR-CD

TABLE III
ABLATION STUDY ON DSIFN-CD

Fig. 5. Grad-CAM Visualization of MCFA Efficacy. (a) Pre-Img.
(b) Post-Img. (c) Grad-CAM Activation without FDM-AC (d) Grad-CAM
Activation with FDM-AC. (e) Label.

IV. CONCLUSION

This letter presents a CD model that leverages the col-
laboration of spatial features, frequency information, and
interchannel saliency. The proposed FTAN network incorpo-
rates the MCFA model and the IAM block, which effectively
merges multiscale spatial features with frequency domain char-
acteristics to enhance CD precision. Notably, MCFA focuses
on extracting features through multiscale convolutional atten-
tion. Additionally, the integration of IAM in the decoder of the
FTAN improves feature discrimination by efficiently aggre-
gating category-related temporal data. Extensive experiments
and analysis demonstrate superior performance compared to
existing advanced models. In the future, we plan to combine
multisource RSI to fully exploit the complementary informa-
tion and enhance CD accuracy further.
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