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Hyperspectral Image Classification Method Based on
CNN Architecture Embedding With Hashing
Semantic Feature

Chunyan Yu

Abstract—Deep convolutional neural networks (CNN) have led
to a successful breakthrough for hyperspectral image (HSI) classi-
fication. In this paper, a CNN system embedded with an extracted
hashing feature is proposed for HSI classification that utilizes the
semantic information of the HSI. First, a series of hash functions are
constructed to enhance the presentation of the locality and discrim-
inability of classes. Then, the sparse binary hash codes calculated
by the discriminative learning algorithm are combined into the
original HSI. Next, we design a CNN framework with seven hidden
layers to obtain the hierarchical feature maps with both spectral
and spatial information for classification. A deconvolution layer
aims to improve the robustness of the proposed CNN network and
is used to enhance the expression of deep features. The proposed
CNN classification architecture achieves powerful distinguishing
ability from different classes. The extensive experiments on real
hyperspectral images results demonstrate that the proposed CNN
network can effectively improve the classification accuracy after
the embedding of the extracted semantic features.

Index Terms—Convolutional neural networks (CNN), hash-
ing learning, hyperspectral image classification (HSIC), semantic
feature extraction (SFE).

I. INTRODUCTION

UE to the continuous spectral channels with rich spec-
tral information and high-resolution spatial structure,

Manuscript received February 22, 2019; accepted April 13, 2019. Date
of publication May 21, 2019; date of current version July 17, 2019. This
work was supported in part by the National Natural Science Foundation of
Liaoning Province under Grant 20170540095, in part by the Fundamental Re-
search Funds for Central Universities under Grants 3132016331, 3132019208,
and 3132019218, in part by Recruitment Program of Global Experts for
National Science and Technology Major Project, State Administration of For-
eign Experts Affairs funded by ZD20180073, and in part by the National Natural
Science Foundation of China under Grants 61601077,61801075, and 41801231.
(Corresponding author: Meiping Song.)

C. Yu, M. Zhao, M. Song, Y. Wang, F. Li, and R. Han are with
the Center of Hyperspectral Imaging in Remote Sensing, Information
and Technology College, Dalian Maritime University, Dalian 116026,
China (e-mail: yucy @dImu.edu.cn; 392958198 @qq.com; smping@ 163.com;
7340912 @qq.com; lifang0105 @qq.com; 269899266 @qq. com).

C.-IChang is with the Center of Hyperspectral Imaging in Remote Sensing, In-
formation and Technology College, Dalian Maritime University, Dalian 116026,
China, with the National Yunlin University of Science and Technology, Yunlin
64002, Taiwan, with the Remote Sensing Signal and Image Processing Labora-
tory, Department of Computer Science and Electrical Engineering, University of
Maryland, Baltimore, MD 21250 USA, and also with the Department of Com-
puter Science and Information Management, Providence University, Taichung
02912, Taiwan (e-mail: cchang @umbc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2019.2911987

, Meng Zhao, Meiping Song, Yulei Wang, Fang Li, Rui Han, and Chein-I Chang

, Life Fellow, IEEE

hyperspectral images are widely used in the fields of precision
agriculture, forestry monitoring, absorption band mapping tech-
niques on Mars and terrestrial drill core applications [1], [2].
Among these applications, hyperspectral image classification
(HSIC) is the most fundamental research that has attracted more
and more attention. In recent years, with the booming of artificial
intelligence and big data theory [3], [4], a set of hyperspectral
image classification methods based on manifold learning and
sparse theory have achieved satisfactory performance [5]-[12].
However, these methods produce classification results using
mechanism of shallow layer, cannot deal with the complex clas-
sification problem. Deep learning (DL) [13] allows the computer
to automatically extract deep features and more abstract fea-
tures to improve the accuracy of the classification and has been
widely used in HSIC fields. As the most popular and successful
DL framework, convolutional neural network (CNN) utilizes a
series of hidden layers to extract hierarchical features that has
proved to be effective in HSIC [14]-[20].

A hyperspectral image is originally a three-dimensional cube
with the spectral and spatial continuity, recently which have in-
tegrated both spectral and spatial information have gained more
popularity. Ma ef al. [14] described a semi-supervised classi-
fication method using the local category labels of the samples
and the global category labels obtained by the DL framework to
perform HSIC with self-learning methods. In [15], an unsuper-
vised representation learning method is proposed to investigate
deconvolution networks for remote sensing scene classification.
In [16], a deep feature fusion network with the residual learn-
ing to optimize several convolutional layers is proposed for HSI
classification. In [17], a deeper CNN which directly learns end-
to-end mapping between HSI and the labels was proposed by
using a new spatial feature for selecting a band with spatial in-
formation enhancement.

The existing research works of the classification methods
based on the CNN framework provide rich solutions for hyper-
spectral classification technology. However, there are two sides
of problems of the CNN classification framework which should
be mentioned at present. First, usually more than three convolu-
tion layers are presented to extract more features which caused
the mathematical models getting more and more complex, and
at the same time, the complexity of the models brings uninter-
pretable features in the CNN framework. Second, the CNN clas-
sification framework is a black box operation for deep features
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Fig. 1. CNN classification system with hashing feature extraction.

exploration and it is not sufficient for achieving better presen-
tation of classification by employing only CNN. Nowadays, the
fused profiles fed into the CNN network mainly obtained by
the HSI data transformation or segmentation results [21]-[24].
Motivated by adding semantic features of HSI which can im-
prove the classification efficiency and performance [25], in this
paper, we presented a new classification method with hashing
semantic feature fused into the CNN architecture. On one hand,
hash learning is used to encode both spectral features and spa-
tial neighborhood information simultaneously to improve the
distinguishing ability of the different classes. On the other hand,
we adopted a simpler CNN architecture with two convolution
layers to explore the classification features.

Learning to hash approach aims to transform the original high-
dimensional data to a low-dimensional representation, by learn-
ing a hash function, y = h(x), in recent years, due to that the
learned hash codes are able to preserve the proximity of neigh-
boring data [26], hashing learning has attracted more attentions
in designing efficient indexing and information retrieval field.
The mechanism of hash learning is mainly divided into data
independence and data dependency. Data-independent methods
include locality-sensitive hashing [27] and its extended version.
The main disadvantage of this type of function is random map-
ping, which is independent of the data itself, so it cannot reflect
the characteristics of hyperspectral data. In this paper, the data-
related hash function was used which maps data into binary
codes to keep the similarities between the original feature space
and the transformed space.

Our approach implemented the hyperspectral classification
task by embedding a semantic feature map into the CNN net-
work to promote classification and recognition. Fig. 1 shows the
flowchart of the proposed CNN classification system. First, the
semantic features present the similarities of the same class which
are extracted by hashing learning, then the features are embed-
ded in the original hyperspectral image for CNN classification.
Next, the flow of the proposed CNN classification method based
on the space-spectrum combination can be simply summarized
as follows. In order to improve the accuracy and the conver-
gence speed of the model, the input hyperspectral data needs to
be normalized, then the deep feature maps are extracted through
a convolution layer and the nonlinear features are obtained after
an activation function. Next the deconvolution layer is used to

Classification map

enhance the feature downsampled by pooling layer, and finally
the two fully connection layers finish the feature mapping and
the deep features are converted to the softmax classifiers. The
paper contributes to the literature containing three major aspects.

1) We present a new semantic feature extraction method
by considering the locality and discriminative learning
subspace between feature categories, and using compact
codes semantically to encode the hyperspectral data. With
the defined within-class and intraclass similarity con-
straints, the extracted features provide salient classifica-
tion information for the followed CNN framework by
maximizing the sample center distance.

2) Besides the spectral and spatial information, the proposed
CNN classification architecture achieves powerful distin-
guishing ability from different classes by utilizing the ex-
tracted semantic features merged in the original HSI cube,
and it explored the convolutional features and semantic
contextual information simultaneously.

3) A simpler CNN network including two convolutional lay-
ers is adopted for HSI classification, and the deconvolu-
tion layer is designed to enhance the deep features that
improve the robustness of the classification framework.
Besides, to demonstrate the performance of the deconvo-
lution layer and the pre-processed hashing procedure, we
also designed other several CNN architectures to evaluate
the classification performance correspondingly.

The remaining part of the paper is organized as follows.
The proposed semantic feature extraction based on hashing
learning is presented in Section II. Section III introduces the
proposed CNN network for classification. Experimental result
analysis is illustrated in Section IV and conclusions are drawn in
Section V.

II. SFE BASED ON HASHING LEARNING
A. Hash Function Definition

Assume that a hyperspectral image is denoted by {ry}Y_, €
Q, where N is the number of the data sample, r; =
(71, Tk2, -.Trr)” is the kth data sample of the HSI cube, and
L is the total number of spectral bands. We define categories
of pixels denoted asyy, , wherey,, € {0, 1} depends on whether
the pixel is the target pixel or not, value “0” indicates that it is
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not the target of the ith class and “1”” shows it is the target of the
ith class. In this paper, a series of hash functions are defined as h
the value of the hash function h(ry) = vy, = {0, 1} represents
whether the pixel belongs to the class or not. The specific hash
function is defined as follows:

h(ri) = sgn (w'ry, +b) (1

where w is the subspace projection vector and b is the offset
[26], x denotes the original input signal.

The goal of hash learning is to minimize the difference be-
tween the value of the projection space and the target space.
The within-class similarity in the same class should be small
after the hash function, while the intraclass similarity between
classes should be increased. Therefore, to distinguish two types
of classes by maximizing the sample center distance, the loss
function is defined as follows:

CB
cw
where CB denotes the intraclass similarity, while the CW denotes
the within-class similarity.

loss(w, b) =

)

B. Similarity Preserving

The basic and important rule of the loss function designing
is to preserve the similarities of the original HSI space. In what
follows, the similarity definition of intraclass and within-class
results and the learning algorithm of the loss function are dis-
cussed in details.

1) Intraclass Similarity: In order to make the final hash map-
ping codes have a better discriminability to distinguish the class
and nonclass information, the similarities of intraclass include
the similarity between the same class and the different classes.
In this paper, we evaluated the similarities between classes with
the Euclidean distance of the class center.

For the ith class C;, the similarity level between the C; and
non-ith class center u; is defined as follows:

where d; is the cluster center of C; defined by the sample mean of
the class of C;, and w; is not-ith class center defined as follows:

1 P

j=1,j#i

2

Furthermore, the similarity level between the C; and Cj is
defined as follows:

P P
2= > olndnd) = Y avs| @

J=1(j#1) J=10G#1)

where d; and d; are the class center of C; and C; defined as
same as above.

2) Within-Class Similarity: The similarity of with-in class is
measured by calculating three types of distance. On one side,
on account of the locality between the samples in the same class
would have the same original feature, for the sample of the C;,
ri € C;, the distance between the sample of r; and the class
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center of C; is designed to measure the within-class similarity
of C i
2

cwl = Z é(h,ri, di) = Z Hy;“k _y:i'i )

TkECi ’I‘kECi

On the other side, in order to emphasize the effect of the spatial
features in local neighbor, the other within-class similarity is
measured by calculating the distance between the pixel 7, and
it’s neighborhood pixels.

For the samples in class C}, the degree of the neighbor hash
value of C; is defined by calculating the distance between the
neighbors as follows:

cw?2 = Z o(hyri, TN

reC;

= Z Z Hy/rk - y/T'Nk

rr€C; Ni€ Neighbor

2

(6)

where N denotes the neighbor pixels of ry.

For the samples in class u;, the distance between the /th sam-
ples is designed to measure the within class similarity between
the /th samples and u; as follows:

2
Z Hylﬁ B y,uq‘,

cw3d = Z d(hyriyug) =
’I”L¢C,’,

’I”L¢C,’,

)

C. Learning the Orthogonal Projection Parameter

Followed by the definition of the similarities, the loss function
needs to be optimized, in particular, the projection matrix W and
the threshold b are optimized separately. After the substitution
with the above formula (3)—(7), the loss function (2) converts to
the following equation:

cbl + cb2
cwl + cw2 + cw3’

To find the optimal hash function requires the use of the op-
timization of the following objective function:

®)

loss(w, b) =

(wx, bx) = arg max (loss(w, b)) . ©)

According to the definition of the hash function, (5) can be
transformed into the following form:

cwl = Z ¢(hvrk7di)
T’kECi
= Z ||sgn(wTrk +b) —sgn(w’d; + b)||2. (10)
rreC;

It is difficult to directly optimize the above equation, to solve
this problem, a spectral relaxation strategy was adopted to re-
move the symbolic function. Such an approximate optimization
method was proved to have better results [24]. After removing
the relaxation of the Sgn function, (10) converts to the equation

cwl = Z ||wT7‘k. —wTdiH2

TkGCi

= Z wT(rk — di)(’l“k — di)TU}.

rpeC;

(11)
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Fig. 2. Hierarchical structure diagram of the convolution neural network.
By letting
T
cwl' = > (rp —di)(ri, — d)". (12)
reeC;
The formula above is described as follows:
cwl = w! cwl'w. (13)

Similarly, cw2, cw3, cbl, cb2 can also be represented by ex-
pressions as follows:

cw2 = w! cw2'w (14)
cw3d = w! cwd'w (15)
cbl = wlebl'w (16)
b2 = wt eb2'w. (17)

In this way, the solution of the objective function (8) converts
to the following formula:
wT (bl 4 b2 )w (18)
cwl’ + cw2' + cwd)w )

b =

(w,b) argwljiblax (wT(
In the following step, we introduce a Lagrangian multiplier A

to solve (18) that is formulated as follows:

cbl’ + cb2’

19
cwl’ + cw2' + cw3’w (19)

= Aw.

Because each eigenvector can represent the projection vec-
tor of the hash function, estimating an orthogonal matrix of w
converts to solve an eigenvalue decomposition problem. In this
paper, the optimal w can be computed as the eigenvector corre-
sponding to the largest eigenvalue of the matrix as follows:

cbl’ + cb2’

M = . 20
cwl’ + cw?2' + cwd’ (20)

The value of offset b for each class is usually defined as same
as [28]

T

b = mean(w’ x). (21)
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In summary, the whole procedure of the hashing semantic
feature extraction method is outlined as follows.

Algorithm: Semantic Feature Extraction.

Initial conditions: Hyperspectral data 2, the total number
of classes p.

Preprocess (2 by using the zero mean method, 2 — 0.

Forevery classi (1< =i < =p)

a. Calculate c¢b! and cb2 according to Eqn. (13)
and Eqn. (14).

b. Calculate cwl, cw2, and cw3 according to
Eqn. (15)-(17).

c. Construct matrix M according to Eqn. (20).

d. Calculate the eigenvalue denoted as {v} and
eigenvector denoted as {w} of M.

e. Find the eigenvector from {w} marked as
Wmax (1) corresponding to the largest
eigenvalue of {v}.

f. Compute the offset b; of the ith class by

b; = —mean( 1; XWmax(i))
r;eCy

g. For every pixel r;(r; € Q)

Extract hash semantic features h f;;, by
fjh = Sgn(r X Wmax(i) + bz)
h.f‘h — {(1 + fjh)/2z:ffjh >0
! (1= fin)/2if fin <0
End

Output: The semantic feature of class i, H;.

End

Output: Feature maps of all the classes

[H}( =i<=p)

III. CLASSIFICATION METHOD BASED ON THE CNN NETWORK
A. Network Structure of the CNN Model

A CNN includes a stack of convolutional layers and hidden
layers that has been widely used in a range of computer vi-
sion tasks, such as image denoising [29]-[31], image detection,
and classification [32]-[34]. In hyperspectral image processing,
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CNN architecture makes use of spatial dependency and spectral
information via sharing weights and bias of neurons in adjacent
layers that can achieve better performance.

In this paper, the proposed CNN network is composed of seven
layers, the hierarchical structure diagram of the CNN framework
with specific parameters is shown in Fig. 2. Specifically, the
model structure of the CNN consists of two convolution layers
(C1, C2), two pooling layers (P1, P2), one deconvolution layer
(D1), and two full connection layers (F1, F2). First, due to the
limited training sample a preprocessing procedure is utilized
to expand the selected sample sets, then the feature maps are
obtained by a series of hidden layers, furthermore, to overcome
the overfitting problem of the network, drop out operation. A
deconvolution layer is used to maintain a good performance in
this paper. For comparison, a global average pooling (GAP) layer
and full connection layers are used separately in the experiment
section.

B. Sample Data Augmentation

First, we gather data by augmentation to enrich the training
sets of the samples in the preprocessing period and some samples
by transformations with respect to the original samples that are
generated in this paper. The three types of augmentation are
listed as follows.

1) Reverse the sample data from up to down.

2) Reverse the sample data from left to right.

3) Adding random Gaussian noise to the sample.

Furthermore, to avoid the pixels belonging to the borders of
the image which cannot be classified properly, in this paper, we
adopted the mirroring strategy to preprocess the hyperspectral
image. The specific approach implemented mirroring d pixels
of border outward according to the size of sample data, for ex-
ample, the size of sample data is set to 13 x 13, then we set
d = 5 to keep the border pixel be the center of the modified
sample.

C. CNN Architecture Details

Each convolution layer constantly updates the parameters of
the convolution kernels to obtain the useful features. The size
of input data is d x d X [, the number of channels is the
same as the bands number which is /, the kernel size of the
first convolution layer (cl) is 3 x 3, the number of kernels
is k, then the size of the output feature map is (d-2) x (d-2)
x . The feature mapping structure adopts the ReLU function
yi; = max(0,u;;”)as the activation function of the convolu-
tional network so that the feature map can be simply understood
as putting negative values to “0,” meanwhile it causes the spar-
sity of the CNN network. Next, the max-pooling function is
utilized in the pooling layers (p1, p2), which use zero-padding
policy to keep the size of each output feature the same as the
previous layer. To compress the extracted features, two fully con-
nected layers (FC1, FC2) are adopted in the network, the drop
out rate in the first fully connection layer (FC1) is usually set to
0.5, the number of sigmoid neuron nodes is set to 1024 and 84
specifically.
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Tlustration of the deconvolution procedure.

D. Deconvolution Layer

In order to keep the size of the output map identical to the orig-
inal data and enhance the expression of the extracted feature, we
utilize deconvolution operation to expand the feature map. A de-
convolution operation is also called transposition convolution,
which is usually used to map low-dimensional input into a high-
dimensional feature and is the inverse to convolution operations.
The forward operation of the convolution layer can be expressed
as a matrix multiplication in the tensorflow, the output ¥ = CX,
where X is the original signal, C is convolution operator, Y is the
processed signal after convolution, and the deconvolution layer
can be expressed as X = CTY. When the input vector dimension
is lower than the output vector dimension, the neural network is
equivalent to a decoder, which realizes the reconstruction of the
low-dimensional vector to the high-dimensional vector. Fig. 3
shows the implementation procedure of the deconvolution, it can
be observed that deconvolution is an implementation of upsam-
pling to enlarge the feature map with convolution kernel and
padding, the size of input datais 5 x 5, the enlarged feature map
is 7 x 7 after zero-padding and the convolution procedure with
kernel size of 3 x 3. In our paper, the D1 layer has a kernel filter
with the size of 5 x 5, and the length of the convolution filter is
150.

IV. EXPERIMENT AND RESULT ANALYSIS
A. Data Description

1) Purdue Indiana Indian Pines Scene: The first dataset is an
AVIRIS image which was collected over north-western Indiana.
The scene contains 145 x 145 pixels and 220 spectral bands in
the range of 0.4-2.5 pm. It consists of 16 classes available in
the ground truth image. Fig. 4(a) shows the ground truth image
of Indian Pines and the processed image (d = 5) after mirror-
ing projection policy described in Section III and is shown in
Fig. 4(b).

2) Salinas Valley: The second dataset was captured by the
AVIRIS sensor over the Salinas Valley in Southern California.
The image has 224 bands, and the spatial resolution is 512 x
217. The ground truth contains 16 classes as shown in Fig. 5(a),
and the image with mirroring projection processing (d = 5) is
shown in Fig. 5(b).

3) University of Pavia: The third dataset used in the follow-
ing experiment is an urban area surrounding the University of
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Fig. 5. Image of Salinas Valley. (a) Ground truth image. (b) Processed image
after mirroring projection.
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image after mirroring projection.

Image of University of Pavia. (a) Ground truth image. (b) Processed

Pavia, which was recorded by the ROSIS-03 satellite sensor.
This image has 103 bands and the pixel resolution is 610 x 340.
Nine classes of interest are presented in this image. Fig. 6(a)
shows the ground truth image of University of Pavia and the
processed image with mirroring policy (d = 5) for training is
shown in Fig. 6(b).

[[]9.Grass-pasture-mowed
[]10. Soybean-notill
M 11.Soybean-mintill

M4.Com M 12.Soybean-clean
[ 5.Grass-pasture  [13.Wheat
M 6.Grass-tress [H14.Woods
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[ 8.Hay-windrowed [ 16.Stone-steel-towers
M 0.BKG

(b)

Image of Purdue Indiana Indian Pines Scene. (a) Ground truth image. (b) Processed image after mirroring projection.

4) Kennedy Space Center (KSC): The last dataset is called
KSC data, which was acquired by AVIRIS in the range of
0.4-2.5 pm of KSC located in Florida. After removing water
absorption and low SNR bands, the dataset has 176 bands used
for the analysis. The resolution of the image is 512 x 614 and it
containing 13 classes representing the various land cover types.
Fig. 7(a) and (b) show the ground truth image and the processed
image (d = 5) after mirroring projection policy of KSC, respec-
tively.

B. Experimental Setting

In this section, the hyperspectral image classification methods
based on SVM and CNN are utilized to verify the effectiveness of
the proposed method. The SVM algorithm is implemented with
the libsvm library with 10% of ground truth chosen randomly
from the training set in our experiment. The SVM method with
the embedded hash semantic feature is denoted as SVMH.

All experiments were run on a computer with Intel Xeon
E5-2650 and single Quadro M2000 GPU, 64 GB memory, the
OS is Windows 10, the platform is Python 3.6 in a tensorflow
framework. In addition, in our experiment, the batch size is set
to 100, the iteration number of trainings is 4000, the channel
number of Purdue is set to 220 and 236 with hash semantic fea-
ture, the channel number of Salinas is set to 224 and 240 with
hash semantic feature, the channel number of Pavia is set to 103
and 112 with hash semantic feature, and the channel number of
KSCis set to 176 and 189 with hash semantic feature. Training
sample numbers of the four datasets used by the CNN networks
including samples selected randomly from every class and gen-
erated by the augmentation method mentioned in the previous
section are shown in Tables I-IV, respectively.

C. Classifiers Descriptor for Comparison

To evaluate the performance of our proposed CNN method
using the hashing extraction method, we completed a series
of experiments for comparison with other the state-of-the-
art classification methods. The network proposed in the pa-
per is called as CNN with deconvolution and hashing method
(CNNDH). The CNN methods in the comparison include the
original CNN network with single architecture (CNNS) which
has only one convolution layer, one pooling layer, and two
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M 9. Spartina marsh

M 10. Cattail marsh

[ 11. Salt marsh

W 12. Mud flats

M 13. Water

W 14. BKG

(a) (b)

Fig. 7. Image of KSC. (a) Ground truth image. (b) Processed image after mirroring projection.

TABLE I
NUMBER OF SAMPLES IN THE TRAINING SET OF PURDUE INDIANA
INDIAN PINES SCENE USED IN CNN METHODS

TABLE III
NUMBER OF SAMPLES IN THE TRAINING SET OF UNIVERSITY OF
PAvIA USED IN CNN METHODS

Sample Number Sample Number

Class Name

Class Name

N théal TraigingﬂgnﬁmLT:st}ing_ Total Training Augmentation Testing
Corn-notill 1428 72 285 1356 Asphalt 6631 332 1326 6299
Corn-mintill 330 1 166 788 Meadows 18649 933 3729 17716
Corn 237 12 47 225 Gravel 2099 105 419 1994
Grass-pasture 483 25 96 458 Trees 3064 154 612 2910
Grass-trees 730 37 146 693 Painted metal sheets 1345 68 269 1277
Grass-pasture-mowed 28 2 5 26 Bare Soil 5029 252 1005 4777
Hay"’g‘;imwc‘i 42708 214 945 4]594 Biwmen 1330 67 266 1263
Soybean-notill 972 49 194 923 Self-Blocking Bricks 3682 185 736 3497
Soybean-mintill 2455 123 491 2332 Shadows 947 48 189 899
Soybean-clean 593 30 118 563 TABLE IV
x:jzi 1220655 éi 24513 1129041 NUMBER OF SAMPLES IN THE TRAINING SET OF KENNEDY
Buildings-Grass-Trees-Drives 386 20 77 366 SPACE CENTER USED IN CNN METHODS
Stone-Steel-Towers 93 5 18 88
Class Name Total Traisnjr:gp ICAI\I;TnE:ation Testing
TABLE II Scrub 761 77 152 684
NUMBER OF SAMPLES IN THE TRAINING SET OF )
SALINAS VALLEY USED IN CNN METHODS Willow swamp 243 25 48 218
Cabbage palm hammock 256 26 51 230
Cabbage palm/oak hammock 252 26 50 226
Class Name _Sa.mplc Number - - Slash pine 161 17 32 144
Total Training Augmentation _Testing
Broceoli_green weeds 1 2009 101 401 1908 Oak/broadleaf hammock 229 23 4 206
Broccoli_green weeds 2 3726 187 745 3539 Zi;ﬁ::;’:jst‘::zs ;(3)? L'l z; 39847
Fallow 1976 99 395 1877 Spartina marsh 20 5 104 ;‘68
Fallow rough plow 1394 70 270 1324 Cattail marsh 404 al %0 363
Fallow _smooth 2678 134 535 2544 Salt marsh 410 “» 03 3 7
Stubble 3959 198 791 3761 Mud flats 503 . 100 ;‘52
Celery 3579 179 715 3400 Water 027 03 185 234
Grapes untrained 11271 564 2254 10707
Soil vinyard develop 6203 311 1240 5892
Corn_senesced_green_weeds 3278 164 655 3114
Lettuce romaine 4wk 1068 54 213 1014 includes the original HIS data and the original data mixed with
Lettuce_romaine 5wk 1927 97 385 1830 the hashing semantic feature map. The methods of CNNS,
Lettuce_romaine_6wk 916 46 183 870 CNNSD, and CNNG with hash extraction step are listed as
Lettuce_romaine 7wk 1070 >4 214 1016 CNNSH, CNNDH, and CNNGH. Fig. 8 shows the specific
Vinyard untrained 7268 364 1453 6904
Vinyard vertical trellis 1807 01 361 1716 flowchart of every compared CNN framework separately. All

the CNN networks mentioned for comparison have the same
parameters as our proposed CNN architecture. Each execution

fully connected layers, the CNNS network plus one deconvo-
lution layer (CNNSD), the CNNS plus one convolution layer
(CNNT), and the CNN network with a GAP layer instead of
fully connection layer (CNNG). The CNNDH without hash ex-
traction is noted as CNND. To show the better performance of
the hashing semantic feature, the input data of the CNN network

of all the CNN networks have been repeated 5 times and the
classification accuracy used in our experiment is averaged by
the results. We use overall accuracy (OA) as evaluation criteria
to evaluate the CNN method, which is the ratio between hyper-
spectral pixels that are classified correctly and the number of all
the test samples.
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Fig. 8.  Flowchart of all the proposed CNN frameworks for comparison.

® (b

Fig.9. Classification results of Purdue Indiana Indian Pines Scene with compared methods. (a) SVM. (b) SVMH. (c) CNNS. (d) CNNSH. (e) CNNT. (f) CNNTH.
(g) CNNG. (h) CNNGH. (i) CNND. (j) CNNDH.

D. Results and Analysis results of the Indian Pines data with the above CNN methods
are shown in Fig. 9, Table V shows the accuracy of each class
and OA of Indian Pines data objectively. The results show that
ple percentage is 10%, the drop out rate is set to 0.5, the sam-  CNNSH, CNNTH, CNNGH, and CNNDH classification net-
ple size of the dataset is fixed as 13 x 13. The classification  work have better performance than the CNN methods without

For the Purdue Indiana Indian Pines Scene, the training sam-
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TABLE V
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF PURDUE INDIANA INDIAN PINES SCENE WITH ALL THE COMPARED METHODS (10%)
Class
Pos% SVM SVMH CNNS CNNSH CNNT CNNTH CNNG CNNGH CNND CNNDH
1 90.87+4.96 94.35+2.48 72.61£9.67 93.91+2.83 88.7+5.19 96.09+3.57 78.7+41.57 98.26+1.82 91.74+7.9 95.65+3.07
2 66.164+434 72.044+2.66 88.66+1.99 93.98+2.19 97.06+1.69 97.241.6 98.49:£0.55 98.1+1.91 96.57+1.3 97.77+0.7
3 64.1243.52 69.424+2.25 92.55+3.6 96.75+1.03 97.04+1.74 97.08+0.81 99.59+0.25 99.28+0.15 96.39+1.19 99.730.1
4 88.1943.07 8473+ 4.1 84.14+7.03 97.38+0.91 97.97+0.75 98.99+1.14 98.06+1.35 99.75+0.38 94.18+1.82 98.57+0.97
5 88.084+2.81 93054+ 1.39 92.67+2.54 97.52+1.37 97.52+1.22 98.47+0.73 99.13+0.71 98.3+0.61 97.23+2.02 99.67+0.11
6 93154+ 1.73 93.674+1.33 97.51+1.55 99.34:0.43 99.26+0.51 99.48+0.11 99.51+0.25 99.7+0.11 98.03+0.39 99.23+0.16
7 90.714+4.07 854639 65+8.89 90.71+3.19 86.43+7.74 91.43+3.19 76.43+42.9 1000 80.71+7.82 59.29+54.14
8 97154132 97.824+1.59 98.7+1.01 99.92:+0.11 99.71+0.24 99.75+0.18 99.96+0.09 99.96+0.09 99.58+0.71 100+0
9 §145.48 8241037 64+23.02 87+9.75 94+6.52 9144.18 97+2.74 1000 85+5 98+2.74
10 7276+ 4.04 74.09+ 4.48 89.38+6 95.97+1.35 96.69+1.16 98.09+£0.33 98.23+1.6 98.42+1.34 96.01+1.13 98.85:0.29
11 64.9242.74 74.8+3.95 94.37+2.45 97.81+0.46 98.18+0.61 97.67+0.62 99.3+0.12 99.4+0.21 98.31£0.75 99.37+0.23
12 67.86-5.02 8128433 89.313.81 96.32+1.17 96.32+1.85 98.15+0.8 99.93+0.09 98.65:0.6 94.94+1.17 99.56=0.44
13 98.934+0.87 98.73+0.74 97.17+1.81 99.9+0.22 99.8+0.27 99.32+1.01 100+0 99.61+0.41 99.32+0.56 100+0
14 88.09+1.98 92.19+2.11 98.47+0.43 99.68+0.06 98.85+1.11 99.73+0.35 99.84+0.19 99.84+0.06 99.4+0.53 99.91+0.07
15 68.91+2.45 77.46+3.52 86.89+1.43 99.22+0.48 96.11+2.4 99.43£0.5 99.02+0.34 99.38+0.35 95.28+3.1 98.55+0.3
16 98.71+0.9 98.06+1.18 92.04+6.02 98.28+1.44 97.85+2.01 98.49+1.8 98.71+0.9 79.14+44.25 92.9+4.34 97.240.96
POA 753141.06 8068414 92.79+1.13 97.39+0.44 97.74+0.58 98.24+0.18 99.060.38 98.95+0.55 97.28+0.51 99.05+0.2
TABLE VI
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF SALINAS VALLEY WITH ALL THE COMPARED METHODS (4.5%)
Class SVM SVMH CNNS CNNSH CNNT CNNTH CNNG CNNGH CNND CNNDH
POA%
1 99214016 99.09+0.36 98.62+2.22 99.81+0.19 94.74+9.97 99.76+0.28 99.98+0.04 99.92+0.11 79.98+44.68 79.96+17.87
2 99.654+0.23 99.58+0.28 98.3+1.71 99.84+0.21 99.35+0.75 92.71+16.02 99.95+0.07 99.99:0.01 99.92:£0.08 99.92+0.13
3 98.94+0.55 99.314+0.24 89.8+6.74 96.76+2.35 94.92+9.57 98.71£2.3 99.29+1.39 95.83+9.24 94.28+6.42 99.35+0.46
4 99454011 99.47+0.13 93.63+1.95 99:£0.9 98.69+1.25 99.81+0.13 99.67+0.21 99.64+0.29 99.53+0.32 99.28+0.77
5 98.1840.35 98.14+0.54 94.52+2 88 97.63+2.02 97.99+3.79 98.81::0.9 99.95+0.08 99.42+0.46 99.44:0.45 99.01+1.92
6 99.774+0.14 99.7740.1 99.61+0.41 99.98+0.01 99.85+0.31 99.96+0.07 1000 80=17.89 1000 99.97+0.05
7 99.654+0.18 99.4840.15 98.5+1.1 99.96+0.04 99.78+0.2 99.28+0.83 99.98+0.03 98.44+43.5 99.66+0.45 99.89-+0.1
8 74744406 74214564 87.12+4.26 95.74+1.95 95.68+1.98 94.88+2.13 95.79+3.02 96.99+2.67 96.51+1.72 96.12+1.56
9 9934027 98.9540.4 99.51+0.23 99.94+0.07 99.76+0.09 99.69+0.61 99.97+0.02 1000 99.83+0.12 99.95+0.04
10 93.04+0.73 93.984+1.09 94.81+2.7 99.11:0.81 99.05+0.64 99.45+0.19 59.88+54.67 99.66+0.17 98.83+0.77 99.61+0.37
11 97474+ 1.13 98.09+0.94 86.57+11.83 98.05+0.6 95.17+8.51 98.65+0.99 99.61+0.72 99.27+0.71 96.52+6.45 99.78+0.11
12 99.39+0.27 99.474+0.19 96.26+2.9 98.18+3.89 99.61+0.57 99.96+0.07 79.99+44.72 80+22.36 99.16+1.26 99.8+0.3
13 98.624+0.32 98.52+0.34 95.72+2.58 99.76=0.18 99.91+0.09 99.87+0.24 99.96:0.1 99.96:0.06 99.5+0.53 99.91+0.14
14 97254095 9593+ 1.83 96.97+2.82 99.18+0.57 99.140.59 99.44+0.35 59.53+54.35 99.61+0.34 99.08+0.85 99.44:0.39
15 70.034+3.59 75344375 91.86+2.64 94.27+5.74 67.56+34.9 96.37+2.06 96.08+2.99 90.53+6.88 92.13+5.86 95.9+3.37
16 98754 0.47 98.65+0.21 95.04+3.65 99.14+0.63 95.19+8.12 99.35+0.18 99.77+0.09 99.27+0.95 98.03+2.08 99.71+0.19
POA 89794049 90.3840.98 94.05+1.49 97.85+0.65 93.79+4.27 97.64+1.45 94.59+4 44 95.56+3 96.92:+40.98 97.73%1.52

hashing extraction. It also can be seen that the SVMH gener-
ates better performance than the original SVM method, after the
embedding semantic feature, the SVMH significantly improves
the OA from 76.91% to 79.41%. It also can be observed that
the proposed CNNDH network has the best classification result
amongst the other CNN frameworks. The CNNG architecture
has the highest OA of 99.06%, and the OA of CNNDH archi-
tecture is 99.05%, which is nearly the highest accuracy, and we
think the reason is that the accuracy of Oats class is low which
is caused by the random sampling. Also, the proposed method
generates the best accuracy of class 3, class 5, class 8, class 10,
class 13, and class 14, especially the accuracy is 100% of class
8 and class 13.

For the Salinas Valley data the training sample percentage
is 4.5%, the drop out rate is set to 0.5, and the sample size of
the dataset is fixed as 13 x 13. The classification results with

different methods are shown in Fig. 10, Table V shows the ac-
curacy of each class and OA of Salinas Valley. To see the classi-
fication results more clearly, we show the zoomed region result
of each of the CNN methods by selecting a partiuclar region of
interest from Salinas Valley scene. The classification results of
class 5 (painted metal sheets) and class 3 (gravel) colored by
pink and light blue in the extracted zoomed-in areas in Fig. 6
showed that the CNNDH framework generates the best perfor-
mance. Objectively, we can see that our CNNDH architecture
has the highest OA of 99.73%, and the proposed method gener-
ates the best accuracy of class 3, class 11, and class 13 especially.
It can be seen that the CNN models with the hashing semantic
feature have better performance than the CNN method without
embedding the hash feature, which is listed in the 4-11 col-
umn of Table VI, whereby, CNNSH improves OA from 94.05%
to 97.85%, OA from 93.79% to 97.64% for CNNTH, OA from
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Fig. 10.
(h) CNNGH. (i) CNND. (j) CNNDH.

Classification results of University of Pavia with compared methods. (a) SVM. (b) SVMH. (c) CNNS. (d) CNNSH. (e) CNNT. (f) CNNTH. (g) CNNG.

TABLE VII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF UNIVERSITY OF PAVIA WITH ALL THE COMPARED METHODS (5%)

Class SVM SVMH CNNS CNNSH CNNT CNNTH CNNG CNNGH CNND CNNDH
POA%
1 86.56+1.64 88.381+0.69 91.49+3.18 98.27+1.46 97.62+0.44 99.45+0.36 90.53+17.62 99.82+0.33 98.82+0.38 99.79+0.2
2 92234132 92.094+0.96 97.55+0.81 09.88+0.04 99.44+0.91 99.81+0.28 99.84+0.21 99.92+0.09 99.4+0.61 99.96+0.05
3 86214044 8537+1.06  7474£10.62  96.53=1.66  86.84+11.53  9835£0.56  53.21+49.00  89.27+22.45  93.86£3.97 99.04+0.59
4 96.99+0.61 97.74+0.45 89.9247.7 99.140.78 98.17+0.55 99.7+0.23 95.146.16 98.09+2.93 97.69+1.98 99.62+0.36
5 99.7240.08 99.9+0.07 90.99+5.46 99.9+0.04 99.75+0.26 99.99:0.03 99.02+1.83 99.9+0.1 99.84+0.25 99.91£0.2
6 03.8240.73 95354028  88.67+7.17 99.83+0.02 97.7+4.08 99.96+0.04 99.9:0.1 99.34+1.15 99.46+0.35 99.710.62
95.1140.83 95.05+0.42 71.4+17.1 94.29+1.91 88.59+10.75 98.3841.77 95.61+4.31 97.04+5.76 90.2946.67 97.4+3.86
8 87.6541.12 88314123  89.48+7.63 97.97+1.48 93.94+6.93 99.16+1.17 99.38+0.57 99.53+0.15 98.5140.8 99.34£0.49
9 99.98+0.05 10040 81.8211.24  99.66+0.46 97.47+1.8 99.87+0.14  72.99+43.39 98.27+1 99.56+0.12 99.66-0.29
0A 91.6040.72 92.1640.39  91.843.52 99.07+0.26 97.4+1.49 99.6+0.34 94.9942.9 99.02+1.18 98.58+0.38 99.69£0.23

93.79% to 97.64% for CNNGH, and OA from 96.92% t0 97.73%
for CNNDH.

Fig. 11 illustrates the classification results of the University
of Pavia data with the CNN methods. In this experiment, we fix
the training sample percentage at 5%, the data size is 13 x 13,
and the drop out rate is 0.5. It can be seen that the classification
performance of SVMH is better than SVM, CNNSH is better
than CNNS, CNNTH is better than CNNT, CNNGH is better
than CNNG, CNNDH is better than CNND.

Table VII shows the accuracy of each class and OA of
Pavia dataset objectively, from the table, it is observed that our

CNNDH architecture has the best OA of 99.69%, and the
proposed method shows the best OA of class 2, 3, and 9 es-
pecially, which are 99.96%, 99.04%, and 99.69%.

Fig. 12 illustrates the classification results of the KSC data
with the CNN methods. In this experiment, we fix the training
sample percentage at 10%, the data size is 13 x 13, and the drop
out rate is 0.5. It can be observed that the classification perfor-
mance of CNNGH is better than CNNG and CNNDH is better
than CNND. The accuracy of each class and OA of KSC dataset
are shown in Table VIII objectively, it can be seen from the
table that our CNNDH architecture has the best OA of 95.01%,

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 13,2023 at 12:12:22 UTC from IEEE Xplore. Restrictions apply.



1876

) ®

Fig. 11.
(h) CNNGH. (i) CNND. (j) CNNDH.
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Classification results of Salinas Valley with compared methods. (a) SVM. (b) SVMH. (c) CNNS. (d) CNNSH. (e) CNNT. (f) CNNTH. (g) CNNG.

TABLE VIII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF KSC WITH ALL THE COMPARED METHODS (10%)

Class SVM SVMH CNNS CNNSH CNNT CNNTH CNNG CNNGH CNND CNNDH

Poa%
1 89.41£1.95 88.04+1.95 96.161+2.47 98.53+1.12 98.13£1.6 99.114+0.59 96.56+4.67 99.34+1.25 93.43+4.85 99.4+0.52
2 88.48+4.32 84.034+3.98 71.44+4.82 74.65+2.51 83.624+4.98 82.1449.54 60.99+34.97 85.27+4.82 87.4943.52 89.14+4.03
3 92.974+2.23 89.454+2.96 86.17+£2.57 86.56+5.16 91.02+2.52 91.024+2.39 63.21+40.63 94.611+4.8 89.3+0.59 93.524+2.11
4 76.59+4.17 74.21+4.95 79.054+2.91 77.86+3.52 85.71+1.09 76.9+8.04 75.87+9.87 72.8616.55 86.83+4.81 83.97+4.55
5 80.37+6.4 69.94+6.39 79.63+£2.26 76.77+3.87 84.35+2.03 77.52+4.84 86.831+1.88 84.47+5.12 84.35+3.96 82.11+1.19
6 80.61+1.47 66.381+4.83 81.66+2.49 68.21+7.81 86.11+7.92 79.214+9.38 64.541+37.43 76.421+7.06 84.98+4.12 84.89+3.5
7 96.38+2.06 95.244+2.94 88.00£3.96 84.76+6.25 99.621+0.85 92.76+5.58 98.86+1.24 87.244+7.21 99.431+0.85 93.33+4.9
8 92.9+1.64 88.49+3.37 84.22+4.4 87.19+3.27 94.481+2.99 84.324+3.54 53.23+49.03 91.6+5.34 95.27+1.01 88.63£2.18
9 94.58+1.38 9535+ 1.62 94.42+1.95 90.85+2.95 94.31+0.86 94.46+1.43 95.58+5.73 92.46+2.29 96.00+ 1.84 97734 0.6
10 94.164+1.69 89.65+3.03 90.59+4.27 89.16+2.92 93.91+2.09 96.194+1.26 95.84+2.87 93.66+1.57 96.831+1.47 96.194+2.27
11 97.76+0.99 98.04+0.52 99.62+0.4 99.384+0.27 99.284+0.29 98.940.78 99.24+0.39 99.81+0.2 99.81+0.2 99.334+0.57
12 93.48+2.29 92.21+3.81 94.354+1.93 95.63+2.92 97.38+2.2 98.49+0.92 97.224+2.57 91.814+3.3 97.1+£391 97.3+1.79
13 99.784+0.11 99.83+0.12 99.944+0.06 99.74+0.33 99.98+0.05 99.9640.06 99.98 1+ 0.05 99.8540.18 99.98+0.05 99.014+2.22

POA 92.484+0.48 90.08+0.83 91.561+0.45 91.12+0.83 94.924+0.59 93.34+1.16 87.75+5.86 93.1+0.79 94.8+1.61 95.0110.82

and the proposed method shows the best OA of class 1, 2, 6, and
9 especially, which are 99.40%, 89.14%, 84.89%, and 97.73%.

The training time of all the versions of CNNs proposed to
compare the performance in Section II is shown in Fig. 13. It
is observed that the training time is related to the size of the
image and the total number of the samples, in particular CNNDH
has the longest training time for the Salinas data, while Purdue

data has the smallest training time for CNNS model. And it can
be observed that the models with hashing codes CNNDH has
almost the same time as the ones without semantic hash features
of CNND, which means we can have better performance with
no more time cost of CNNDH.

From the above experiments, it can be clearly concluded that
the classification accuracy has better performance of HSIC with
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Fig. 12.  Classification results of KSC with compared methods. (a) SVM. (b) SVMH. (c) CNNS. (d) CNNSH. (e) CNNT. (f) CNNTH. (g) CNNG. (h) CNNGH.
(i) CNND. (j) CNNDH.

T 1 L T —T | TABLE IX
— = %?ﬁn OA CALCULATED FROM THE CLASSIFICATION RESULTS OF

Kksc b ] | = GNNTH | PURDUE WITH THE COMPARED METHODS
E 1 —ad
=== CNNGH
S CNND
[ S— CNNOH | Class wpn MugNet ooy CNNS CNNT CNNG CNND
Por% i H H H H
1 100.0 100.0 99.56 7739 8739 92.17 80.00
pava | — i 2 81.88 78.34 82.57 84.82 91.78 95.10 99.01
3 87.00 89.88 47.18 88.99 90.67 96.94 97.86
4 9921 99.09 71.43 85.99 90.63 9527 96.03
5 90.53 93.38 96.28 91.39 94.99 9433 95.65
6 9721 99.16 4736 97.15 98.52 98.41 98.66
carach ; | 7 100.0 99.85 72.85 72.86 73.57 99.29 79.29
[ ] 8 99.98 99.94 75.45 99.37 99.96 100.00 100.00
9 100.0 100.0 7535 77.00 83.00 97.00 85.00
10 88.97 90.20 100.00 92.67 95.23 96.67 98.02
11 83.97 85.17 80.47 9229 95.85 94.61 97.84
12 87.61 95.01 100.00 85.40 9133 93.76 9737
Purdue f= — ! 13 99.84 99.89 4853 99.90 99.61 99.90 99.41
14 96.70 98.78 53.90 99.53 99.37 99.60 99.79
-‘ 15 98.46 99.47 86.55 94.92 96.58 96.42 9233
0 200 200 500 300 7000 1200 16 99.75 99.57 99.06 96.77 98.49 98.71 99.35
Timel(s) POA 8955 90.65 64.19 92.14 95.20 9637 97.93
AA 94.44 95.48 77.28 89.78 92.54 96.76 94.73

Fig. 13. Training time of the above CNN frameworks.

E. Comparison With the State-of-the-Art CNN Architectures

all the CNNs framework embedded hash semantic features than In this part, we compare the proposed model with the other
the original CNNs, and it can be observed that the CNNDH three state-of-the-art CNN models [35]-[37] on the Indiana Pur-
classification framework has better performance than other due dataset. In [35] and [37], the number of the training sample
CNN methods. of each class is 20, in [36], only 3 samples per class is chosen
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of training samples on three datasets.

in the most extreme case, other numbers of sample per class are
different from 4 to 15. The sample data size of H2Fis 1 x 1 in
[35], Pan et al. processed the spectral and spatial separately in
Mugnet model [37], the sample size for spectral information is 1
x 1, and the size for spatial training is 3 x 3, the sample data size
in [36]is 5 x 5 and the size of convolution kernelsis 1 x 1 in the
convolution layer. The sample percentage of this experiment of
our CNN networks is 1%, the size of training sample is 13 x 13
with spatial and spectral information processed simultaneously.
The OA results are shown in Table IX, it can be observed than
the proposed model has the best performance than the compared
CNN networks.

E. Comparison of the Different Size of the Training Sample

Next, we evaluate all the eight CNN networks with different
size of sample data. The patch sizes of input data of four data sets
aresetto7 x 7to 19 x 19. The percentages of the training set of
Purdue Indiana Indian Pines Scene, Salinas Valley, Pavia dataset,
and KSC are set to 10%, 4.5%, 5%, and 10%, respectively, the
drop out rate is fixed to 0.5 for the three datasets. Fig. 10 shows
the OA obtained by our proposed network with the different
size of training samples on three datasets, it can be observed
that OA varies as the drop out rate changes. Fig. 14 illustrates
how the sizes of the training sample influence the effectiveness
of the overall performance of relevant image datasets. It can be
observed that the size of 13 x 13 produces the best classification
results for the Purdue and the Pavia datasets, the specific OA is
99.05%, and 99.6%. For Salinas, the best OA is 98.76% with the
size 17 x 17, and for KSC, the best OA gets 96.57% when the
size of training sample is 19 x 19. For the four datasets, the OA
1896.82%, 94.13%, 98.18%, 80.73%, when the size is decreased
to the patch size of 7 x 7.

G. Comparison of the Drop Out Rate

By randomly deleting some neurons of the fully connected
layer, drop out policy can relieve the over-fitting problem,
therefore the effectiveness of the drop out rate is evaluated in this
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section. The proposed CNNDH networks are compared with dif-
ferent drop out percentage. The size of the training set of Purdue
Indiana Indian Pines Scene, Salinas Valley, University of Pavia,
and KSC dataset is set to 10%, 4.5%, 5%, and 10%, respectively,
the sample size of the three datasets are fixed as 13 x 13. Fig. 15
shows OA obtained by the CNNDH network with different drop
out rates of training samples on three datasets, it can be seen that
OA varies as the drop out rate changes. Figs. 10—12 illustrate the
comparison of different drop out rate of the three datasets. It can
be observed that the drop out rate on 0.5 generates the best result,
it leads the best OA of all the three datasets, specific, the OA for
the Purdue data is 99.05%, the OA of Salinas data is 98.65%, and
for the Pavia data, the OA is 99.69%. When the drop out rate is
0.3, it generates the lowest value, the OA is worst of Purdue data
and Pavia data (96.02% and 99.08%, respectively), while when
the droprate is 0.4, it brings the worst OA (97.83%) of the Salinas
data, the best OA of KSC data is 95.71% when the drop out rate
is 0.6, and the drop out rate of 0.4 brings the worst OA (94.23%).

H. Effect of Different Numbers of Training Samples

In this section, we analyze the evolution of the impact of the
different portion of the training sample of the three datasets in the
proposed CNN. The labeled pixels for each class are randomly
selected as training samples. For the Indian Pines and KSC,
different percentages of the training sample are changing from
1% to 10%, and for Salinas image, the change is from 1% to
5%, and for the University of Pavia image, the portion changes
from 1% to 5%. The drop out rate of Purdue, Salinas, Pavia,
and KSC are all set to 0.5, the sample size of the four datasets
are fixed as 13 x 13. The OA of the different portion of training
sample with eight CNN networks of the four datasets is shown in
Figs. 16-19, it can be seen that the performances of all methods
generally improve as the numbers of training samples increase.
Especially, for Purdue Indiana Indian Pines Scene, the best OA is
99.05% when the percentage is 10%, for Salinas Valley, the best
OA is 98.65% when the percentage is 4.5%, for Pavia dataset, the
OA can reach 99.73% when the percentage is 1%, for KSC data,
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Fig. 17.  OA (%) obtained by all CNN networks with different proportions of
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the OA of 95.24% is much better than others when using 9%
labeled samples as training set. The CNNDH networks generate
the robust performance even when the training set is very small
for the datasets. In addition, we can observe that the proposed
CNNDH method show robust improvement over the other CNN
architectures with the same number of training samples.

Three differences between the proposed classification frame-

work and the other CNN literature are worth mentioning.

1) In addition to the spectral-spatial information, extracted
semantic features cooperated jointly can significantly im-
prove the classification accuracy in the proposed CNN
framework.

2) Semantic feature extraction for hyperspectral images clas-
sification focused on segmentation method and transfor-
mation analysis. In stead of region-based or superpixel
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Fig. 19.  OA (%) obtained by all CNN networks with different proportions of
training samples on KSC.

segmentation profile or PCA profile, in this paper, we ex-
tracted hashing code as salient significance by hashing
learning constrained by Fisher-like regularization term.
3) GAP layer is adopted for regularization of the entire net-
work structure to prevent the overfitting problem, however,
in this paper, due to the fact that hashing code provide se-
mantic information, the CNN network with the fully con-
nected layers generates more stable convolutional feature
including semantic information has better performance
compared to the GAP layer included framework.

V. CONCLUSION

In this paper, a CNN hyperspectral image classification
method with hash semantic feature extraction method was pro-
posed, which can encode the hyperspectral data to obtain the
semantic feature by hashing learning with the defined discrimi-
native similarity constraints. Meanwhile, we designed a simpler
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CNN to classify the HSI embedded with semantic feature map,
in which a deconvolution layer is contained to enhance the de-
scription of the deep feature map. The real hypers image experi-
mental results illustrate that the proposed CNN method achieves
the best image classification performance of the four popular
testing datasets. Also, the CNN frameworks embedding of the
extracted hash features show higher performance of classifica-
tion than the CNNss without hashing features. In the future work,
we plan to perform band selection to choose the salient bands be-
fore fusion with the extracted hashing codes to save storage and
decrease training time. Moreover, taking advantage of hierar-
chical semantic feature to improve better performance for HSI
classification remains a problem to be investigated, therefore,
our further work will focus on extracting contextual features of
hashing semantic feature hierarchically.
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