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Iterative Target-Constrained Interference-Minimized
Classifier for Hyperspectral Classification
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Abstract—Despite the fact that many approaches to hyperspec-
tral image classification are reported, specifically spectral–spatial
based methods, this paper presents a rather different approach
from a viewpoint of mixed pixel classification, referred to
iterative target-constrained interference-minimization classifier
(ITCIMC), which includes an iterative Gaussian filtered feedback
process to capture the spatial contextual information so as to
improve hyperspectral image classification for multiple classes at
one-shot operation. In order to evaluate classification performance
more effectively, new performance measures other than commonly
used overall accuracy (OA) are introduced, particularly, precision
rate (PR), misclassification (MC) rate which have been overlooked
in hyperspectral image classification. To illustrate the differences
among OA, MC rate, and PR, two concepts of a priori classification
and a posteriori classification are also proposed from a statistical
signal processing point of view. As shown by experiments,
ITCMC generally performs significantly better than the existing
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spectral–spatial hyperspectral image classification techniques in
terms of PR and MC rate at the expense of slight loss of OA.

Index Terms—Hyperspectral image classification, iterative
TCIMC (ITCMIC), misclassification (MC) rate, Otsu’s method,
overall accuracy (OA), precision rate (PR), target-constrained
interference-minimization classifier (TCIMC), target-constrained
interference-minimization filter (TCIMF).

I. INTRODUCTION

ONE of the major tasks in hyperspectral data exploitation
is image classification [1]. However, when mixed pixel

classification is used to perform hyperspectral image classifi-
cation for class membership assignment it generally does not
work effectively in [1, Ch. 16] and [2]. It is even worse when
a hyperspectral image is heavily mixed due to low spatial res-
olution such as Purdue Indiana Indian Pine data [3], [4] in [1]
and [2]. Since mixed pixel classification is generally pixel-based
and estimates abundant fractions of material substances present
in a single pixel vector, its classification is usually performed
by thresholding its found abundance fractions to produce class-
membership maps. When these abundance fractions are close or
relatively low, two scenarios not encountered in classification
will occur. One is that if the threshold is set too low, it may
result in multiple-class assignment. On the other hand, if the
threshold is set too high, it may be very likely that no class
assignment can be made. Both cases are referred to as rejection
class in pattern recognition such as optical character recogni-
tion and biometric recognition. Therefore, finding an appropri-
ate threshold for mixed pixel classification is very challenging.
As a consequence, on many occasions mixed pixel classification
does not perform classification as well as pure-pixel classifica-
tion such as maximum likelihood classification [5], [6] because
the former does not take into spatial information into account,
while the latter does. Accordingly, using mixed pixel classifica-
tion to perform image classification is generally not preferable
or dismissed if hyperspectral images contain important spatial
contextual information attributed to classification. This leads to
the development of many spectral–spatial techniques [7]–[28]
which use joint spectral and spatial information to perform clas-
sification. Most notable are the spectral–spatial based methods
which use support vector machine (SVM) for spectral classi-
fication and then follow up with spatial techniques to capture
spatial contextual information to complete hyperspectral im-
age classification. Unfortunately, SVM is a pure pixel-based
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Fig. 1. Diagram of implementing ITCIMC.

spectral classifier, which directly produces classification maps
and does not really take full advantage of abundance fractions
of material substances present in a single pixel vector that may
be crucial to actually determine class memberships. To address
this issue, we reinvent a wheel by reviving mixed pixel classifi-
cation in a novel way. Specifically, we look into a mixed pixel
classifier, called target-constrained interference-minimized fil-
ter (TCIMF) [29] which is now available in the latest version
of the most widely used popular ENVI software developed by
analytical imaging and geophysics (AIG). It estimates the abun-
dance fractions of multiple material substances simultaneously.
If we consider each material substance to represent a spectral
class, the material abundance fractions provided by TCIMF for
data sample vectors can be used as the likelihood of data sample
vectors to be assigned to their classes specified by particular ma-
terial substances. With this interpretation, the resulting TCIMF
can be further used as a classifier, referred to target-constrained
interference-minimized classifier (TCIMC). However, this ad-
vantage is offset by the fact that TCIMC does not take into
account spatial information in classification. To resolve this is-
sue, a Gaussian filter is introduced into TCIMC in such a way
that the TCIMC-mixed pixel classification map is further being
processed by Gaussian filters to capture the spatial informa-
tion. This Gaussian-filtered TCIMC-mixed pixel classification
maps are then used as additional band images to be fed back
to create a new hyperspectral image cube for TCIMC to be
reprocessed again for next iteration. Such a process of repeat-
edly implementing TCIMC by feeding back Gaussian-filtered
TCIMC-classification maps in an iterative manner is called iter-
ative TCIMC (ITCIMC). At each iterative stage, ITCIMC also
performs classification using a commonly used thresholding
technique, Otsu’s method [30] to produce classification maps
for classes specified by each of material substances. These Otsu-
thresholded TCIMC-classification a stopping rule maps can be
further used to provide stopping rule to automatically terminate
ITCIMC. Fig. 1 depicts a diagram of implementing ITCIMC.

In addition to the new development of ITCIMC, this pa-
per also introduces several new performance measures to better
evaluate the classification performance. Over the past years OA,
AA or kappa coefficient are major classification criteria to mea-
sure the classification performance. This is mainly due to the
fact that the classification is performed only based on classes
of interest while discarding the effect of the background (BKG)
class. However, such practice may only be valid when there
is prior knowledge about the BKG class to allow users to re-
move the BKG from consideration. In order to address the BKG
class issue more effectively, three specific new performance

classification measures are also introduced other than OA. One
is misclassification (MC) rate which calculates the rate of mis-
classifying data samples in a particular class into other classes.
Its role is very similar to false alarm probability PF in signal
detection theory [31]. Another is accuracy rate (AR) which ex-
tends OA to include the BKG class as a single separate class
for classification. A third one is an introduction of new concept,
called precision rate (PR) developed to evaluate the effective-
ness of a classifier which cannot be measured by OA or AR.
Like AR this new measure, PR also includes the BKG class for
classification. Nevertheless, PR and AR are two separate con-
cepts and one does not imply another. In order to illustrate the
differences among OA, MC rate, AR, and PR for hyperspectral
image classification, two concepts of a priori and a posteriori
concepts from a statistical signal processing point of view are
developed. When OA is used as a criterion for classification,
the resulting classification is called a priori classification as
opposed to a posteriori classification which uses PR as clas-
sification measure. As demonstrated by experiments such as a
priori classification by OA and a posteriori classification by
PR provide quite different insights into the classification, which
have been overlooked in hyperspectral image classification in
the past.

II. HYPERSPECTRAL MIXED PIXEL CLASSIFICATION

Assume that a hyperspectral image is represented by a col-
lection of image pixel vectors, denoted by {ri}Ni=1 where
ri = (ri1 , ri2 , . . . , riL )T for 1 ≤ i ≤ N is an L-dimensional
vector, N is the total number of pixels in the image and L is the
total number of spectral bands.

A. Linearly Constrained Minimum Variance

Suppose that t1 , t2 , . . . , tp are p specific target signatures
of interest, each of which specifies a particular target class.
We can now form a target class signature matrix, denoted by
T = [t1t2 . . . tp ]. The goal is to design a finite impulse response
(FIR) linear filter specified by an L-dimensional weighting vec-
tor w = (w1 , w2 , . . . , wL )T that minimizes the filter output en-
ergy subject to the following constraint:

TT w = c where tT
j w =

L∑

l=1

wltjl = cj for 1 ≤ j ≤ p (1)

where c = (c1 , c2 , . . . , cp)T is a constraint vector.
Now, let yi be the output of the designed FIR filter with the

input ri . Then, yi can be expressed by

yi =
L∑

l=1

wlril = wT ri = rT
i w. (2)

According to the LCMV beamformer [32], we can design
an LCMV-based target detector using (1) which minimizes the
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following average energy of the filter outputs {y1 , y2 , . . . , yN }:

(1/N)
N∑

i=1

y2
i = (1/N)

N∑

i=1

(
rT

i w
)T

(riw)

= wT

(
(1/N)

N∑

i=1

rirT
i

)
w = wT RL×Lw (3)

subject to the constrained (1), specifically,

min
w

{
wT RL×Lw

}
subject to TT w = c (4)

where RL×L = (1/N)
∑N

i=1 rirT
i is the global autocorrelation

sample matrix of the hyperspectral image. The solution to (4) is
obtained in [33] by

wLCMV = R−1
L×LT

(
TT R−1

L×LT
)−1

c (5)

which gives rise to an LCMV target detector δLC M V (r) for each
hyperspectral image pixel vector r given by

δLCMV(r) =
(
wLCMV)T r. (6)

Apparently, the LCMV detector specified by (6) is not a clas-
sifier. In order to make an LCMV detector and LCMV classifier,
we introduce a set of constraint vectors, denoted by {cj}pj=1 ,
where each cj = (0, . . . , cj , . . . , 0)T

1×p is a p-dimensional col-
umn vector with “cj ” in the jth component and “0”s in all
other components to specify a particular class Cj . Substitut-
ing {cj}pj=1 for the constraint c in (4) for 1 ≤ j ≤ p yields the
following constrained p-class ({Cj}pj=1) classification problem:

min
w j

wT
j RL×Lwj subject to TT wj = cj for 1 ≤ j ≤ p (7)

where wj is used to classify class Ci . The optimal solution to
(7), wLCMV

j can be obtained in [32] and [33] by

wLCMV
j = R−1

L×LT
(
TT R−1

L×LT
)−1

cj . (8)

A classifier that uses the set of {wLCMV
j }pj=1 specified by (8)

to classify p classes using p class signatures in T is called an
LCMV classifier.

B. Target-Constrained Interference-Minimized Classifier

One drawback of the LCMV classifier is that if there is prior
knowledge about undesired target signal sources, it does not take
advantage of such knowledge by annihilating these target signal
sources as OSP does in [34]. To remedy this shortcoming, an ap-
proach, called TCIMF was developed in [29] to detect multiple
target signal sources while also eliminating a set of undesired
signal sources. Its idea combines CEM and OSP by expanding
the unity vector 1 to a vector (1

0 ) = (1, 1, . . . , 1, 0, 0, . . . , 0)T

such that one component “1” is used to constrain a particular
desired target signal source and one component “0” is used to an-
nihilate the undesired signal source. By virtue of such constraint
vector (1,0)T , TCIMF can enhance desired target detectability
by simultaneously eliminating effects caused by undesired sig-
natures as well as minimizing the interfering effects resulting
from unknown signal sources such as BKG.

Now, we can extend TCIMF to TCIMC in a similar manner
that LCMV detector is extended to LCMV classifier. TCIMC
assumes that an image scene has two types of signal classes, D
(desired target classes) and U, (undesired target classes) plus
BKG in the data. The TCIMC implements a constraint vector
that can be used to simultaneously constrain D and U in such
a way that it can classify target signal classes specified by the
desired class signatures in D while eliminating the undesired
signal classes specified by undesired class signatures in U. As
a result, LCMV classifier described in Section II–A can be
considered as a special case of TCIMC where the constraint
vector used by LCMV is only used to class target signal sources,
but not to annihilate undesired classes specified by undesired
class signatures in U as proposed in TCIMC so as to enhance
the target classification. In order for TCIMF to perform mixed
pixel classification as TCIMC, we can augment the constrained
target signature vector to a constrained class signature matrix as
follows.

Let D = [d1d2 . . .dp ] and U = [u1u2 . . .uq ] denote the de-
sired class signature matrix and the undesired class signature
matrix, respectively. A constraint vector replaces the target sig-
nature matrix T in (4) with the desired-undesired class signature
matrix [DU]. In addition, the constraint vector c in (4) is also
replaced with the desired-undesired class signature constraint
vector c = (1T

p×1 ,0
T
q×1) as follows:

[DU] T w =
[
1p×1
0q×1

]
(9)

where 1p×1 is a p× 1 column vector with ones in all compo-
nents and 0q×1 is a q × 1 column vector with all zeros in its
components. Using (9) as a constraint imposed on (1) yields the
following linearly constrained optimization problem:

min
w

{
wT RL×Lw

}
subject to [DU]T w =

⌊
1p×1
0q×1

⌋
(10)

with the optimal weight vector wTCIMC given by

wTCIMC = R−1
L×L [DU]

(
[DU]T R−1

L×L [DU]
)−1

[
1p×1
0q×1

]
.

(11)
The classifier using the weight vector wTC IM C specified by

(11) is called TCIMC and can be implemented as

δTCIMC(r) = rT R−1
L×L [DU]

(
[DU]T R−1

L×L [DU]
)−1
[
1p×1
0q×1

]
.

(12)
In particular, if there are p classes needed to be classified

by p desired class signatures, d1 ,d2 . · · · ,dp , the sizes of the
class signature matrix T = [DU] = [d1d2 · · ·dpu1u2 · · ·uq ],
weight matrix, W = [w1w2 · · ·wp ] and constrained matrix
C = [c1 · · · cp ] are L× (p + q), L× p, (p + q)× p, respec-
tively, where cj = (0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0)T is a (p + q)-

dimensional vector for 1 ≤ j ≤ p. In this case, the constrained
class signature matrix can be specified by
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C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0 0
0 1 0 · · · 0 0
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

...

0 0 · · · 0 1 0
0 0 · · · 0 0 1
...

...
. . .

...
... 0

0 0 · · · . . . 0
...

0︸︷︷︸
class 1

· · · 0︸︷︷︸
class j

· · · 0︸︷︷︸
class p−1

0︸︷︷︸
class p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p+q)×p

.

(13)
Using (13), (12) becomes

δTCIMC(r) = rT R−1
L×L [DU]

(
[DU]T R−1

L×L [DU]
)−1

C.

(14)
The most important advantage provided by TCIMC is its

combination of both strengths of constrained energy minimiza-
tion (CEM) [32], [35], [36], and OSP [34] by suppressing BKG
as CEM does and also annihilating undesired signatures as OSP
does.

As a final comment, it is important to note that TCIMC only
requires the prior knowledge of the desired class signatures D
and undesired class signatures U which can be obtained in two
different sources, one from database or spectral library or the
other from class information such as training sample vectors.
Technically speaking, TCIMC deals with class signatures not
training sample vectors. For example, class signatures can be
obtained by the class sample means or averaging training sample
vectors from individual classes as will be demonstrated in the
following experiments.

III. ITERATIVE TCIMC

This section presents an iterative version of TCIMC, to be
called ITCIMC, which iteratively feeds back its Gaussian-
filtered TCIMC-mixed pixel classification maps to be added
to create new expanded sets of band images after each itera-
tion. The feedback loop is continued on until a stopping rule
is satisfied. Fig. 2 describes a graphic diagram of Fig. 1 which
implements ITCIMC with a feedback loop updating the desired
target signature matrix D, undesired target signature matrix U,
and the sample correlation matrix R from the Gaussian-filtered
TCIMC-mixed pixel classification maps iteratively. A detailed
step-by-step implementation of ITCIMC in Fig. 2 is given as
follows.

IV. STOPPING RULE FOR ITCIMC

In order to develop a stopping rule for ITCIMC, we need a
criterion that can tell when ITCIMC must be terminated. The
Tanimoto index (TI) defined in [37] can be used for this purpose
as follows:

TI(k) =
|Sk ∩ Sk−1 |
|Sk ∪ Sk−1 | (15)

ITCIMC
1. Initial condition: Let Ω(0) be the original band set, D(0)

be the original desired class signatures, and U(0) be the
original undesired class signatures. Let k = 1.

2. Implement δTCIMC
k on Ω(k) using D(k) and R(k) to

produce BTCIMC
k which is the classification map.

3. Use a Gaussian filter to blur |BTCIMC
k |, where

|BTCIMC
k | is the absolute value of BTCIMC

k . The
resulting image is denoted by Gaussian-filtered
TCIMC-classification map |GBTCIMC

k |.
4. Form a new hyperspectral image cube Ω(k) by

augmenting the hyperspectral image cube, Ω(k−1)

obtained at k− 1 iteration by adding the new
|GBTCIMC

k | obtained at the kth iteration, i.e.,
Ω(k) = Ω(k−1) ∪ |GBTCIMC

k | where the desired
signature matrix D(k) is updated by adding p new class
sample means from the TICMC-classified map
|GBTCIMC

k | and U(k) is also obtained similarly from
|GBTCIMC

k |.
5. Check if BTCIMF

k satisfies a given stopping rule to be
discussed in Section IV, go to step 7. Otherwise,
continue.

6. Form Ω(k+1) = Ω(k) ∪ { |GBTCIMC
k |}. Let k ← k + 1

and go to step 2.

7. ITCIMC is terminated and Otsu’s method is applied to
threshold |BTCIMC

k | into multiclass classification map.

where |S| is size of a set S, Sk , and Sk−1 are the kth thresholded
binary image of the kth TCIMC detection map, |BTCIMC

k | and
k − 1st thresholded binary image of the k − 1st TCIMC classifi-
cation map |BTCIMC

k−1 |. Fig. 3 describes a flowchart of a stopping
rule using TI as a measure.

V. PERFORMANCE MEASURES FOR CLASSIFICATION

How to evaluate classification performance is crucial to jus-
tify if a classifier is effective. In the past, OA, AA, or kappa
coefficient have been widely used for hyperspectral image clas-
sification. Unfortunately, these criteria only tell half of a story.
This section provides another half of a story to complete an en-
tire picture of how a classifier can be evaluated from two view
points of statistical signal processing, a priori and a posteriori
concepts.

A. Accuracy and Precision Rates

In general, a classifier can be evaluated by two criteria. One is
that for a given set of known data samples how well a classifier
performs in sense of their class accuracy, known as AR. This
can be considered as a priori classification performance since
the classification is evaluated based on the dataset that is known
a priori and provided by the known ground truth. The other is
that for a given set of data samples that are already classified by
a classifier how effectively this classifier performs in the sense
of precision, known as PR. This type of classification is referred
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Fig. 2. Graphic implementation of ITCIMC in Fig. 1.

Fig. 3. Flowchart of a stopping rule.

to as a posteriori classification because the classification
performance is evaluated based on classified data samples
which are produced by a classifier a posteriori.

More specifically, let {Cj}pj=1 be p classes of data samples
of interest provided by the ground truth, in which case {Cj}pj=1

can be considered as a priori classification information. Also, let
{Ĉj}pj=1 be the p classes of data samples that are being classified

by a classifier, in which case {Ĉj}pj=1 can be considered as a
posteriori classification information produced by a classifier
where the hat “ˆ” indicates “a posteriori.” By virtue of these
two a priori and a posteriori classes, {Cj}pj=1 and {Ĉj}pj=1 ,
we can define the following measures that are derived from a
classification point of view. Specifically, we use the subscript
of n, “ij” to present that the “i” indicates for the ith classified
class provided by a posteriori class information produced by a
classifier and the “j” indicates the jth known class provided by
the ground truth as a priori classification.

1) p = the number of classes.
2) nj = the number of data samples in the jth class, Cj ;
3) n̂j = number of dample samples classified into Ĉj .
4) nij = the number of data samples in the jth class, Cj to

be classified into the ith class Ĉi .
5) n̂ij = the number of data samples in the ith class, Ĉi

which are supposed to in the jth class, Cj .
6) njj = the number of data samples in the jth class cor-

rectly classified into the jth class.
7) n̂i =

∑p
j=1 n̂ij .

8) nj =
∑p

i=1 nij .
9) N = total number of data samples, N =

∑p
j=1 nj =∑p

i=1 n̂i .
10) p(Cj ) = prior probability of Cj = nj

N .

11) C̃j = the set of data samples in the jth class but mis-
classified into other classes.
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12) Cij = the set of data samples in the jth class, Cj but
misclassified into the ith class Ci .

PC (Cj ) = correct rate of classifying the jth class Cj

= p(Cjj |Cj ) =
njj

nj
. (16)

PC = correct classification rate

=
p∑

j=1

(nj

N

) njj

nj
=

1
N

p∑

j=1

njj . (17)

PMC(Cj ) = p(C̃j )

= rate of misclassifying the jth class, Cj

=
p∑

i=1,i �=j

p(Cij |Cj ) =

∑p
i=1,i �=j nij∑p

i=1 nij

= 1− p(Cjj |Cj ) = 1− PC (Cj ). (18)

PMC = misclassification rate

=
p∑

j=1

p(Cj )PMC(Cj ). (19)

For a given ith classified class Ĉi , we can define an a poste-
riori measure, PR denoted by Pprecision(Ĉi) as

Pprecision(Ĉi) = p({Cj}pj=1 |Ĉi) =
n̂ii∑p

j=1 n̂ij
(20)

Pprecision({Cj}pj=1 |
{

Ĉi

}p

i=1
) =

p∑

i=1

p(Ĉi)pprecision(Ĉi)

=
1
N

p∑

i=1

n̂ipprecision(Ĉi).

(21)

On the other hand, for a given ground truth class Cj , we can
define a priori measure, AR denoted by PA (Cj ) as

PA (Cj ) = accuracy of classifying the jth class Cj

= p
({

Ĉi

}p

i=1
|Cj

)
=

njj∑p
i=1 nij

=
njj

nj
= PC (Cj )

(22)

POA=P
({

Ĉi

}p

i=1
| {Cj}pj=1

)
=

p∑

j=1

p(Cj )p
({

Ĉi

}p

i=1
|Cj

)

=
1
N

p∑

j=1

nj

(
njj∑p
i=1 nij

)
=

p∑

j=1

p(Cj )PA (Cj ) = PA .

(23)

It should be noted that according to (23), POA and PA are
the same measure if all the classes {Cj}pj=1 are considered as
classes of interest. Therefore, the classification is performed
according to PMC in (17)–(19), PA in (22), and POA (23) is
called a priori classification because these criteria assume that
the ground truth class knowledge is given, i.e., {Cj}pj=1 . On the

Fig. 4. AR, PR, and OA calculated from p-class confusion matrix.

other hand, the classification is performed based on Pprecision in
(20), (21) is called a posteriori classification because Pprecision

makes use of classes {Ĉj}pj=1 that are already classified by a
classifier.

B. Accuracy and Precision Rates Calculated From Confusion
Matrix

A common criterion to measure the classification is to use
a confusion matrix shown in Fig. 4 where the element nij in
the ith row and the jth column represents the number of data
samples in the jth class to be classified into the ith class.

For example, the first row represents Pprecision of a given
classified class, Ĉ1 obtained by (20) using {n1i}pi=1 to cal-
culate Pprecision(Ĉ1) = p({Ci}pi=1 |Ĉ1) = n̂1 1∑ p

i = 1 n̂1 i
. Similarly,

the first column represents the AR of a given known class C1
from the ground truth obtained by (22) using {nj1}pj=1 to calcu-

late PA (C1) = p({Ĉj}pj=1 |C1) = n1 1∑ p
j = 1 nj i

. Finally, the diago-

nal elements represents POA calculated by (23) using {nii}pi=1 .
It should be noted that a priori classification is a classifica-

tion based on the given ground truth, that is, all labeled data
samples are provided a priori and the classification is evaluated
according to their memberships. By contrast, a posteriori classi-
fication is performed based on observations, which are classified
data samples by a classifier and the classification performance is
then evaluated in accordance with the ground truth. Therefore,
there is a significant difference between a priori classification
which yields OA and a posteriori classification which gives arise
to PR.

C. Effect of BKG Class on Classification

In Sections V–A and V–B, the classes of interest make up the
entire data samples. However, due to significant high spectral
resolution many unknown data samples can be uncovered by
a hyperspectral imaging sensor but cannot be labeled. In this
case, when it comes to hyperspectral image classification, these
unlabeled data samples are generally grouped into a BKG class
which is considered as an uninteresting class. As a consequence,
such BKG class is usually excluded from hyperspectral image
classification. Unfortunately, on many occasions, the BKG class
plays an integral part of the data, specifically in defense appli-
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Fig. 5. PA, Pprecision, and POA calculated p-class confusion matrix along with BKG class to be considered as a single separate class.

cations where subtle BKG information provides crucial infor-
mation. Discarding or ignoring the BKG class may result in a
loss of significant information. Most interestingly, it is the BKG
class that attributes to MC, i.e., PMC in (18) and (19), an issue
which has been overlooked in supervised hyperspectral image
classification. Fig. 5 is a modified confusion matrix from Fig. 4
by separating the BKG class from classes of interest ({Cj}pj=1)
to stand alone as a single class.

As should be noted in Fig. 5, POA is only defined on the
classes of interest as many reports did in the literature where the
BKG class was considered as a class of no interest and were not
to be considered for classification. However, this is not true for
PA and Pprecision since they are designed to account for the effect
of BKG class on other classes of interest including the BKG
class. In other words, when the BKG class is removed from
consideration in PA, PA is then reduced to POA. In particular,
MC rate, PMC in (18) and (19) and Pprecision in (20) and (21) were
not considered in [18].

D. TI Calculated by Accuracy and PRs

As noted in ITCIMC, the stopping rule is determined by the TI
defined by (15). By taking advantage of the concepts provided
by Pprecision in (20) and PA in (22) it turns out that TI can be
actually calculated by

TI =
p∑

j=1

|Cj ∩ Ĉj |
|Cj ∪ Ĉj |

p(Cj ) (24)

which makes a perfect sense. In other words, TI measures the
discrepancy between a priori classes {Cj}pj=1 , which are used

to calculate PA and a posteriori classes {Ĉj}pj=1 , which are used
to calculate Pprecision. As their overlapped class sample vectors
Cj ∩ Ĉj achieve a certain level, ITCIMC is terminated. This

implies that when the two rates PA and Pprecision are sufficiently
close, ITCIMC has completed its task and is then terminated.

VI. REAL HYPERSPECTRAL IMAGE EXPERIMENTS

Three real hyperspectral images were used for experiments,
Purdue University’s Indiana Indian Pines, Italy and Salinas,
University of Pavia, each of which has its own unique fea-
ture characteristics worth being explored. According to the
recent work [18], a comprehensive comparative analysis was
conducted among most recently developed spectral–spatial
techniques where the four EPF-based techniques, EPF-B-c,
EPF-G-c, EPF-B-g, and EPF-G-g were shown to be best
classification techniques with “B” and “G” used to specify
bilateral filter and guided filter, respectively, and “g” and “c”
indicate that the first principal component and color composite
of three principal components are used as reference images
[18]. Therefore, in the following experiments, the performance
of ITCIMC will be evaluated in comparison with these four
EPF-based techniques due to two main reasons. One is that
these four techniques are available on website and we could
reimplement them for comparison. Another is that these four
techniques were compared to other existing spectral–spatial
classification methods in [18] to show their superiority.

In the following experiments, ITCIMC was implemented in
four different versions depending upon how to make use of the
knowledge of undesired class signatures in U

1) ITCIMC-1: U is specified by the BKG mean;
2) ITCIMC-2: U is specified by the local sample mean of an

area extracted from the upper-right corner region with 30
sample vectors;

3) ITCIMC-3: U is specified by a single target found in
BKG by automatic target generation process (ATGP) [38],
U = [tATGP];
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Fig. 6. AVIRIS image scene: Purdue Indiana Indian Pines test site. (a) Band 186 (2162.56 nm). (b) Ground truth. (c) USGS Quadrangle map of the test site.

TABLE I
CLASS LABELS OF 17 CLASSES

class 1 (54) Alfalfa class 7 (26) grass/pasture-mowed class 13 (212) wheat
class 2 (1434) corn-notill class 8 (489) hay-windrowed class 14 (1294) woods
class 3 (834) corn-min class 9 (20) oats class 15 (380) bldg-grass green-drives
class 4 (234) corn class 10 (968) soybeans-notill class 16 (95) stone-steel towers
class 5 (497) grass/pasture class 11 (2468) soybeans-min class 17 (10659) BKG
class 6 (747) grass/trees class 12 (614) soybeans-clean

TABLE II
SPECIFICATIONS OF PARAMETERS USED BY ITCIMC FOR PURDUE

INDIAN PINES SCENE

D 16 class sample means

Class number 1–16
σ used in Gaussian filter 0.5 with window size 5× 5
Thresholding method Otsu
Stopping threshold (TI) 0.99

4) ITCIMC-4: U = ∅, i.e., no undesired class signature is
used.

A. Purdue Indiana Indian Pines

A real image to be used for experiments is a well-known Air-
borne Visible Infrared Imaging Spectrometer (AVIRIS) image
scene, Purdue Indiana Indian Pine test site is shown in Fig. 6(a).
Table I also tabulates all the specific types of 16 classes. It has
size of 145× 145 pixel vectors taken from an area of mixed
agriculture and forestry in Northwestern Indiana, USA, with
details of band and wavelength is given in caption. The dataset
used for experiments is available at website [3]. It was recorded
in June 1992 with 220 bands including water absorption bands
(bands 104–108 and 150–163, 220) which were removed in [20].
While the complete ground truth for this scene is unknown, it
is believed that there are no endmembers present in the scene
since the pixels in this scene are heavily mixed.

Table II tabulates specifications of parameters and various
methods used by ITCIMC where D in (9) consists of 16 class
sample means. Fig. 7 shows 16 class maps produced by four ver-
sions of ITCIMC, ITCIMC-1 with U specified by BKG mean,
ITCIMC-2 with U specified by local mean, ITCIMC-3 with U
specified by one ATGP-found target in BKG, ITCIMC-4 with
U = ∅ using Otsu’s thresholding method. According to visual

inspection based on the ground truth map in Fig. 6(b), the best
results in Fig. 7 seemed to be those produced by ITCIMC-3
and ITCIMC-4. As a matter of fact, the results in Fig. 7 sug-
gested that the less BKG information was used, the better the
classification was. Tables III and IV further tabulate respective
results produced by EPF-B-g, EPF-B-c, EPF-G-g, and EPF-G-c
and ITCIMC-1, ITCIMC-2, ITCIMC-3, ITCIMC-4 using five
performance measures PC (Ci) and PC in (16) and (17), PMC

in (19), Pprecision(Ĉi) and Pprecision in (20) and (21), POA in
(23), PA (Cj ) in (22) and PA in (23) in terms of percentage (%)
where the PC%, PMC%, and PCi

precision are shown in the three
columns under each method and POA and PA are shown in the
last two rows with the bold-faced values indicating the best re-
sults where PA (BKG) specifically emphasize the fact that BKG
is considered as a single and separate class for classification.

Interestingly, the quantitative study in Table IV further
showed that the best result was the one produced by ITCIMC-
4 with U = ∅ which did not use any BKG information in U.
This is due to the fact that some BKG information might con-
tain needed class information which has been eliminated by
U. In order to see how the spatial information provided by
Gaussian-filtered TCIMC improves classification ITCIMC-4 is
selected for illustration since it was the best version of TCIMC.
Fig. 8 shows progressive color classification maps produced by
ITCIMC-4, where the number of iterations indicated underneath
each figure. As we can see, when no spatial information is in-
cluded in TCIMC the classification result was poor as shown
at the first iteration in Fig. 8. As the Gaussian-filtered spatial
information was gradually added to the processed hyperspec-
tral image cubes via feedback loops during iterative processes,
the classification results began to improve until it satisfied the
stopping rule at the 12th iteration. In particular, initially there
were many scattering classified data sample vectors in the first
iteration and then the number of scattering data sample vectors
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Fig. 7. Classification maps by ITCIMC of Purdue data.

TABLE III
POA AND PA (BKG) PRODUCED BY EPF-B-C, EPF-B-G, EPF-G-C, AND EPF-G-G FOR PURDUE’S INDIAN PINES

Class EPF-B-g EPF-B-c EPF-G-g EPF-G-c

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 100.00 0.16 57.50 97.83 0.16 57.69 97.83 0.15 58.44 100.00 0.14 60.53
2 85.01 3.11 67.03 84.94 3.12 66.91 85.22 3.11 67.09 84.45 3.27 65.76
3 93.13 1.33 74.40 94.10 1.41 73.54 92.41 1.41 73.12 92.41 1.34 74.11
4 99.16 0.62 64.74 99.16 0.62 64.56 99.16 0.75 60.26 99.16 0.76 59.95
5 93.58 3.46 39.65 93.37 3.20 41.45 94.00 3.11 42.23 93.58 2.93 43.55
6 100.00 3.88 49.06 99.73 3.89 48.92 99.73 4.25 46.82 100.00 3.94 48.70
7 96.43 0.08 62.79 96.43 0.07 65.85 96.43 0.10 56.25 96.43 0.10 56.25
8 100.00 1.01 69.88 100.00 0.99 70.40 100.00 0.92 71.77 100.00 0.94 71.34
9 95.00 0.14 38.78 100.00 0.13 42.55 100.00 0.08 55.56 95.00 0.05 63.33
10 82.30 2.41 62.70 82.82 2.50 61.97 81.79 2.45 62.21 82.51 2.44 62.51
11 95.23 3.95 76.71 95.64 3.99 76.63 94.46 3.84 77.02 94.70 3.76 77.45
12 98.82 1.75 62.47 98.65 1.68 63.38 98.48 1.81 61.67 98.65 1.85 61.13
13 99.02 0.25 79.61 99.02 0.29 77.19 99.51 0.30 76.69 99.51 0.36 73.12
14 98.26 15.48 31.91 98.50 15.80 31.58 98.10 15.46 31.90 98.50 15.48 31.97
15 96.63 26.91 7.85 96.89 26.59 7.94 94.30 26.91 7.67 99.48 27.28 7.99
16 96.77 0.35 54.88 98.92 0.32 57.86 100.00 0.41 52.25 100.00 0.40 52.54
POA 94.83 95.33 94.99 94.60
PA (BKG) 46.23 46.47 46.31 46.12

was significantly reduced from first to second and then third
iterations. When it reached the sixth iteration and afterward,
only a few scattering data sample vectors were remained. This
phenomenon demonstrated why mixed pixel classification gen-
erally did not work effectively because those scattering data
sample vectors were result of mixed pixel classification on a
single pixel basis. If we included in spatial information pro-
vided by Gaussian filters these scattering data sample vectors
would disappear and correctly classified into classes to which
they were supposed to belong.

According to the ground truth in Table I, each of corn, soy-
bean, and grass has three different types. In this case, 16 classes
are divided into four subclasses, corn-like classes 2–4, grass-like
classes 5–7, and soybean-like classes 10–12, and other remain-
ing classes plus BKG class 17. Fig. 9 shows the spectral profiles
of these four classes plotted by 16 class means where the spec-
tral signatures of three corn classes are very close to each other
and so are the three soybean classes. As expected, classifying
these classes will be very challenging.

According to Tables III and IV, the best POA was the one
produced by EPF-B-c, while the best accuracy was produced
by ITCIMC using Otsu’s thresholding. As for the other
three performance measures, PC, PMC, and Pprecision, EPF-G-c
generally produced the best PC values for 8 out of 16 classes,

and ITCIMC produced best values of PMC and Pprecision almost
across board except class 9 whose best values of PMC and
Pprecision were produced by EPF-G-c. The most interesting find-
ing is PA defined in (23) which includes BKG classification into
OA. As shown in the last row of Table III, ITCIMC produced
nearly twice better Paccuracy than four EPF-based methods which
did not include BKG classification in their results in [18]. It is
known that OA has been the major performance measure to be
used to evaluate hyperspectral image classification [18], [20].
Unfortunately, OA only tells half of a story which does not
account for BKG classification but rather calculates the correct
classification of test data samples where both training samples
and testing samples come from the same class. That is, OA
does not include MC of data samples from other classes. To be
more specific, if we consider multiclass confusion matrix, OA
only calculates the correct classification rates for all classes
along the diagonal line without BKG, while discarding all MC
rates off diagonal line. Such MC rates are exactly the other half
story must be told in accuracy calculation. However, how to
address MC rates is challenging because there are ( c

2 ) = c(c−1)
2

combinations of MC rates, where c is the total number of
classes, which can be referred to as one against one strategy. An
alternative strategy is one against rest which considers a class of
interest as the desired class and all the rest of classes including
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TABLE IV
POA AND PA (BKG) PRODUCED BY FOUR DIFFERENT VERSIONS OF ITCIMC FOR PURDUE’S INDIAN PINES

Class ITCIMC-1 ITCIMC-2 ITCIMC-3 ITCIMC-4

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 95.65 0.07 74.58 95.65 0.07 75.86 95.65 0.06 77.19 95.65 0.06 77.19
2 90.39 0.70 90.20 94.75 0.55 92.67 95.73 0.63 91.47 96.01 0.61 91.96
3 86.47 0.55 86.47 95.43 0.39 91.04 96.51 0.47 89.40 96.99 0.46 89.74
4 91.87 0.02 98.26 99.16 0.08 93.25 98.73 0.10 91.76 98.73 0.09 92.86
5 60.59 0.19 88.92 89.23 0.15 93.29 89.44 0.17 92.70 89.44 0.16 92.90
6 77.30 0.78 78.59 96.99 0.39 89.96 96.99 0.40 89.85 97.12 0.39 89.97
7 100 0.04 77.78 100 0.05 73.68 100 0.04 75.68 100 0.04 75.68
8 98.14 0.10 95.56 98.95 0.09 96.14 98.74 0.10 95.93 98.74 0.10 95.74
9 95.24 0.08 52.63 100 0.08 54.05 100 0.08 54.05 100 0.09 52.63
10 85.10 0.33 92.77 90.23 0.39 91.74 93.21 0.39 92.07 93.93 0.40 91.85
11 85.67 21.23 38.63 93.65 0.79 93.99 94.62 0.92 93.18 94.70 0.78 94.17
12 80.66 0.16 94.15 95.28 0.30 90.11 94.95 0.31 89.81 95.45 0.33 89.43
13 93.78 0.04 95.61 98.54 0.07 93.52 98.54 0.07 93.52 98.54 0.07 93.52
14 59.47 2.55 62.52 92.96 0.24 96.16 92.96 0.21 96.63 93.52 0.19 96.89
15 83.26 0.05 97.10 90.67 0.08 95.37 90.67 0.06 96.42 90.67 0.06 96.69
16 80.70 0.07 85.98 98.92 0.09 83.64 98.92 0.08 85.19 98.92 0.07 85.98
POA 81.43 94.41 94.82 95.09
PA (BKG) 74.53 93.59 93.68 93.96

Fig. 8. Progressive color classification maps by ITCIMC-4 for Purdue’s Indian Pines scene.

Fig. 9. Spectral profiles of 16 class sample means in Purdue Indian Pines.

BKG class as the background (BKG). By doing so, a multiclass
confusion matrix is further simplified to a binary confusion
matrix in which case a standard binary hypothesis testing
problem can be applied. With this interpretation, we can include
the BKG class, class 17 as a new class, a case not considered
in [18]. In other words, we can consider the class of interest
as signal class specified by the alternative hypothesis H1 and
the BKG as the null hypothesis H0 . Then, PC is calculated
by the correct classification rate of samples from the signal
class whereas PMC is the false alarm rate defined as the rate
of misclassifying the samples from BKG into the signal class.
Such misclassified data samples are referred to falsely alarmed
or falsely classified data samples. The measures of PC (Ci) and
PC in (16) and (17), PMC in (19), Pprecision(Ĉi) and Pprecision

in (20) and (21), POA in (23), PA (Cj ) in (22), and PA in (23)

are particularly designed to address this issue. Based on these
five performance measures calculated in Tables III and IV,
ITCIMC-4 was the best to produce best values of PMC, Pprecision,
and PA, while EPF-G-c and EPF-B-c were the best to produce
best values of PC and POA, respectively. Therefore, generally
speaking, ITCIMC-4 is the best classification technique to deal
with correct classification and MC issues.

B. Salinas Scene

The Salinas image shown in Fig. 10(a) was captured by
the AVIRIS sensor over Salinas Valley, CA, USA, and with
a spatial resolution of 3.7-m per pixel with spectral resolution
of 10 nm.

The image has size of 512× 217× 224. Fig. 10(b), (c) shows
the color composite of the Salinas image and the corresponding
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Fig. 10. Ground-truth of Salinas scene with 16 classes. (a) Salinas scene. (b)
Color ground-truth image. (c) Ground truth class labels.

TABLE V
SPECIFICATIONS OF PARAMETERS USED BY ITCIMC FOR SALINAS SCENE

D 16 class sample means

Class number 1–16
σ used in Gaussian filter 0.5 with window size 5× 5
Thresholding method Otsu
Stopping threshold (TI) 0.99

ground truth class labels. The dataset used for experiments in-
cludes 20 water absorption bands, are 108–112, 154–167, and
224 which were also removed in [20]. Table V tabulates the spec-
ifications of parameters and various methods used by ITCIMC,
where D in (9) consists of 16 class sample means.

According to the ground truth in Fig. 10(c), 16 classes are
divided into 5 subclasses, weeds classes 1-2, fallow classes 3-
5, and lettuce classes 11-14, vineyard classes 15-16, and other
remaining classes plus BKG class 0. Fig. 11 shows the spectral
profiles of these 5 classes plotted by 16 class means.

Fig. 12 shows 16 class maps produced by 4 versions of
ITCIMC, ITCIMC-1 with U specified by BKG mean, ITCIMC-
2 with U specified by local mean, ITCIMC-3 with U specified
by one ATGP-found target, ITCIMC-4 with U = ∅ using Otsu’s
thresholding method. Like Purdue data experiments, the results
in Fig. 12 suggested that the less BKG information was used,
the better the classification was. As discussed in the Purdue data
experiments, we also used one against rest to calculate the five
performance measures, PC (Ci) and PC in (16) and (17), PMC in
(19), Pprecision(Ĉi), and Pprecision in (20) and (21), POA in (23),
PA (Cj ) in (22) and PA in (23) where the BKG class, class 0 is
also included for classification.

Tables VI and VII further tabulate respective results pro-
duced by EPF-B-g, EPF-B-c, EPF-G-g, and EPF-G-c and
ITCIMC-1, ITCIMC-2, ITCIMC-3, ITCIMC-4 using five per-
formance measures, PC (Ci) and PC in (16) and (17), PMC

in (19), Pprecision(Ĉi) and Pprecision in (20) and (21), POA in
(23), PA (Cj ) in (22), and PA in (23) in terms of percent-

age (%) where the PC%, PMC%, and PCi

precision are shown in
the three columns under each method and POA and PA are
shown in the last two rows with the bold faced values indi-
cating the best results, where PA (BKG) specifically emphasize
the fact that BKG is considered as a single and separate class for
classification.

In analogy with Table IV, the quantitative study in Table VII
also showed that the best result was the one produced by
ITCIMC-4 with U = ∅which did not use any BKG information
in U. This indicated that some BKG information might con-
tain crucial class information which was eliminated by U. In
order to see how the spatial information provided by Gaussian-
filtered TCIMC improves classification, ITCIMC-4 is selected
for illustration since it was the best version of TCIMC. Fig. 13
shows the progressive color classification maps produced by
ITCIMC-4 where the number of iterations indicated underneath
each figure. As we can see, when no spatial information is in-
cluded in TCIMC the classification result was poor as shown
at the first iteration in Fig. 13. As the Gaussian-filtered spatial
information was gradually added to the processed hyperspectral
image cubes via feedback loops during iterative processes, the
classification results began to improve until it satisfied the stop-
ping rule at the 19th iteration. In particular, initially there were
many scattering classified data sample vectors in the first itera-
tion and then the number of scattering data sample vectors was
significantly reduced from first iteration to second and third it-
erations. When it reached the ninth iteration and afterward, only
a few scattering data sample vectors were remained. This also
explained the dilemma of mixed pixel classification in classifi-
cation. However, this issue can be resolved by including spatial
information provided by iteratively applying Gaussian filters to
TCIMC-classification maps.

From Tables VI and VII, the best OA was the one produced by
EPF-G-c, while the best PA was produced by ITCIMC. As for
the other three performance measures, PC, PMC, and Pprecision,
EPF-G-c generally produced the best PC values for 14 out of 16
classes, and ITCIMC produced best values of PMC and Pprecision

almost across board except class 8 whose best values of PMC

and Pprecision were produced by EPF-G-c. In analogy with the
Purdue Indian Pines scene, ITCIMC-4 was the best to produce
best values of PMC, Pprecision, and PA. This also concludes that
ITCIMC-4 is generally the best classification technique to deal
with correct classification and MC issues.

C. University of Pavia

The University of Pavia image capturing an urban area sur-
rounding the University of Pavia, Italy, was recorded by the
ROSIS-03 satellite sensor. It is of size 610× 340× 115 with
a spatial resolution of 1.3-m per pixel and a spectral coverage
ranging from 0.43 to 0.86 μm with spectral resolution of 4 nm
(12 most noisy channels were removed before experiments).
Nine classes of interest plus BKG class, class 0 are considered
for this image. Fig. 14 shows the University of Pavia image in
(a), three-band color composite in (b), and ground truth class
labels in (c). Table VIII tabulates specifications of parameters
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Fig. 11. Spectral profiles of 16 class sample means in Salinas scene.

Fig. 12. Classification maps by four different versions of ITCIMC for Salinas data.

and various methods used by ITCIMC, where D in (9) consists
of nine class sample means.

Fig. 15 shows nine class maps produced by four versions of
ITCIMC, ITCIMC-1 with U specified by BKG mean, ITCIMC-
2 with U specified by local mean, ITCIMC-3 with U specified
by one ATGP-found target, ITCIMC-4 with U = ∅ using Otsu’s
thresholding method. Unlike Purdue and Salina data experi-
ments, differences in the results in Fig. 15 are not appreciable
by visual inspection.

As discussed in previous experiments, Tables IX and X fur-
ther tabulate respective results produced by EPF-B-g, EPF-B-c,
EPF-G-g, and EPF-G-c and ITCIMC-1, ITCIMC-2, ITCIMC-
3, ITCIMC-4 using five performance measures PC (Ci) and PC

in (16) and (17), PMC in (19), Pprecision(Ĉi) and Pprecision in

(20) and (21), POA in (23), PA (Cj ) in (22), and PA in (23) in
terms of percentage (%) where the PC%, PMC%, and PCi

precision
are shown in the three columns under each method and POA

and PA are shown in the last two rows with the bold faced
values indicating the best results where PA (BKG) specifically
emphasize the fact that BKG is considered as a single and sep-
arate class for classification. Despite that ITCIMC-4 produced
lower POA = 77.63 compared to 98–99% produced by the four
EPF-based methods, ITCIMC did produce the best PA = 80.21
which was about four times better than around 20% produced by
the four EPF-based methods. As for the other three performance
measures, PC, PMC, and Pprecision, EPF-G-c generally produced
the best PC values for eight out of nine classes, and ITCIMC
produced best values of PMC and Pprecision across board. Like
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TABLE VI
POA AND PA (BKG) PRODUCED BY EPF-B-C, EPF-B-G, EPF-G-C, AND EPF-G-G FOR SALINAS SCENE

Class EPF-B-g EPF-B-c EPF-G-g EPF-G-c

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 100.00 0.68 73.19 100.00 0.65 74.05 100.00 0.65 74.00 100.00 0.75 71.22
2 100.00 2.78 56.22 99.97 2.78 56.21 100.00 2.72 56.72 100.00 2.96 54.67
3 100.00 14.99 12.20 100.00 14.95 12.22 100.00 15.09 12.13 100.00 15.14 12.10
4 100.00 4.41 23.13 100.00 4.38 23.25 100.00 4.43 23.04 100.00 4.54 22.64
5 98.51 1.95 55.95 98.36 1.97 55.66 98.47 1.92 56.29 98.84 1.83 57.61
6 100.00 0.83 81.75 100.00 0.86 81.18 100.00 0.84 81.58 100.00 0.89 80.65
7 100.00 0.87 79.34 100.00 0.83 80.14 100.00 0.83 80.21 99.97 0.87 79.48
8 81.52 1.35 87.11 81.47 1.38 86.84 82.37 1.22 88.33 83.52 1.18 88.82
9 99.85 12.16 35.25 99.84 12.11 35.33 99.87 12.20 35.19 99.87 12.38 34.90
10 96.19 8.10 28.06 96.06 8.21 27.77 96.49 8.17 27.96 97.86 7.40 30.16
11 100.00 3.25 23.57 99.91 3.24 23.58 100.00 3.22 23.71 100.00 3.15 24.09
12 100.00 4.90 27.42 100.00 4.92 27.36 100.00 4.96 27.20 100.00 4.95 27.23
13 99.13 0.40 67.16 99.45 0.40 67.38 99.56 0.41 66.91 99.78 0.42 66.52
14 100.00 0.50 65.97 100.00 0.51 65.64 100.00 0.52 65.40 100.00 0.46 67.85
15 93.82 2.09 76.17 93.26 2.11 75.86 94.32 2.02 76.86 96.19 1.94 77.94
16 99.61 0.73 69.47 99.56 0.74 69.19 99.39 0.70 70.35 99.67 0.70 70.38
POA 95.87 95.70 96.01 96.55
PA (BKG) 46.71 46.63 46.77 47.04

TABLE VII
POA AND PA (BKG) PRODUCED BY TCIMC IN COMPARISON WITH DIFFERENT U

Class ITCIMC-1 ITCIMC-2 ITCIMC-3 ITCIMC-4

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 95.62 0.09 94.73 95.42 0.09 94.95 95.52 0.10 94.86 95.57 0.09 94.91
2 98.15 0.08 97.47 98.09 0.10 97.03 98.17 0.10 97.29 98.17 0.09 97.55
3 79.61 3.23 30.57 93.78 0.17 90.97 93.98 0.14 94.28 94.13 0.13 92.91
4 71.96 0.12 88.74 95.84 0.13 90.27 95.98 0.14 89.68 95.48 0.13 90.48
5 82.97 3.24 37.91 95.11 0.31 88.31 95.74 0.32 88.20 96.53 0.33 87.81
6 97.96 4.86 41.57 98.28 0.29 92.71 98.36 0.28 92.78 98.31 0.29 92.71
7 97.23 4.42 41.02 98.04 0.25 92.83 98.07 0.25 92.86 98.04 0.25 92.78
8 90.90 0.65 93.40 92.57 0.16 90.84 92.78 1.00 91.31 94.47 0.73 93.64
9 95.97 0.10 98.07 95.55 0.12 97.87 95.71 0.12 97.89 96.37 0.12 98.02
10 95.31 0.07 97.41 94.87 0.09 97.04 94.94 0.08 97.28 95.55 0.06 97.97
11 95.79 0.11 88.65 95.69 0.11 89.02 95.69 0.11 89.18 96.07 0.11 89.53
12 97.15 0.11 93.18 97.56 0.14 92.25 97.41 0.14 92.42 97.04 0.13 93.08
13 94.76 0.15 82.90 92.69 0.19 79.87 93.67 0.20 79.74 95.31 0.17 82.44
14 94.69 0.11 88.28 93.27 0.15 86.03 93.55 0.14 86.44 94.58 0.14 86.64
15 90.68 0.75 88.57 88.61 0.66 90.34 90.17 0.62 91.11 92.50 0.45 93.51
16 94.33 0.10 93.61 87.66 0.06 95.88 94.63 0.11 93.34 94.13 0.11 93.36
POA 92.51 94.13 94.71 95.54
PA (BKG) 81.01 94.54 94.78 95.33

TABLE VIII
SPECIFICATIONS OF PARAMETERS USED BY ITCIMC

D 9 class sample means

Class number 1–9
σ used in Gaussian filter 0.5 with window size 5× 5
Thresholding method Otsu
Stopping threshold (TI) 0.95

Purdue, Indian scene and Salinas scene ITCIMC are also the
best classification techniques to deal with correct classification
and MC issues.

If we further plot the spectral profiles of the nine classes
by their class means, all spectral signatures are very similar as
shown in Fig. 16. This fact was evidenced in the last row in
Table IX, where the ARs produced by four EPF-based methods
were only around 20.40% even through their PC and POA can be
very high. This indicates that POA did not reflect the difficulty
of classifying these nine classes. Instead, Paccuracy should be the
one to be used to measure the classification difficulty.

In analogy with Tables IV and VII, Table X also showed
that the best results were those produced by ITCIMC-3 with
U = [tATGP] and ITCIMC-4 with U = ∅. In order to see how
the spatial information provided by Gaussian-filtered TCIMC
improves classification ITCIMC-4 is selected for illustration.
Fig. 17 shows progressive color classification maps produced
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Fig. 13. Progressive color classification maps by ITCIMC-4 of Salinas scene.

Fig. 14. Ground-truth of University of Pavia scene with 9 classes. (a) University of Pavia scene. (b) Color ground-truth image. (c) Ground truth class labels.

by ITCIMC-4, where the number of iterations indicated un-
derneath each figure. When no spatial information is included
in TCIMC, the classification result was very poor as shown
in the first iteration in Fig. 17, where nothing was visible. As
ITCIMC completed, the second iteration with the Gaussian-
filtered spatial information was first fedback and added to the
processed hyperspectral image cubes, the classification results
was improved significantly but still far from satisfaction. As
the iterative process was continued, the classification results
were gradually improved until it reached the 13th iteration. This
example demonstrated that the spatial information for the Uni-
versity of Pavia is much more crucial than the Purdue Indian
Pine scene and the Salina scene in classification.

Five comments on ITCIMC are worth mentioning.
1) There are two major advantages of ITCIMC over spectral–

spatial hyperspectral image classification techniques in-
cluding EPF-based methods in [18]. One is that ITCIMC
classifies all classes simultaneously using the constraint

matrix C in (13) in one-shot operation as opposed to
SVM used in [18] which extends a binary SVM classifier
to a multiclass classifier via one against one or against
all strategy. The other is that ITCIMC evaluates all data
sample vectors compared to SVM which evaluates only
both training and test sample vectors from the same class.

2) Theoretically speaking, ITCIMC-1, ITCIMC-2, and
ITCMC-3 should perform better than ITCIMC-4 by
taking advantage of removing the effects of the undesired
signatures in U on the desired signatures in D. Our ex-
periments showed otherwise. The reason for this is caused
by complicated BKG. Since BKG samples vary so much,
particularly for the University of Pavia it requires as many
BKG samples to be removed by U. As a result, using
limited number of BKG samples does not help much in
classification performance. This evidence also explains
why most hyperspectral image classification techniques
reported in the literature did not address BKG issue.
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Fig. 15. Classification maps by four different version of ITCIMC for University of Pavia.

3) The Otsu method used in ITCIMC is an effective thresh-
old method, but not necessarily optimal. ITCIMC can be
further improved by any better thresholding technique if
there exists one.

4) The value of the parameter σ used by Gaussian filters is
also selected empirically and not optimized. How to find
an appropriate value of σ is a challenging issue since it is
determined by the data to be used for processing. Never-
theless, according to our experiments, the used values for
σ = 0.5 were relatively robust.

5) The classification performance of ITCIMC can be further
improved if there is a better filter to replace Gaussian
filters used in ITCIMC. However, the experimental results
conducted in this paper suggested that Gaussian filters
were sufficiently effective and also rather simple.

6) Our experimental results demonstrate that the ITCIMC
generally performed better than SVM-based hyperspectral
image classification techniques using several quantitative
objective classification measures.

D. Comparison of EPF-Based Methods With Composite
Kernel-SVM-Based Methods

In addition to comparing the EPF-based methods in
Section VI–C, this section also compare spectral–spatial com-
posite kernel (CK)-SVM-based methods developed in [24]
which have received interest in hyperspectral image classifi-
cation. The CK makes use of a spectral kernel Kω and a spatial
kernel Ks to develop four different CK-SVM-based meth-

ods, referred to as K{s, ω}, Ks + Kω , μKs + (1− μ)Kω , and
Ks + Kω + Ksω + Kωs . The first one is K{s, ω} which is a
stacked feature approach taking into account the spectral and
textual information. The second one is Ks + Kω which is a
weighted summation kernel taking direct summation kernel.
The third one is μKs + (1− μ)Kω which uses μ as a summa-
tion weight. The fourth one is Ks + Kω + Ksω + Kωs which is
a cross-information kernel. Parameters set for SVM and the win-
dow sizes of spatial kernels were set to be the same as [24]; how-

ever, the number of training samples was set to be the same as
EPF-based methods for comparison. The four CK-SVM meth-
ods, K{s, ω}, Ks + Kω , μKs + (1− μ)Kω , and Ks + Kω +
Ksω + Kωs methods were implemented in two ways, using
only the mean, μ of neighborhood pixels in a window, and using
the mean μ and standard deviation, σ of neighborhood pixels in
a window. Tables XI, XIII, and XV tabulate POA, PA (BKG)
PA and PMC produced by K{s, ω}, Ks + Kω , μKs + (1−
μ)Kω , and Ks + Kω + Ksω + Kωs methods using only μ of
neighborhood pixels in a window for Purdue’s data, Salinas, and
University of Pavia, respectively, while Tables XII, XIV, and
XVI tabulate POA, Pprecision, PD, and PF produced by
K{s, ω}, Ks + Kω , μKs + (1− μ)Kω , and Ks + Kω +
Ksω + Kωs methods using μ and σ of neighborhood pixels in
a window for Purdue’s data, Salinas, and University of Pavia,
respectively. The best results boldfaced in these tables suggest
that a better CK-SVM method was Ks + Kω since except the
OA of Purdue’s data Ks + Kω performed generally better than
other three CK-SVM methods.

Since not each method can produce best POA and PA (BKG)
for all the three image scenes, Table XVII summarizes the re-
sults in Tables III–IV, VI–VII, IX–X, and XI–XVI by selecting
best possible methods from each of three categories, 4 ITCIMC-
based methods, 4 EPF-based methods, 4 CK-SVM based meth-
ods in terms of POA and PA (BKG) for each of three hyperspectral
image scenes, Purdue Indian Pines, Salinas, and University of
Pavia where an N/A indicates “not applicable.” As we can see
from Table XVII, ITCIMC-4 was the only one produced both
best POA and PA (BKG) among the four versions of ITCIMC.
Also, from Table XVII, the best EPF method clearly outper-
formed the best CK-SVM methods with POA at least 5–6%
better for Purdue’s data and Salians and, at least 2% better for
the University of Pavia. In addition, the best EPF-based method
and CK-SVM-based method produced PA (BKG) in the range
of 39–47% for Purdue’s data, the range of 47–50% for Salinas
and the range of 20–21% for University of Pavia. Also, except
Salinas scene, the four EPF methods produced better PA (BKG)
than the CK-SVM-based methods. Most importantly, ITCIMC
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TABLE IX
POA AND PA (BKG) PRODUCED BY EPF-B-C, EPF-B-G, EPF-G-C, AND EPF-G-G FOR UNIVERSITY OF PAVIA SCENE

Class EPF-B-g EPF-B-c EPF-G-g EPF-G-c

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 97.07 16.71 18.28 97.10 16.82 18.20 96.53 16.25 18.56 96.95 16.13 18.72
2 98.10 20.22 36.51 98.09 20.26 36.48 98.13 19.63 37.10 98.16 19.32 37.42
3 91.47 1.83 34.19 91.71 1.81 34.55 91.76 1.76 35.11 91.81 1.77 35.02
4 95.04 14.64 10.03 93.99 14.64 9.93 94.35 14.20 10.21 98.14 14.02 10.69
5 100.00 0.88 42.92 100.00 0.82 44.42 100.00 0.92 41.81 100.00 0.82 44.63
6 100.00 30.14 9.69 100.00 29.92 9.74 100.00 29.96 9.73 100.00 30.02 9.72
7 100.00 0.99 39.82 100.00 1.01 39.19 100.00 0.94 40.82 100.00 0.92 41.34
8 99.02 8.15 19.19 98.72 8.10 19.23 98.91 8.09 19.28 99.51 8.13 19.31
9 100.00 4.62 9.41 100.00 4.77 9.15 100.00 6.05 7.44 100.00 6.49 7.00
POA 98.97 98.95 98.84 99.17
PA (BKG) 20.41 20.41 20.39 20.45

TABLE X
POA AND PA (BKG) PRODUCED BY TCIMC IN COMPARISON WITH DIFFERENT U

Class ITCIMC-1 ITCIMC-2 ITCIMC-3 ITCIMC-4

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 65.94 9.68 19.33 76.52 5.55 32.15 76.46 5.47 32.48 76.56 5.35 32.93
2 68.64 2.99 70.44 75.55 2.59 74.16 81.53 2.21 78.45 81.68 2.19 78.65
3 51.97 0.94 41.11 46.28 0.91 40.42 48.79 0.87 41.83 45.74 0.88 41.26
4 61.60 3.14 24.60 81.24 3.53 26.18 80.27 3.46 26.36 79.97 3.34 26.93
5 92.57 0.28 69.13 98.59 0.29 68.56 98.44 0.30 68.32 98.44 0.28 69.25
6 74.65 0.37 81.91 71.75 0.60 74.67 70.73 0.67 72.44 71.12 0.61 74.32
7 79.60 0.16 77.21 84.51 0.18 75.49 87.22 0.17 77.13 85.64 0.18 76.24
8 74.20 2.79 32.50 80.20 3.28 31.15 77.16 3.34 29.35 79.17 3.39 30.19
9 74.22 0.70 34.51 78.46 0.72 33.39 79.73 0.76 32.46 78.56 0.67 34.83
POA 67.94 75.25 77.71 77.63
PA (BKG) 75.59 78.97 79.73 80.21

Fig. 16. Spectral profiles of 9 class sample means in University of Pavia scene.

produced the best PA (BKG) among all the test methods across
aboard for all the three datasets. It is also interesting to note
in Tables III, VI, IX, XV, and XVI that the BKG issue has a
significant impact on POA and PA (BKG) for the University of
Pavia when four EPF-based and four CK-SVM methods were
implemented. By excluding BKG from classification, these
methods produced very high POA around 97–99% rates but pro-
duced very poor PA (BKG) around 20–21% rates. By contrast,
ITCIMC-4 produced POA = 77.63% with 20% lower than EPF-
based CK-SVM methods but far better PA (BKG) = 80.21% al-
most four times better than 20–21% produced by EPF-based and
CK-SVM based methods. This particular image scene demon-

strated that removing BKG data samples from classification may
be misleading. For example, by only looking at PA for Purdue’s
Indian Pines, Salinas, and University of Pavia, we may conclude
that University of Pavia image scene is less complicated than the
other two image scenes. However, the PA (BKG) values showed
otherwise.

Finally, this section also shows that the four CK-SVM-based
methods are not as competitive as EPF-based methods are in
classification of all three image scenes. This fact provides evi-
dence that when it comes to spectral–spatial approaches to hy-
perspectral image classification, EPF-based methods are better
options than CK-SVM methods. This is mainly because using
windows conjunction with composite kernels as a priori infor-
mation to obtain spatial information is not as effective as EPF-
based methods using the followed-up spatial filters right after
SVM-classified maps to capture a posteriori spatial contextual
information from the entire classification maps.

VII. DISCUSSIONS

This section discusses five major issues encountered in hy-
perspectral image classification, BKG, spatial filter selection,
class signature selection, test sample vector selection, and per-
formance evaluation.
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Fig. 17. Progressive color classification maps by ITCIMC for University of Pavia data.

TABLE XI
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING ONLY μ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR PURDUE’S INDIAN PINES SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω Ks + Kω + Ksω + Kω s

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 91.30 0.39 33.87 95.65 0.40 34.65 95.65 0.40 34.65 97.83 0.68 23.94
2 76.47 3.92 58.68 77.73 3.21 63.83 78.43 3.30 63.42 92.86 3.28 67.38
3 75.90 4.43 41.31 76.75 3.01 51.16 77.47 3.33 48.86 90.60 3.23 53.52
4 89.45 2.82 26.53 92.83 4.08 20.60 92.41 3.94 21.10 94.94 2.35 31.56
5 93.58 8.71 20.16 93.17 10.02 17.94 93.17 10.17 17.72 88.61 6.09 25.51
6 94.79 4.25 44.53 91.10 4.07 44.57 91.64 4.18 44.07 92.60 4.04 45.22
7 100.00 0.39 25.69 96.43 0.24 35.06 96.43 0.28 31.40 100.00 1.31 9.21
8 97.91 0.26 89.83 97.91 0.55 80.55 97.91 0.53 81.25 98.74 0.29 88.72
9 100.00 0.90 9.62 100.00 0.17 36.36 100.00 0.20 31.75 100.00 1.02 8.51
10 76.75 3.12 54.37 87.04 2.30 64.73 85.19 2.29 64.34 89.92 2.47 63.84
11 67.90 3.72 70.73 72.91 2.88 77.02 71.41 2.95 76.22 88.19 2.92 79.98
12 86.00 1.70 59.51 79.43 3.65 38.70 79.60 3.47 39.97 95.28 1.86 59.73
13 100.00 2.40 29.12 100.00 0.97 50.49 100.00 1.06 48.12 100.00 3.41 22.43
14 88.85 8.73 39.45 93.52 11.05 35.15 93.20 11.14 34.87 85.53 10.88 33.48
15 87.05 16.28 9.09 81.09 14.51 9.46 79.53 14.14 9.52 78.76 13.86 9.61
16 100.00 0.74 37.50 96.77 0.54 44.12 96.77 0.51 45.92 100.00 0.39 53.45
POA 81.15 83.32 82.88 90.35
PA (BKG) 38.23 41.44 40.77 39.77

A. BKG Issue

BKG is generally an overlooked issue in hyperspectral im-
age classification. According to Tables III–IV, VI–VII, and
IX–X, the correct classification rate PC and OA rate. POA of
four EPF-based methods in [18] were higher and better than
those produced by our proposed four versions of ITCIMC. This
is because these rates only calculate classes of interest and did
not include BKG data sample vectors as test sample vectors.
However, if we include BKG as part of test data sample vec-
tors and also performed EPF-based methods using the program
available at website provided by one of the authors in [18] by in-
cluding BKG as test sample vectors which were not considered
in [18], their PRs, MC rates, and ARs were all low, particularly,
ARs which included the BKG class for classification and were
indeed very poor. In contrast, all the four versions of ITCIMC
performed significantly better than EPF-based methods in these

three rates. This indicates that ITIMC can deal with the BKG
issue more effectively than EPF-based methods.

B. Class Signature Issue

As noted in the last comment in Section II, the class signa-
tures T = [DU] used in (9) by TCIMC can be obtained by any
type of prior knowledge, such as database or spectral library.
They generally do not have to be obtained from real data sample
vector or training sample vectors. In our experiment, such class
signatures were obtained by class means without training sam-
ple vectors. However, we can also use training sample vectors
to gather the knowledge of T. A simple way to do so is the
common practice used by supervised classification techniques
by randomly sampling a certain percentage of entire class sam-
ple vectors such as 5%, 10%, etc., and further find the sample
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TABLE XII
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING μ AND σ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR PURDUE’S INDIAN PINES SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 95.65 0.41 34.11 95.65 0.42 33.08 95.65 0.43 32.84
2 81.44 3.98 59.89 81.44 3.43 63.34 80.53 3.52 62.50
3 81.57 5.05 39.89 79.04 3.17 50.58 78.19 3.25 49.69
4 95.36 2.39 31.30 94.51 3.34 24.37 93.25 3.41 23.79
5 94.20 6.97 24.11 94.20 9.23 19.35 94.20 9.46 18.97
6 96.71 3.15 52.49 94.79 3.38 50.25 93.97 3.37 50.11
7 100.00 0.40 25.23 100.00 0.24 35.90 96.43 0.27 32.53
8 96.86 0.23 90.61 97.70 0.53 81.08 97.70 0.53 81.08
9 100.00 0.75 11.30 100.00 0.09 51.28 100.00 0.11 46.51
10 77.88 2.00 65.31 85.49 2.31 64.17 83.02 2.35 63.10
11 71.20 4.37 68.31 74.79 2.79 77.96 73.48 2.91 76.93
12 90.22 1.86 58.47 87.02 3.08 45.03 86.17 3.09 44.71
13 100.00 0.96 50.62 100.00 0.73 57.58 100.00 0.79 55.41
14 91.54 9.26 38.76 92.65 10.04 37.14 92.09 10.19 36.65
15 87.31 18.93 7.94 85.75 17.33 8.47 84.46 16.99 8.51
16 100.00 0.67 39.74 98.92 0.53 45.54 97.85 0.51 45.96
POA 84.06 85.20 84.18
PA (BKG) 41.06 43.83 42.90

TABLE XIII
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING ONLY μ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR SALINAS SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω Ks + Kω + Ksω + Kω s

PA% PMC% Pprecision% PA% Pmc% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 98.36 0.18 90.81 99.55 0.40 82.17 99.35 0.41 81.87 98.61 0.53 77.38
2 99.89 2.79 55.40 99.68 2.99 53.62 99.68 3.00 53.56 99.76 1.34 72.09
3 99.70 15.09 10.69 98.89 13.77 11.51 98.43 13.90 11.36 99.54 15.29 10.54
4 99.57 4.27 22.87 99.64 4.45 22.15 99.64 4.48 22.02 99.71 4.92 20.47
5 97.16 2.23 51.79 97.91 2.82 46.13 97.76 2.70 47.18 96.45 2.02 54.13
6 99.44 0.95 79.50 99.85 0.86 81.14 99.85 0.86 81.05 99.72 0.77 82.77
7 98.55 0.43 88.51 99.41 0.49 87.14 99.41 0.49 87.18 98.99 0.99 76.97
8 75.06 2.64 76.25 74.33 2.54 76.74 75.74 2.76 75.57 74.98 3.14 72.92
9 99.44 11.00 34.84 99.74 12.43 32.18 99.74 12.35 32.33 99.66 11.51 33.86
10 90.09 1.80 60.38 90.88 1.69 62.02 90.48 1.57 63.73 90.63 1.50 64.70
11 95.88 3.78 19.77 97.94 4.32 18.02 97.66 4.33 17.95 96.25 3.76 19.90
12 98.44 4.56 27.60 99.79 5.35 24.76 99.69 5.42 24.51 98.91 4.76 26.81
13 98.47 0.84 49.48 98.58 0.44 65.10 98.47 0.45 64.57 98.58 0.57 58.98
14 98.97 2.29 29.56 96.26 0.72 56.38 95.70 0.72 56.48 98.88 1.94 33.09
15 77.19 3.47 60.86 78.52 3.35 62.11 75.83 3.29 61.75 75.56 3.29 61.67
16 98.23 1.47 52.47 99.23 1.04 61.17 99.23 1.04 61.19 98.45 1.53 51.61
POA 90.47 90.78 90.63 90.34
PA (BKG) 47.69 49.55 49.55 48.11

mean of sampled data for each of classes to represent class
signatures for T. Since TCIMC-4 is the best among all the four
versions, Fig. 18(a)–(b) shows the respective results of AR, PA,
and OA produced by TCIMC-4 for three scenes, Purdue Indian
Pines, Salinas, and University of Pavia, where the class signa-
tures were calculated by randomly sampling data according to
initial 10% up 100% with a step size 10% and finding their class
sample means for T. As we can see from these figures, PA and
POA of Salinas scene were nearly the same after 20% randomly
sampling. On the other hand, PA and POA of University of Pavia
were nearly stable in the beginning and then gradually increased
at the end. As for Purdue Indian Pines, its PA and POA gradually

increased until 40% of data sample vectors randomly sampled
and both rates became flat after that.

C. Spatial Filter Issue

In order to capture spatial information, a general approach is
to use a spatial filter such as bilateral filter or guided filter in
[18]. These two filters are designed to capture the morpholog-
ical features such as edges. Our proposed ITCIMC is a mixed
pixel-based method and has little to do with spatial features.
Therefore, using Gaussian filters in this paper to capture spatial
information instead of spatial features is more effective and bet-
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TABLE XIV
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING μ AND σ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG STACKED

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR SALINAS SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 99.25 0.31 85.69 99.05 0.40 81.86 99.10 0.41 81.50
2 99.89 2.46 58.48 99.76 3.01 53.47 99.57 3.01 53.44
3 98.18 12.23 12.69 99.14 13.26 11.92 98.99 13.74 11.54
4 99.64 2.60 32.72 99.57 4.35 22.54 99.57 4.39 22.38
5 97.09 3.97 37.63 97.65 3.38 41.67 97.05 3.08 43.75
6 99.77 0.70 83.97 99.85 0.87 80.85 99.85 0.87 80.85
7 98.38 0.61 84.38 99.41 0.48 87.33 99.41 0.48 87.27
8 70.22 4.13 65.76 73.69 2.66 75.75 73.45 2.64 75.82
9 98.65 10.20 36.39 99.77 12.63 31.83 99.71 12.42 32.19
10 92.71 2.45 53.51 91.95 1.72 61.97 91.40 1.55 64.22
11 96.25 2.90 24.39 99.06 3.73 20.50 98.60 3.75 20.35
12 97.98 4.89 26.14 99.64 5.76 23.38 99.69 5.77 23.38
13 98.80 5.36 13.28 98.36 0.44 65.10 98.36 0.44 65.20
14 97.20 0.51 65.00 96.54 0.68 58.16 96.36 0.69 57.50
15 77.26 4.09 56.93 74.78 3.57 59.47 75.08 3.74 58.40
16 97.73 0.99 61.99 99.28 1.06 60.67 99.23 1.06 60.76
POA 89.47 90.21 90.10
PA (BKG) 47.00 49.21 49.33

TABLE XV
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING ONLY μ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR UNIVERSITY OF PAVIA SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω Ks + Kω + Ksω + Kω s

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 97.15 13.26 19.49 96.50 12.06 20.91 95.82 12.17 20.64 94.93 14.08 18.22
2 98.11 18.08 34.90 97.75 20.22 32.32 97.46 19.66 32.88 96.81 20.32 32.01
3 93.47 4.03 19.18 93.95 3.58 21.17 93.23 3.24 22.76 89.42 2.74 25.00
4 98.34 12.13 10.84 97.98 11.88 11.00 97.91 11.80 11.06 98.66 13.24 10.05
5 100.00 1.33 32.88 99.93 0.76 46.19 99.93 0.65 50.09 99.93 1.38 32.08
6 97.06 21.79 9.97 97.85 20.64 10.54 98.35 21.23 10.33 96.86 19.13 11.18
7 98.42 1.58 28.73 97.67 2.18 22.40 97.89 2.23 22.07 96.47 1.37 31.23
8 92.80 6.19 21.32 91.80 6.52 20.28 92.56 6.84 19.66 92.88 6.69 20.06
9 100.00 4.50 9.25 100.00 5.22 8.08 100.00 5.26 8.03 100.00 4.35 9.54
POA 97.28 97.00 96.86 96.12
PA (BKG) 18.65 19.29 19.75 18.94

TABLE XVI
POA AND PA (BKG) PRODUCED BY CK-SVM PERFORMANCE USING μ AND σ OF NEIGHBORHOOD PIXELS IN A WINDOW AMONG STACKED

K{s , ω }, Ks + Kω , μKs + (1 − μ)Kω AND Ks + Kω + Ksω + Kω s METHODS FOR UNIVERSITY OF PAVIA SCENE

Class K{s , ω } Ks + Kω μKs + (1 − μ)Kω

PA% PMC% Pprecision% PA% PMC% Pprecision% PA% PMC% Pprecision%

1 96.74 14.15 18.42 96.61 14.67 17.87 95.96 13.55 18.96
2 98.06 14.83 39.52 97.92 14.91 39.35 97.86 15.22 38.84
3 93.81 2.93 24.63 93.43 3.31 22.39 93.47 3.53 21.32
4 98.96 14.88 9.07 99.05 14.97 9.03 98.76 14.23 9.43
5 100.00 1.50 30.37 99.93 0.65 50.13 99.93 0.66 49.83
6 98.95 20.36 10.78 98.95 20.44 10.74 98.87 22.15 9.98
7 99.02 1.77 26.50 98.42 1.24 33.82 97.37 1.31 32.38
8 92.72 7.45 18.36 92.83 7.29 18.71 92.91 6.72 19.98
9 100.00 4.73 8.85 100.00 5.16 8.16 100.00 5.32 7.94
POA 97.49 97.38 97.20
PA (BKG) 18.65 21.02 20.87
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Fig. 18. AR and OA produced by ITCIMC-4 using different percentage of training sample vectors to obtain class signatures T. (a) AR. (b) OA rate.

TABLE XVII
POA AND PA (BKG) PRODUCED BY BEST POSSIBLE METHODS FROM EACH OF THREE CATEGORIES FOR THREE IMAGE SCENES

Best methods Purdue Indian Pines Salinas University of Pavia

Classification accuracy POA PA (BKG) POA PA (BKG) POA PA (BKG)
ITCIMC-4 95.09 93.96 N/A N/A N/A N/A
EPF-B-c 95.33 46.47 N/A N/A N/A N/A
Ks + Kω + Ksω + Kω s using μ and σ 90.35 39.77 N/A N/A N/A N/A
ITCIMC-4 N/A N/A 95.54 95.33 N/A N/A
EPF-G-c N/A N/A 96.55 47.04 N/A N/A
Ks + Kω using μ N/A N/A 90.78 49.55 N/A N/A
ITCIMC-4 N/A N/A N/A N/A 77.63 80.21
EPF-G-c N/A N/A N/A N/A 99.17 20.45
Ks + Kω using μ and σ N/A N/A N/A N/A 97.38 21.02

TABLE XVIII
ACCURACY AND OA WITH σ = 0.5

Purdue Salinas Pavia

W PA (%) POA (%) PA (%) POA (%) PA (%) POA (%)
3 × 3 93.94 95.07 95.20 95.36 80.24 77.62
5 × 5 93.96 95.07 95.33 95.54 80.21 77.63
7 × 7 93.96 95.09 95.33 95.54 80.21 77.63
9 × 9 93.96 95.09 95.33 95.54 80.21 77.63
11 × 11 93.96 95.09 95.33 95.54 80.21 77.63

ter than using the bilateral and guided filters. An issue in using
a Gaussian spatial filter is the selection of parameters used to
specify the filter. In our experiments, these parameters are the
standard deviation σ and the window size, w. Tables XVIII–XX
classification results produced by ITCIMC-4 with various val-
ues of σ and w, respectively, where TCIMC-4 was selected
to represent all the four versions of ITCIMC. As we can see
from these tables, ITCIMC-4 is very robust to its used window
size ranging from 3× 3 to 11× 11 and the value of σ around
0.4 ≤ σ ≤ 1.

D. Test Sample Vector Issue

One major issue in hyperspectral image classification is the
use of test sample vectors which also come from the same

TABLE XIX
ACCURACY AND OA WITH WINDOWS SIZE IS 5∗5

Purdue Salinas Pavia

σ PA (%) POA (%) PA (%) POA (%) PA (%) POA (%)
0.1 71.80 78.07 81.47 79.99 25.56 63.02
0.2 71.81 78.08 81.47 79.99 25.27 63.03
0.3 84.31 85.45 84.33 81.45 43.76 68.78
0.4 94.55 94.43 91.28 87.85 80.94 75.71
0.5 93.94 95.07 95.33 95.54 80.21 77.63
0.6 93.52 95.50 95.27 95.82 78.33 77.85
0.7 92.98 95.81 95.25 96.04 77.17 78.99
0.8 92.32 95.66 95.09 96.07 75.55 79.23
0.9 91.81 95.66 95.12 96.35 74.38 79.71
1.0 91.31 95.64 95.05 96.47 74.52 81.32

class trained by the training sample vectors. As a result, it is
expected that POA is very high. However, if test sample vectors
include BKG sample vectors are not necessarily coming from
the same training class the classification performance would
be dropped drastically as shown in Tables III–IV, VI–VII, and
IX–X by MC rate PMC and PR Pprecision. This indicates that
POA may miss some crucial information about classification
which is in fact very important in other pattern recognition areas,
such as optical character recognition, biometric recognition, and
medical diagnosis.
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TABLE XX
COMPUTING TIME IN SECONDS FOR FOUR ITCIMC VERSIONS AND FOUR SVM-EPF METHODS

Classification methods ITCIMF1 ITCIMF2 ITCIMF3 ITCIMF4 EPF-B-g EPF-B-c EPF-G-g EPF-G-c

Indian Pines 21.55 10.92 10.98 10.71 128.16 130.43 129.60 131.37
Salinas 149.88 100.32 125.85 73.56 168.02 202.79 169.54 183.44
Univ. of Pavia 88.28 63.14 63.82 59.71 220.49 229.53 240.65 215.93

E. Performance Evaluation Issue

In hyperspectral image classification, commonly used perfor-
mance measures are POA, AA, or kappa coefficient in [10]–[28].
As already noted above, these measures may not effectively
characterize images from various aspects. There are other useful
measures such as correct classification rate, PC, MC rate, PMC ,
and PR, Pprecision and PA (BKG) have been used in pattern classi-
fication but not considered in [10]–[28]. Tables III–IV, VI–VII,
IX–X, and XI–VII provide hard evidence that OA is not suffi-
ciently effective to evaluate the classification performance.

It should be noted that the TCIMF developed in [29] was
primarily designed for hyperspectral target detection not for
hyperspectral image classification. In order for TCIMF to per-
form classification as ITCIMC, it must make hard decisions
not soft decisions. This process is carried out by Otsu’s thresh-
olding method, a well-known technique in image processing.
Accordingly, comparing ITCIMC to soft classifiers seems not
appropriate. However, it is also noted that TCIMF is a pixel-
based abundance fraction estimator which produces abundance
fractional maps that generally do not correspond to soft deci-
sions produced by classifiers such as fuzzy classifiers. Many
reports on comparison of TCIMF with other abundance estima-
tors have been reported in the literature such as [1], [2], [29],
[33]. Those who are interested in such comparisons can consult
these references.

F. Computing Time

In order to evaluate the efficiency of TCIMC compared to
four SVM-EPF methods, Table XIII tabulates their respective
computing times in seconds where a computer environment was
specified by an Intel i7-6500U 2.5 GHz base frequency CPU and
12 GB 2133 MHz memory. All experiments were implemented
using MATLAB and the SVM available in LIBSVM [39]. In
particular, the Gaussian kernel parameter σ and slack variables
used by SVM were selected by fivefold cross validation. As
shown in the table, all the four versions of ITCIMC required less
computing time than four SVM-EPF methods did. In particular,
ITCIMC4 was the best and was nearly ten times faster than four
SVM-EPF methods for Purdue data, 2.5 times for Salinas, and
4 times for University of Pavia.

VIII. CONCLUSION

Since TCIMC is a pixel-based technique, it does not take
care of spatial information. Therefore, it works well if targets
of interest are relatively small and do not exhibit spatial pat-
terns such as HYDICE data in [1]. However, TCIMC may not
work effectively if a hyperspectral image contains crucial spatial

information such as urban scenes. Therefore, for TCIMC to cap-
ture such spatial information an iterative version of ITCIMC,
called ITCIMC, is derived, which makes use of Gaussian fil-
ters to obtain a posteriori neighboring spatial information of
each classified data sample vector and then iteratively feeds
back these Gaussian-filtered ITCIMC-classified spatial image
to form a new set of images cubes for reprocessing ITCIMC.
Many contributions are noteworthy

1) First and foremost is the design rationale of ITCIMC
from a mixed pixel classification perspective which
is completely different from commonly used spectral-
spatial approaches reported in the literature.

2) ITCIMC classifies all classes simultaneously at the same
time via (13), (14) which resolve issues arising from ex-
tending binary classification to multiclass classification
such as SVM using one against one or one against all
strategy.

3) ITCIMC introduces new evaluation measures, correct
classification rate PC, MC rate, PMC, PR, Pprecision and
AR, PA which reflect real scenarios.

4) ITCIMC uses PA, PMC, and Pprecision to evaluate all data
sample vectors including BKG data sample vectors for
classification not only those in the same class.

5) ITCIMC repeatedly makes use of feedback loops by in-
corporating a posteriori spatial contextual information
captured by Gaussian spatial filters into ITCIMC to im-
prove classification performance iteratively.

6) ITCIMC can perform pure-pixel classification by Otsu’s
method as well as mixed pixel classification by finding
class abundance fractions, while SVM-based spectral–
spatial techniques perform pure-pixel spectral classifica-
tion by SVM.

7) ITCIMC is easily to be implemented using only two
robust parameters σ and Gaussian window size w.

8) ITCIMC requires computing time less than that required
by SVM-EPF methods.

9) ITCIMC can be used to update TCIMF in ENVI to be-
come a major classification technique for hyperspectral
image classification.

10) Last but not least, the extensive experiments are con-
ducted in this paper to compare two well-known SVM-
based techniques, EPF and CK-based methods. These
quantitative analyses suggest that CK-SVM-based meth-
ods are generally not competitive as the EPF-based meth-
ods are. To authors’ best knowledge, no such detailed and
comprehensive studies were available in the literature.
Furthermore, both performed very poorly in PA (BKG)
and PMC rates compared to ITCIMC which performed
significantly better in both rates.
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