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ABSTRACT 
�
Anomaly detection (AD) is designed to find targets that are 
spectrally distinct from their surrounding neighborhood. 
Unfortunately, commonly used anomaly detectors generally 
do not take into account its surrounding spatial information. 
This paper derives an iterative version of anomaly detection, 
iterative anomaly detection (IAD) to address this issue. Its 
idea is to use a Gaussian filter to capture spatial information 
of the anomaly detection map and then feeds back the 
Gaussian filtered AD map to create a new data cube. The 
whole process is repeated over again in an iterative manner. 
When IAD is terminated anomaly representatives are 
identified and can be used as desired target signatures to 
implement constrain energy minimization (CEM) so as to 
classify all detected anomalies. Accordingly, IAD can be 
considered as anomaly classification. 

Index Terms—Anomaly detection (AD), Iterative AD 
(IAD) 

1. INTRODUCTION 
Anomaly detection (AD) has received considerable interest 
in recent years due to advances of hyperspectral imaging 
technology which enables to uncover many unknown subtle 
targets that cannot be inspected visually or detected by prior 
knowledge. Since AD must be performed in a completely 
blind environment, two issues must be addressed, 1) how to 
find anomalies without using any prior knowledge and 2) 
how to distinguish one anomaly from another once 
anomalies are detected. As for the first issue many efforts 
have been reported including RXD developed by Reed and 
Xiaoli Yu in [1] which uses the sample global covariance 
matrix K, referred to RX detector (RXD) or K-AD along 
with its variants developed in [2], specifically RXD which 
uses the sample correlation matrix R, referred to as R-AD. 
However, all these anomaly detectors suffer from a common 
issue which requires an appropriate threshold value to 
segment anomalies from the background because AD-
detection maps are generally real-valued. Regarding the 
second issue, a recent work on anomaly discrimination and 

categorization in [3,Chapter 15]. But it stops short on how 
to classify anomalies.  
This paper expands AD to an iterative version of AD, called 
iterative anomaly detection (IAD) which implements AD in 
an iterative manner. Since the presence of an anomaly is 
closely rated to its surrounding neighborhood its spatial 
information is crucial to detection of its existence. The 
proposed IAD takes advantage of a spatial filter to gather 
spatial information for AD. Its idea is to apply a Gaussian 
filter to an AD-detection map whose spatial information can 
be captured by a specific Gaussian window. Then the 
Gaussian-filtered AD map is further fed back as a new 
hyperspectral band image to increase the current 
hyperspectral image cube by one dimension for the next 
round process of AD. In order to differentiate detected 
anomalies, an unsupervised target detection algorithm is 
further implemented in conjunction with AD during each 
iteration to find distinguish anomalies among detected 
anomalies. To terminate IAD an automatic stopping rule is 
introduced, in which case a set of anomaly representatives is 
generated and each representative is used to specify a 
particular anomaly class. These anomaly representatives are 
used as desired target signatures for a subpixel target 
detection technique, constrain energy minimization (CEM) 
in [2] to find real-valued anomaly classes. The final 
anomaly classification is then accomplished by Otsu’s 
method [4] to produce anomaly classification maps. 
 

2. ATGP 
This section briefly reviews two major anomaly detectors 
commonly used in the literature. One is RXD. Since it takes 
advantage of global data sample covariance matrix K to on 
behalf of background suppression, it is referred to as K-AD, 
denoted by K-AD(r) and specified by  

rKrr 1AD-K ( T)                            (1) 

where r is a vector of a data sample,  is the mean vector of 
data samples and K is the covariance matrix of global data 
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sample. Eq. (1) is actually the well-known Mahalanobis 
distance.  

Another type of anomaly detector is developed in [1,8]. It 
is different from K-AD in the sense that the global sample 
data covariance matrix K in (1) is replaced by the global 
sample data correlation matrix R. It is defined by  

rRrr 1AD-R )( T                                          (2) 

where R-AD(r) is used to indicate R being used to 
differentiate K-AD(r) used in (1).  

 
3. ITERATIVE AD 

Since anomalies are generally spatially correlated to their 
surrounding data sample vectors, it would be beneficial to 
include spatial contextual information into AD. 
Unfortunately, K-AD in (1) and R-AD in (2) do not take 
into account local spatial correlation. In order to capture 
such local spatial properties this section develops a new 
version of AD, to be called iterative AD (IAD) which 
includes Gaussian filters to smooth AD-generated detection 
maps and further feed the Gaussian-filtered detection maps 
back to form a new hyperspectral image cube for AD to be 
re-implemented over again in an iterative manner. The 

following algorithm details its ideas where AD can be either 
R-AD or K-AD. 
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resulting image is denoted by Gaussian-filter )(
GFAD|| kB .  

3. Form )(
GFAD

)1()( || kkk B . Find representatives 
for anomaly classes T(k) using the algorithms proposed 
in Section IV.  

4. Check if T(k)  satisfies a given stopping rule. If no, back 
to step 2. Otherwise, go to step 5. 

5. T(k)  is the data set with desired target signatures and 
IAD is terminated. 
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Figure 1. Graphic representation for illustration of target classification by TD-IAD 

In order to terminate IAD it will require a stopping rule. 
This section derives an idea which takes advantage of 
ATGP for R-AD (or EV for K-AD) to find spectrally 
distinct anomalies from Gaussian-filter AD-detection maps 
iteratively by IAD until the number of such spectrally 

distinct anomalies converges. The details of step-by-step 
implementation of the stopping rule are described as 
follows. 
Stopping�Rule�for�IAD��
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1. Use AD
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detection values in descending order in terms of vector 
length from the corresponded hyperspectral image (k), 
i.e.  AD( ) AD( ) AD( )
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where LL~ is the number of different classes of 
anomalies. 

If )()1( TT kk , then the algorithm is terminated. 
Otherwise, go to step 1. 
 

4. REAL IMAGE EXPERIMENTS 
The image scene shown in Fig. 2(a) is an airborne 
Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) data with details available in [2-3]. There are 15 
panels with three different sizes, mm 33 , mm 22 , 

mm 11  with its ground truth provided in Fig. 2(b) where 
the center and boundary pixels of objects are highlighted by 
red and yellow respectively. In particular, R panel pixels are 
denoted by pij with rows indexed by 5,,1i  and columns 
indexed by 3,2,1j  except that the panels in the 1st column 
with the 2nd, 3rd, 4th, 5th rows which are two-pixel panels, 
denoted by p211, p221, p311, p312, p411, p412, p511, p521. The 
1.56m-spatial resolution of the image scene suggests that 
most of the 15 panels are one pixel in size. As a result, there 
are a total 19 R panel pixels.  

   
                       (a)                                          (b) 
Figure 2. (a) A HYDICE panel scene which contains 15 panels; (b) Ground 
truth map of spatial locations of the 15 panels 
Fig. 2(b) shows the precise spatial locations of these 19 R 
panel pixels where red pixels (R pixels) are the panel center 
pixels and the pixels in yellow (Y pixels) are panel pixels 
mixed with the BKG. 

Fig. 3(a-b) shows the results of the first iteration of R-
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Figure 3. Resulyts of the first iteration of IAD for HYDICE 

Let (1)
R-ADB   be the detection map produced by ADR

0  at 
the first iteration and the original hyperspectral image cube 
be denoted by (0) . A Gaussian filter with the window size 
of 1111  and  = 0.1 was applied to the absolute values of 

(1)
R-ADB  in Fig. 3(a), (1)

R-AD| |B  to produce a new Gaussian-
filtered band image (1)

GFR-AD| |B  which is further included into 
(1) to create a new hyperspectral image cube 
(1) (0) (1)

GFR-AD| |B  for next iteration carried by 
ADR

1 . The same process was repeated over again until it 
satisfied the stopping rule described in Section IV. The 19 
target pixels found in Fig. 4 were further used as desired 
signatures for CEM to produce 19 real valued CEM-
detection maps shown in Fig. 5. In order to perform target 
classification, the Otsu method was then used to segment 
targets out of background as shown in Fig. 6. 
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Figure 4. Final 19 targets locations for HYDICE using the iteration method 

According to Fig. 6, it is very obvious that the panel 
pixels in five rows were classified where panel pixels in the 
4th, 5th, 2nd, 3rd and 1st rows were classified in the 11th, 12th, 
13th, 14th, 16th in separate and individual classification maps. 
It is interesting to note that the panel pixels in row 2 were 
classified in 13th and 15th classification maps because the 
13th and 15th target pixels found by R-AD and ATGP were 
p221, p212 in the same row, row 2. Similarly, the 16th and 17th 
target pixels were found to be p11 and p12 belonging to the 
same row 1. As a result, the 16th and 17th classification maps 
were used to classify panel pixels in row 1. 
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Figure 5. Original gray scale detection results of CEM algorithm using 19 signatures in Fig. 4. 

       

       

     
Figure 6. Otsu segmentation results for CEM results in Fig. 5 

5. CONCLUSION 
Anomaly detection (AD) has been widely studied in the 
literature, but how to use AD to perform target classification 
has not been explored. This paper derives an iterative 
version of AD (IAD) in conjunction with CEM, to classify 
targets of interest in an unsupervised manner. The 
development of IAD is to incorporate Gaussian-filtered 
spatial information iteratively via feedback loops, then uses 
ATGP to distinguish and find representatives among 
detected anomalies so that each representative specifies a 
different anomaly class. These anomaly representatives are 
further used by CEM as desired target signatures to perform 
target classification. 
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