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Abstract—Autoencoder (AE) is extensively utilized in hyperspec-
tral anomaly detection (HAD) tasks owing to its robust feature
extraction and image reconstruction capabilities. However, AE
lacks constraints on anomaly samples during the training process,
leading to the reconstruction part of some anomalies alongside
background features, which ultimately diminishes the detection
accuracy; additionally, most existing HAD algorithms have been
specifically designed for data captured within the visible and
near-infrared bands, resulting in a notable gap in methodologies
tailored for thermal infrared hyperspectral image (TI_HSI). To ad-
dress these issues, a knowledge distillation-based anomaly detection
(KDAD) model is proposed in this study, aimed at thermal infrared
hyperspectral data. KDAD constructs a spatial information map
utilizing a dual-window model through the spectral-spatial fusion
module, thereby enabling simultaneous fusion of spectral and spa-
tial features via a collaborative stacked AE with dual branches; a
residual enhancement module (REM) is introduced based on trans-
fer learning techniques to achieve background purification while
forming a distillation AE model comprising an efficient student
AE and an intricate teacher AE; meanwhile, REM incorporates
a clustering weight generation mechanism that facilitates pixel
density-aware category division through dimensionality reduction
and clustering processes, and constructs a background-enhanced
weight matrix by integrating Mahalanobis distance tensor analysis
with dynamic threshold adjustment strategy in order to enforce
prior constraints on anomalies; finally, the anomaly detection
module formulates an anomaly detection process grounded in
clustering techniques and cosine similarity metrics to facilitate
high-precision anomaly detection within TI_HSIs. Experimental
results on thermal infrared hyperspectral datasets indicate that
KDAD markedly enhances background suppression capability and
improves anomaly localization accuracy. Furthermore, its detec-
tion performance across various scenarios outperforms that of
existing algorithms.

Index Terms—Anomaly detection, autoencoder (AE), knowledge
distillation, thermal infrared hyperspectral image (T1_HSI).
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I. INTRODUCTION

HERMAL infrared hyperspectral image (TI_HSI) encom-

passes electromagnetic wave radiation information across
multiple continuous bands, with a wavelength range of 8—14 pm.
This type of imagery contains rich thermal radiation information
and simultaneously offers the geometric spatial relationships
and spectral characteristics of ground objects. Furthermore, it
demonstrates advantages such as the capability for night imaging
[1], [2], [31, [4], [5], [6], [7]. Hyperspectral anomaly detection
(HAD) is a technique that capitalizes on the abundant spectral
and spatial information present in hyperspectral images to iden-
tify anomalous targets that differ from surrounding background
pixels [8]. HAD plays a crucial role in various applications,
including agricultural production management [9], forest fire
monitoring [10], [11], and mineral resource exploration [12].
As such, it holds promising prospects for widespread application
[13].

HAD techniques have led to the development of a vari-
ety of algorithms specifically designed for analyzing visible
and near-infrared hyperspectral images. The traditional algo-
rithms can be categorized into three main types: statistics-
based algorithms, representation-based algorithms, and matrix
decomposition-based algorithms [14]. Statistics-based HAD
methods operate under the assumption that the background pix-
els conform to a specific statistical model. Consequently, pixels
that deviate from this distribution are identified as anomalies
[15], [16], [17]. The RX (Reed—Xiaoli) algorithm proposed
by Reed et al. posits that the background portion of an image
adheres to a multivariate Gaussian distribution, while anomalous
targets exhibit significant differences from it. Anomalies are
then distinguished from other image elements by calculating
the Mahalanobis distance between the pixel of interest and
the background pixels [18], [19], [20]. While statistics-based
algorithms offer advantages such as straightforward calculation
and convenient implementation, they often yield satisfactory de-
tection results in scenarios with relatively simple backgrounds.
However, their efficacy tends to diminish in more complex
environments [21]. Representation-based methods assume that
background pixels can be effectively represented via spatial
neighborhoods or a background dictionary. In contrast, anoma-
lous pixels present challenges in representation due to their in-
herent uniqueness, which facilitates the differentiation between
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background and anomalies within images [22], [23], [24], [25].
The collaborative-representation-based detector (CRD) intro-
duced by Li and Du [26] leverages the inherent characteristics of
collaborative representation among pixels to facilitate anomaly
detection. This is accomplished through the reconstruction of a
target using its neighboring pixels, followed by the assessment
of reconstruction error. Xiao et al. [27] propose a tensor low-rank
sparse representation learning anomaly detection method for
HAD. Nevertheless, these methodologies are often vulnerable to
noise and outliers during the construction of the background dic-
tionary, which may lead to inaccurate representations and con-
sequently diminish the quality of the final detection results [28].
Building upon matrix decomposition, HAD algorithms decom-
pose hyperspectral data into low-rank background components
and sparse anomaly components, thereby enabling a decoupled
analysis of background structures and anomaly features. Given
that anomalous targets in hyperspectral data typically occupy
only a limited number of pixels while exhibiting a sparse spatial
distribution, anomalies can be detected utilizing low-rank matrix
decomposition techniques [29], [30]. Xu et al. [31] developed
an approach founded on low-rank and sparse representation
(LRSR), employing low-rank matrix representations of the back-
ground dictionary to depict background pixels while uncovering
local spectral features via sparse constraints; this methodology
has yielded favorable outcomes. Yu et al. [32] introduce a
novel HAD method grounded in graph regularized low-rank
representation (GLR), effectively harnessing both global and
local information present within hyperspectral images. Although
such algorithms successfully differentiate between backgrounds
and anomalies by leveraging low-rank and sparse properties
in complex scenes, they often face challenges related to high
computational complexity as well as inadequate performance
when addressing noise and nonsparse anomalies [33].

In recent years, the application of deep learning models in
HAD has made considerable advancements and has gradually
emerged as one of the predominant methodologies. The central
premise involves the automatic extraction of abstract and hier-
archical features from data through multilayer neural network
architectures to facilitate effective identification of anomalous
targets [34], [35], [36], [37], [38], [39], [40], [41], [42]. Li
et al. [43] are pioneers in introducing the convolutional neural
networks (CNNs) into HAD, proposing a CNN-based detector
model. This model incorporates both differential pixel pairs
and similar pixel pairs for training within the CNN frame-
work. Subsequently, it inputs both the pixel under investigation
and the mean values of its surrounding pixels into the trained
CNN to ascertain whether such a pixel is anomalous or not.
Fu et al. [44] present an anomaly detection approach termed
DeCNN-AD (denoising CNN-anomaly detection), which capi-
talizes on spatial correlations in representation coefficients via
a CNN denoiser, integrates prior knowledge within a low-rank
representation framework, and optimizes background dictionary
construction using clustering techniques to enhance anomaly de-
tection. Additionally, deep learning networks’ capability for im-
age reconstruction serves as an advantageous tool for detecting
anomalies. Notably, autoencoders (AEs) have been employed
in HAD tasks due to their robust data reconstruction abilities;
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they are predicated upon the principle that reconstruction errors
associated with background pixels are substantially lower than
those corresponding to anomalous pixels [45]. Wang et al. [46]
propose an auto-AD (autonomous anomaly detection) model,
which integrates an adaptive weight loss function into a fully
convolutional AE, thereby enhancing its capability to distinguish
anomalies from the background in complex scenes. Maetal. [47]
employ a memory AE that introduces storage modules at various
hidden layers of AE to facilitate multiscale reconstruction of
both backgrounds and anomalous pixels within the spectral do-
main. Cao et al. [48] introduce an AiANet (adaptive interactive
attention network) that incorporates a low-rank module into an
AE, effectively improving the accuracy of background modeling
across different scenarios. In HAD tasks, the reconstruction error
generated by AE for images can serve as an indicator of the
anomaly degree of anomaly present in pixels; thus, utilizing this
reconstruction error during detection can enhance the accuracy.
However, due to the powerful generalization capacity of AEs,
there are instances where they may effectively reconstruct both
background points and anomaly points within hyperspectral
images simultaneously. As such, it becomes difficult to separate
anomaly points from background points based on reconstruction
errors obtained from these models [49], [50].

Current HAD technologies predominantly utilize data de-
rived from visible and near-infrared bands, with an absence of
anomaly detection algorithms specifically tailored for TI_HSI
[5]. Hyperspectral imaging in the visible and near-infrared re-
gions is contingent upon prevailing illumination conditions, with
the radiation captured by imaging sensors primarily consisting of
the reflected radiation from various substances [51]. In contrast,
imaging within thermal infrared bands relies fundamentally on
the self-thermal radiation emitted by ground objects, rendering
it independent of lighting conditions. Consequently, even under
low-light scenarios such as nighttime, relevant target informa-
tion remains accessible [52]. Due to inherent disparities in their
respective imaging mechanisms, existing anomaly detection
methods are not directly applicable to TI_HSIs [4]. Furthermore,
when compared to visible and near-infrared hyperspectral data,
thermal infrared data tends to exhibit lower resolution and more
complex radiation characteristics, which render it difficult to
visually distinguish anomaly points from background points
directly. This situation underscores an urgent need for the de-
velopment of anomaly detection algorithms that are specifically
designed for TI_HSI.

To address the aforementioned challenges, this study proposes
a knowledge distillation-based anomaly detection (KDAD)
model specifically designed for TI_HSI, comprising three main
components: a spectral-spatial fusion module (SSFM), aresidual
enhancement module (REM), and an anomaly detection module
(ADM). The SSFM employs a dual-window approach to extract
a spatial information map and utilizes a dual-branch collabo-
rative stacked AE (DBCSAE) framework to capture spectral
and spatial information, ultimately generating a spectral-spatial
fusion image. Within the REM, a knowledge distillation-based
weighted AE (KDWAE) is introduced to reconstruct the fused
image, which yields an enhanced reconstruction residual map.
Finally, the ADM integrates clustering and cosine similarity
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Fig. 1. Schematic diagram of the AE structure.

measures to conduct anomaly detection on the cascaded image.
The main contributions of this article are as follows.

1) This study proposes a KDAD model that integrates spatial
information from an image with an enhanced reconstruc-
tion residual map, thus addressing a significant gap in ther-
mal infrared HAD. It mitigates challenges associated with
distinguishing between anomalous and background pixels
caused by the low resolution and radiation complexity of
thermal infrared data, achieving commendable detection
performance on thermal infrared hyperspectral datasets.

2) In SSFM, the dual-window model captures spatial neigh-
borhood relationships, facilitating the acquisition of a
spatial information map that enhances the differences in
spatial features between anomalies and the background.
Additionally, the dual-branch stacked AE can process both
spectral and spatial information concurrently, enabling
feature complementarity through cascaded fusion that en-
hances the accuracy of anomaly detection.

3) The REM is presented to tackle the challenge wherein AE
reconstructs both anomalies and backgrounds simultane-
ously. It establishes a KDWAE. Through the knowledge
distillation transfer learning mechanism, KDWAE allows
the student network to learn the background feature rep-
resentation from the teacher network while implementing
a background-enhanced weight matrix constraint. This
approach strengthens the modeling capability for back-
ground features while suppressing reconstruction activi-
ties related to anomalous pixels. By employing hierarchi-
cal feature interaction and weight optimization techniques,
KDWAE efficiently models backgrounds while selectively
diminishing anomalous signals. Consequently, it enhances
sensitivity in reconstruction residuals toward anomalous
targets, resulting in an improved reconstruction residual
map.

4) The ADM constructs background clusters based on the
size of clustering results and selects the background dic-
tionary by evaluating the Mahalanobis distance. Subse-
quently, it calculates the cosine similarity between each
pixel and the background dictionary to obtain detection
outcomes. The ADM accommodates the detection of orig-
inal images, spectral-spatial fusion images, and enhanced
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images, thus providing an efficient and flexible detection
process.

The rest of this article is structured as follows. Section II
reviews the relevant literature. A detailed description of the
proposed method is provided in Section III. Section IV sys-
tematically presents the thermal infrared HAD datasets, along
with the comparative experiments between the proposed method
and other algorithms, as well as ablation experiments on key
modules. Finally, Section V concludes with a summary of the
work accomplished and outlines potential directions for future
research.

II. RELATED WORKS
A. Autoencoder

AE is an unsupervised learning neural network model (as
shown in Fig. 1), which typically consists of two main compo-
nents: an encoder and a decoder [53]. The encoder transforms
input data into the latent space representation, while the decoder
reconstructs the original data from this latent representation. The
latent space serves as the core feature of the AE; it provides a
compressed representation of the input data via encoding and
encapsulates the abstract features inherent in that data. For an
AE with (M-1) hidden layers, consider a sample z; € RY with
L features as an example, the output /1;™ of the mth layer of the
AE corresponding to x; can be expressed as follows:

T
B = (D 4y ) =1 M ()

where g(-) is the encoder network, 7" denotes matrix transposi-
tion, and b™ represents the bias vector of the mth layer.

B. Knowledge Distillation

Knowledge distillation is a technique employed for model
compression and transfer learning. This method facilitates the
transfer of knowledge from a complex teacher model to a
lightweight student model, thereby enabling the latter to achieve
high performance at a relatively low computational cost [54].
The fundamental concept underlying this approach is to utilize
the outputs or features produced by the teacher model as guid-
ance during the training of the student model. Consequently,
this reduces overall model complexity while retaining, and po-
tentially enhancing, task performance. A knowledge distillation
system comprises the following two main components.

1) Teacher Network: Typically characterized by its deep ar-
chitecture and complexity, this network possesses robust
feature extraction capabilities that allow it to capture intri-
cate high-level semantic features and subtle differences in
patterns within data. By doing so, it establishes a bench-
mark of knowledge that can be utilized by the student
model.

2) Student Network: This is a lightweight network designed
toreplicate either the outputs or intermediate layer features
of the teacher model via an appropriately formulated dis-
tillation loss function. In this manner, it learns efficient
representations of features while maintaining computa-
tional efficiency.
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Fig. 2. Flowchart of the proposed KDAD method.

Feature-level knowledge distillation emphasizes the feature
representations found in the intermediate layers of the teacher
model. By aligning the spatial structures, channel dependencies,
or attention mechanisms, this approach facilitates the student
model’s ability to grasp the semantic relevance of deep features
[55]. Specifically, feature-level distillation preserves high-level
abstract information from the data by enforcing consistency
between the intermediate layer feature maps of both the student
and teacher models. The feature Loss function Ly.q; between the
teacher and the student model can be defined as follows:

1 L
Lyeat = 5 157 = £51; 2
=1

where L is the number of feature maps, f;’ and f;5 are the
feature maps of the ith layer of the teacher and student model,
respectively, and || - ||3 represents the square of the L, norm.

III. METHODOLOGY

To tackle the challenges associated with distinguishing
anomalies from backgrounds in TI_HSI, this study proposes
a novel anomaly detection method, referred to as KDAD, that
integrates spatial information and knowledge distillation mecha-
nism (as illustrated in Fig. 2). This method consists of three core
modules: SSFM captures spatial neighborhood relationships
through a dual-window model to generate the spatial informa-
tion map (SPAM), achieving complementary fusion of spectral-
spatial features via a dual-branch stacked AE; REM establishes a
teacher-student network grounded in the knowledge distillation
framework, incorporating principal component analysis (PCA)

and K-means clustering to produce an enhanced background
weight matrix based on pixel density classification; ADM fil-
ters background classes according to cluster sizes, constructs a
dynamic background dictionary via Mahalanobis distance, and
employs cosine similarity to quantify the degree of anomaly.

A. Spectral-Spatial Fusion Module

1) Acquisition of SPAM: TI_HSIs encompass a wealth of
spectral information across multiple bands, and their spatial
characteristics play a vital role in anomaly detection. Given that
the target size of anomalous pixels is typically small in such a
detection process, this study adopts a dual-window model (as
shown in Fig. 3) to extract spatial information by leveraging the
similarity relationships between each pixel and its neighboring
pixels.

A hyperspectral image is classified as a form of three-
dimensional structured data, where the image can be represented
as X € RT*WxC (g W, and C represent the height, width, and
number of spectral channels, respectively). The cosine similar-
ity, named s, between one pixel vector and its neighborhood
pixel vector is computed based on (3). The average values of s
for far- and near-neighborhood regions are referred to as p; and
L2, respectively, which are calculated using (4) and (5)

o — > Ai X Bi
VI, (A x /T, (B)?

1
Ny 2

3

“
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1 &
He =58 (5)

J=1
where A; and B; represent the spectral vectors of the ith pixel
in the far-neighborhood region and the ith pixel in the near-
neighborhood region, respectively, N; and N, are the total
number of pixels in the far- and near-neighborhood, respectively;
si(s;)is the cosine similarity for the ith(jth) pixelin the far-(near-)

neighborhood region.

In this section, s; of each pixel is regarded as its spatial
information. Assuming there are N; pixels within the far-
neighborhood region, the SPAM with dimension (H, W, N;) can
be constructed by calculating all values of s; for each pixel.
The dual-window model effectively capitalizes on the charac-
teristic that anomalous pixels are relatively rare in hyperspectral
images. This results in distinct representations of background
and anomalous pixels in SPAM, which can be classified into the
following three cases.

1) For background pixels, there exists a considerable num-
ber of background points in both their far- and near-
neighborhoods; consequently, both iy and po are rela-
tively large.

2) In the case of centrally distributed anomalous pix-
els, numerous background pixels populate their far-
neighborhood while an abundance of anomalous pixels
is present in their near-neighborhood, resulting in a small
w1 and a large pio.

3) For asingle-point anomaly or small-scale anomalies, there
are few similar pixels in both far- and near-neighborhoods;
hence, both 11 and 5 remain small.

2) Dual-Branch Stacked Autoencoder: DBCSAE is de-
signed based on a dual-branch collaborative learning framework
to extract and fuse spectral and spatial features. Initially, PCA
is performed on the original X, retaining 95% of the cumu-
lative variance percentage of the original image to obtain the
dimensionality-reduced image HSI,..; then, a stacked convo-
lutional AE is employed to extract the original spectral features
of the image and the features of the spatial information map
SPAM, respectively.
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The encoder network architecture consists of four convolu-
tional layers (Conv) interleaved with rectified linear activation
layers (ReLU), employing a convolution kernel size of 3 x 3
and a stride of 1. The encoder processes HSI .. and SPAM sep-
arately, capturing their corresponding features into latent feature
spaces. A cascading fusion process occurs in this latent space,
leading to the generation of spectral-spatial fusion features. The
spectral features extracted by the encoder are represented as
Yspe, while the spatial features are denoted as Y,,. Ultimately,
these spectral and spatial features are concatenated along the
channel dimension to produce the combined spectral-spatial
fusion features Yyusion

qusion = cat (Yspea Y;'pa) . (6)

In the fusion training process, the reconstruction loss for both
the spectral encoder and spatial encoder is computed using mean
square error

1Y \

A
L= N; ( i XZ-) @)
where L is the loss function of the encoder, N is the total number

of image pixels, X; and )A( ; are the input and output of AE during
the training.

The architecture of the decoder consists of four transposed
convolutional layers (ConvT) that correspond to the encoder,
with alternating ReLU activations. Each layer employs a convo-
lution kernel size of 3 x 3 and a stride of 1. The procedure for
decoding is as follows:

Xfusion =D (qusion) (8)

where D(:) is the decoder network, X ;,sion € RT*W*C" is the
spectral-spatial fusion image, C' = C + Nj.

B. Residual Enhancement Module

The reconstruction error serves as a crucial metric for dis-
tinguishing background and anomalous pixels. To enhance the
distinguishability of reconstruction errors between anomalies
and backgrounds, this section integrates feature-level distillation
constraints within stacked convolutional AEs, thereby intro-
ducing a knowledge distillation weighted AE submodule. This
establishes a collaborative learning architecture comprised of
teacher-student encoder networks, which is displayed in Fig. 4.
The KDWAE submodule exploits the distillation loss of the
teacher and student encoders to force the student network to
prioritize modeling the background distribution during training,
ultimately driving it to focus more on reconstructing the back-
grounds and ignore the anomalies. Concurrently, reconstruction
loss constrains the student network to remain aligned with its
image reconstruction objectives. The submodel’s ratio parame-
ters a and (3 for both distillation loss and reconstruction loss
are dynamically adjusted by an adaptive parameter network,
facilitating dynamic weight optimization that enhances feature
differentiation and adapts throughout the training process. On
this basis, this model employs a weight matrix to impose si-
multaneous constraints on both teacher and student networks.
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Through hierarchical interaction between teacher and student
features alongside weighted restrictions concerning different
image regions’ characteristics, it bolsters robust representations
of background features while suppressing the model’s capacity
for reconstructing anomalous features.

1) Teacher Encoder: The teacher encoder utilizes a deep
convolutional network, which comprises five convolutional lay-
ers, activation layers, normalization layers, and adaptive average
pooling layers (as expressed in Fig. 5). This architecture is
capable of extracting low-dimensional features from the fused
image (Xy,si0n) into the latent feature space, standardizing the
size of the feature map via the adaptive average pooling layer,
and ultimately mapping it to a p-dimensional feature vector
(Yieacher? € RP) through the fully connected layer.

Y;feacheTp = fteacher (Xfusion§ ®teacher) (9)

where p denotes the dimension of the feature vector, fieqcher(*)
signifies the nonlinear mapping of the teacher encoder, and
Oteacher contains the parameters associated with both the con-
volutional layers and fully connected layers.

2) Student Encoder: In contrast to the teacher encoder, the
student encoder adopts a lightweight architecture, including
three convolutional layers, activation layers, and an adaptive av-
erage pooling layer (as shown in Fig. 6). This design compresses
the input of the spectral-spatial fused image into the latent feature
space. Within this framework, when the fused image X, s;on, 15
fed into the student encoder, the low-dimensional features of the
fused image are extracted and transformed into the latent feature
space through the convolutional layers. Finally, the size of the
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feature map is standardized by the adaptive average pooling
layer before being mapped to a g-dimensional feature vector
(Ystudent? € R2) through the fully connected layer.

Ystudentq - fstudent (Xfusion; ®student) (10)

where g is the dimension of the feature vector, s, dens represents
the nonlinear mapping of the student encoder.

3) Decoder: The decoder is designed to accurately recon-
struct the original image by leveraging both teacher and student
features. To ensure that the dimensions of the teacher features
align with those of the student features, a feature mapping layer
denoted as g,,qp has been introduced. This layer functions as
a fully connected network, serving to map the p-dimensional
feature vector Yieqcne”s produced by the teacher encoder, to a
g-dimensional feature vector that matches the dimensions of the
output from the student encoder. The processed teacher feature
Yieacher? € R? following the application of this mapping layer
can be expressed as follows:

Y;teacherq - FCm (Y;feache'rp) (1 1)

where FC,,(-) is the function of the feature mapping layer.

In the following section, a decoder is employed to decode the
mapped teacher feature Yicqcner? and student feature Yiygend?,
respectively, in order to reconstruct the original image. The
decoder can be represented as a nonlinear mapping ggecoders
which encompasses deconvolution layers, upsampling layers,
and fully connected layers aimed at dynamically restoring the
input image size (as shown in Fig. 7).

Additionally, the mean squared error is used to represent the
reconstruction loss of the teacher model [see (12)]

¢ 1 (0
Lyccon” = NZ Xteache'r'j - Xj
i=1

where Ly.con,' represents the reconstruction loss of the teacher

2
12)

model, N denotes the number of image pixels, )A( teacher; refers
to the reconstructed image from the teacher features, and Xj is
the input image.

For the teacher features that have been mapped, the resulting
decoded output is

A
Xteacher = Ydecoder (}/teacherq; edecoder) . (13)

The loss function of the student model is represented by
reconstruction loss and distillation loss

1o [ 4
Lrecon( = NZ (Xstudentj - X]>

j=1

2
(14)
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H

1
Ldistill - EZ; (Y—studenti - Y;ﬁeachem)2 (15)
Lt&oi&alS = CVLrecons + ﬂLdistill (16)

where L,...,* represents the reconstruction loss of the student
model, Lg;::1; denotes the distillation loss of the student model,
Lioiai’ 1s the total loss, H is the dimension of the feature vec-
tor, and « and 3 are proportional parameters regulated by the
Adaptive Parameter Network (APN).

For the student features, the decoded output is

A
Xstudent = YGdecoder (Y;tudentq; Gdecoder) . (17)

4) Adaptive Parameter Network (APN): The APN is capable
of dynamically generating weights, « and /3, which are utilized
to balance the distillation loss Lg;st;; and reconstruction loss
Lyecorn®. Atthe core of the APN architecture are two fundamental
subnetworks.

1) The difference network, referred to as ANg;g(+), assesses
the distinguishability between backgrounds and anomalies
by analyzing the feature difference between the teacher
and student models. Its input consists of a concatenation of
teacher and student features, while its output is represented
by a difference ratio value, denoted as 7 ;5

Tdif f :ANdiff(Y;&eacherq®Ystudentq)7 Tdiff € [O]-a 09] .
(18)

2) The step network ANgiep(+) is designed to dynamically
adjust the weight update step size based on the training
epoch. Its input consists of the current training epoch e,
while its output is a corresponding step ratio value 7 cy,.

Tstep = ANgiep (€) ; Tstep € [0.5,1.0]. (19)

Therefore, parameters « and 3 can be expressed as follows:
Q=Tgiff X Vstep (20)
B=(1—=ragiff) X Tstep- 20

The APN modifies the training parameters « and [ in ac-
cordance with the dynamic variations in features and the pro-
gression of training steps. When there is a significant disparity
between teacher and student features, the distillation parameter
« increases while [ decreases. Conversely, when the feature
difference between these two is minimal and the number of
training epochs is substantial, the APN raises the value of the
reconstruction parameter 3 and reduces that of a.

5) Weight Matrix: In the context of anomaly detection, the
proportion of anomalous pixels relative to the entire image
is typically small. Consequently, clustering techniques can be
employed to segment the original image, enabling a preliminary
assessment of each pixel’s degree of anomaly based on category
size, thereby facilitating the generation of a weight matrix. The
specific steps involved are as follows.

1) The PCA is employed on the original TI_HSI to alleviate

the computational burden of subsequent data processing
and obtain a dimension-reduced image X'.

2) The K-means cluster algorithm is used to categorize the

image, resulting in K clusters{C",Cs,...,Ck}.
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3) Establish the background threshold » and the anomaly
threshold a (a > b) for preliminary judgment. The criteria
for judgment are outlined as follows:

C, e {B, |ICi| <b-N

AlC|<a-N 2)

where the total number of image pixels is N, | C;|is the number
of pixels in cluster C;, B = {B;, B2, ..., B,} denotes the
set of background candidate classes, A = {As, Az, ..., Ap}
represents the set of anomalous candidate classes, and n and m
are, respectively, the number of classes of background candidate
and anomaly candidate.

4) The Mahalanobis distance from pixel x to its cluster center

U, is calculated from (23)

D (z,Uy) = \/(x Uy a-v) @3

where ), is the covariance matrix. For the background candi-
date classes, 1 minus those Mahalanobis distances is normalized
to the interval [0.5, 1], and placed in the background distance
set Dy; for the anomalous candidate classes, Mahalanobis dis-
tances are normalized to the interval [0, 0.5], and placed in the
anomalous distance set D,,.
5) WeRHXWXL g a weight matrix, and (i, j) represents
the pixel position in the matrix, and initialize W (7, j) =
0.5(¥(i, 7)). Fill it according to the following rules:

Dy (i,5), X'(i,j) € B’
W(Zuj): Da(iaj)a X/(i,j)GA, (24)
0.5, X'(i,§) ¢ (A UB)

where B’ and A’ are the sets of all pixels in the background
and anomalous candidate classes, respectively.

The loss function of the student model can be improved
through the weight matrix W obtained above as follows:

LtotalS - (aLreconS + BLdistill) x W. (25)

6) EnhancedImage Acquisition: Thereconstruction residual
map derived from the image reconstructed by KDWAE, in com-
parison to the input, effectively captures the degree of anomalies.
The enhanced reconstruction residual map Ry € R *W>*1 can
be obtained as follows:

A
RE = X student — Xfusion~ (26)

Then, the acquired X,s;0n is cascaded and spliced with R to
generate a spectral-spatial residual fusion enhanced map from
the following equation:

E = cat (Xfusiona RE) (27)

where E € RF*Wx*C" denotes the enhanced image, C" = C +
1, C" is the dimension of the spectral-spatial fusion image.

C. Anomaly Detection Module

The ADM is employed to perform the anomaly detection pro-
cess on the obtained enhanced image E obtained from prior pro-
cessing. The primary design objective of the ADM is to achieve
accurate localization of anomalies by efficiently leveraging the
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(d) (e)

Fig.8. Workflow and intermediate results of the anomaly detector. (a) TI_HSI.
(b) Clustering result. (c) Pure clustering. (d) Background dictionary. () AD
result.

spectral-spatial features and residual features in the enhanced
image, all while employing a lightweight computing approach
(as introduced in Fig. 8). The input to the ADM is a TI_HSI
[Fig. 8(a)]. Initially, it undergoes K-means clustering, and the
clustering result map is depicted in Fig. 8(b). Subsequently, the
background class is derived using (22), which can be seen in
Fig. 8(c). To assess pixel similarities, we calculate the Maha-
lanobis distance from each pixel within pure clusters to their
respective cluster centers as outlined in (23). These distances
are then sorted, with pixels corresponding to the smallest 10%
of distances selected to form the background dictionary BD, as
displayed in Fig. 8(d). The anomaly degree for any given pixel x
within the input image is defined as the average cosine similarity
between the pixel x and those identified within the background
dictionary BD. Let BD = {by,by...b,,}, then the anomaly
degree of x is obtained by (28). The anomaly detection result,
demonstrated in Fig. 8(e), can be obtained from calculating the
anomaly degrees of all pixels.

M
1
AD, = i zm: cos (z, by (28)

where AD,, is the anomaly degree of the pixel x, and cos(x, b,,,)
is the cosine similarity between x and the background point b,,,.

IV. EXPERIMENTS AND RESULTS

In this section, the performance of KDAD is compared with
that of eight existing methods across three thermal infrared HAD
datasets. Furthermore, ablation experiments are conducted to
validate the effectiveness of each module introduced in KDAD.

A. Experimental Datasets

The TI_HSIs utilized in this study were acquired in Hengdian
Town, Dongyang City, Zhejiang Province, China. These images
process a spatial resolution of 1 m and cover a spectral range
from 8.061 to 11.217 pm, encompassing a total of 110 channels.
Three regions suitable for TI_HSI anomaly detection categories
are selected from the original image. These regions are classified
into background and anomaly via the supervised support vector
machine technique within ENVI software, thereby serving as
the datasets for anomaly detection purposes. The hyperspectral
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Fig. 9. Hyperspectral images and corresponding ground truth maps used in

the experiment. Datasets: (a) House. (b) Tower. (c) Truck. Ground truth maps:
(d) House. (e) Tower. (f) Truck.

images, along with ground truth maps corresponding to the three
datasets, are presented in Fig. 9.

1) House Dataset: This dataset comprises a TI_HSI with di-
mensions of 96 x 96 pixels. It features various scenes, including
ground, wasteland, and houses, with the houses identified as the
anomalies. The image contains a total of 9216 pixels, among
which there are 48 anomalous pixels, resulting in an anomaly
proportion of 0.52%.

2) Tower Dataset: This dataset consists of a TI_HSI measur-
ing 100 x 100 pixels. It depicts a forested area that includes trees,
land, and signal towers; the latter are classified as anomalies
within this context. This image encompasses 10 000 pixels in
total, with 74 identified as the anomalous pixels, yielding an
anomaly proportion of 0.74%.

3) Truck Dataset: It features an image sized at 64 x 64 pixels
depicting two trucks parked in an open space; these trucks are
considered anomalies for the purposes of analysis. The image
is composed of a total of 4096 pixels and includes 80 anoma-
lous pixels, leading to an anomaly proportion of approximately
1.95%.

B. Compared Methods and Evaluation Criteria

1) Compared Methods: The proposed KDAD is compared
against eight existing methods, including RX [15], MsRFQFT
[56], CRD [26], LRSR [31], Auto-AD [46], BS®*LNet [35],
SSCADE [57], and GT-HAD [58]. Among these methods, the
first four are traditional algorithms: RX is an anomaly detec-
tion technique predicated on the assumption of Gaussian dis-
tribution; MsRFQFT integrates random forest with frequency
domain analysis for anomaly detection; CRD and LRSR are
representation-based anomaly detection algorithms. The lat-
ter four methods employ deep learning techniques: Auto-AD,
BS?LNet, and SSCADE enhance the background feature repre-
sentation via self-supervised learning or AE structure; GT-HAD
utilizes gated Transformer models to capture spectral-spatial
similarities and dynamically adjust the activation states of both
background and anomaly branches.
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Fig. 10.
KDAD. (j) Groundtruth.

2) Evaluation Criteria: To clearly illustrate the detection
performance of each algorithm, this study employs three-
dimensional receiver operating characteristic (3-D ROC) and
area under the curve (AUC) to quantitatively analyze the detec-
tion results across various algorithms. The 3-D ROC curve intu-
itively reflects the comprehensive performance of an algorithm
across multiple dimensions by plotting the three-dimensional
relationships among detection probability (PD), false alarm rate
(PF), and decision threshold (7). Furthermore, the 3-D ROC can
be decomposed into three two-dimensional curves: (PD, PF),
(PD, 1), and (PF, 7). Among these, the (PD, PF) curve represents
the traditional two-dimensional ROC curve (2-D ROC), which
quantifies the algorithm’s ability to balance the detection rate and
false alarm rate under different thresholds. A curve that is closer
to the upper left corner indicates superior performance, suggest-
ing that the algorithm effectively suppresses false alarms while
maintaining a high detection rate. The (PD, 7) curve illustrates
how detection rates vary with changes in the threshold values,
reflecting an algorithm’s sensitivity to anomalous targets; a curve
nearer to the upper right corner signifies better performance
in detecting anomalies across varying thresholds. The (PE, 7)
curve depicts how false alarm rates fluctuate with changing
thresholds and demonstrates an algorithm’s capability to mit-
igate background noise; a position closer to the lower left corner
indicates enhanced performance through low false alarm rates at
diverse thresholds. The AUC serves as a quantitative measure for
evaluating 2-D ROC performance within a range of 0—1; values
approaching 1 signify a superior algorithm. Additionally, this
study produces color anomaly maps and a separability map to
qualitatively demonstrate all methods’ performance on the three
datasets.

C. Detection Performance

The detection results for all employed methods across the
three datasets are illustrated in Fig. 10 as color anomaly maps.
The color gradient of the anomaly map transitions from blue to
red, representing the degree of anomalous behavior associated
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Color anomaly maps of different methods. (a) RX. (b) CRD. (c) MsRFQFT. (d) LRSR. (e) Auto-AD. (f) BS?LNet. (g) SSCADE. (h) GT-HAD. (i)

with each pixel. A higher degree of anomaly corresponds to a
color closer to red, indicating an increased likelihood that the
pixel is classified as anomalous. The first nine columns of the
color anomaly maps display the detection outcomes obtained
through various models specifically designed for anomaly de-
tection, while the final column depicts the ground truth map
corresponding to the datasets. Fig. 11 presents the 3-D ROC and
2-D ROC curves for different detection models.

The relevant color anomaly maps for the House dataset (as
shown in the first row of Fig. 10) indicate that RX and MsR-
FQFT algorithms exhibit limited capacity for anomaly detec-
tion, demonstrating weak responses in identifying anomalous
targets within the images, coupled with a tendency to misclassify
background pixels as anomalies. CRD, LRSR, and BS’*LNet
algorithms display inadequate background suppression capa-
bilities, leading to a considerable number of false alarms, a
concern further illustrated in Fig. 11(d1). Both Auto-AD and
GT-HAD methods are capable of correctly detecting anoma-
lous pixels; they also incorrectly classify some background
pixels as anomalies, thereby compromising overall detection
efficacy. SSCADE suppresses background and reduces the false
alarm rate; however, it is prone to missing detections of certain
anomalous pixels. In contrast, the proposed KDAD demon-
strates robust performance by accurately detecting anomalies
while simultaneously suppressing background pixels. As ev-
idenced by Fig. 11(cl) and (d1), KDAD achieves high de-
tection accuracy across various thresholds with a low false
alarm rate; its results align closely with the ground truth of the
dataset.

The detection results for the Tower dataset are presented in
the second row of Fig. 10. The scene depicted in the Tower
datasetisrelatively complex [as illustrated in Fig. 9(b)]. From the
detection maps, it can be observed that RX struggles to identify
any anomalies; CRD detects only incomplete anomalous targets
and demonstrates insufficient background suppression. Notably,
Auto-AD displays a strong anomaly response [as shown in
Fig. 11(c2)]; however, upon examining Fig. 11(d2), it becomes
evident that the false alarm associated with Auto-AD remains
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ROC curves of different detection methods on three datasets. The first row is the House dataset, the second row is the Tower dataset, and the third row

is the Truck dataset. (a) 3-D ROC curve. (b) 2-D ROC curve. (¢) 2-D (PD, 7) curve. (d) 2-D (PF, 7) curve.

high, resulting in suboptimal overall detection performance.
BS3LNet, SSCADE, and GT-HAD exhibit instances of missed
detections concerning anomalous targets; both MsRFQFT and
LRSR show inadequate background suppression capabilities,
leading to an elevated number of false alarms. By comparison,
the detection result produced by our proposed KDAD closely
aligns with ground truth, the identified anomalies correspond
accurately to target positions while maintaining a low false alarm
rate.

The detection results for the Truck dataset are displayed in the
third row of Fig. 10, which highlights that this dataset contains
numerous interferences [as displayed in Fig. 9(c)]. Within this
dataset, RX and CRD encounter difficulties when attempting
to differentiate anomalies from the background within the de-
tection maps. Auto-AD, MsRFQFT, BS?LNet, and SSCADE
demonstrate severe instances of missed detections; Conversely,
LRSR, GT-HAD, and KDAD effectively identify anomalous
targets. In particular, while GT-HAD exhibits excellent target
fidelity, it falls short of KDAD regarding background sup-
pression. As shown in Fig. 11(c3) and (d3), KDAD surpasses
GT-HAD in terms of accuracy while achieving a lower false
alarm rate. In addition, the separability map is utilized to visually
represent the differentiability of detection results from various
methods. The background-anomaly separation map evaluates
the algorithm’s capacity to distinguish between background and
anomalous pixels by illustrating the distribution differences be-
tween anomalous pixels and distant background pixels. In these

separability maps, a greater distance between the anomalous
cylinder and its corresponding background cylinder indicates
superior separability of the algorithm. Fig. 12 presents the
separability maps of detection obtained from different models
on the three datasets. It can be observed that LRSR, GT-HAD,
and KDAD exhibit relatively good separability. Notably, KDAD
demonstrates superior separability performance across all these
datasets.

Table I presents the AUC scores for each model across the
three datasets. The KDAD method demonstrates optimal perfor-
mance on the House, Tower, and Truck datasets: In the House
scenario, its AUC(PD, PF) of 0.9980 surpasses that of SSCADE
(0.9972); while its AUC(PF, 7) is lower at 0.0045 compared to
SSCADE’s score of 0.0096; however, its AUC(PD, 7) of 0.9903
outperforms those of other methods evaluated. In the Tower
scenario, KDAD achieves an AUC(PD, PF) and an AUC(PD,
7) of 0.9988 and 0.9729, respectively, exceeding BS?LNet’s
figures (0.9963 and 0.8784); additionally, its AUC(PF, 7) attains
a notably low value of 0.0009; Finally, in the Truck scenario,
KDAD’s AUC(PD, PF) reaches a score of 0.9978—surpassing
GT-HAD’s score of 0.9954; it also exhibits superior performance
in both the AUC(PD, 1) (with a score of 0.9144) and AUC(PF, 1)
(at 0.0085), which are among the best metrics observed across
all models analyzed.

The results from these experiments indicate that the proposed
KDAD exhibits considerable robustness across different sce-
narios. The 3-D ROC curve provides an elaborate view of the
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Fig. 12.  Separability maps of different detection methods on three datasets. (a) House dataset. (b) Tower dataset. (c) Truck dataset.
TABLE I
AUC SCORES OF VARIOUS MODELS ON THREE DATASETS

Dataset AUC RX CRD MSsRFQFT LRSR Auto-AD BS’LNet SSCADE GT-HAD KDAD
AUC(PD, PF) 0.9889 0.9903 0.9492 0.9887 0.9920 0.9894 0.9972 0.9949 0.9980
House AUC(PF, 7) 0.0299 0.0219 0.0906 0.0238 0.0153 0.0315 0.0096 0.0101 0.0045
AUC(PD, 7) 0.6041 0.7708 0.0416 0.8542 0.8125 0.8333 0.8958 0.8750 0.9903
AUC(PD, PF) 0.9324 0.9021 0.9904 0.9893 0.9850 0.9963 0.9912 0.9922 0.9988
Tower AUC(PF, 7) 0.1372 0.2822 0.0276 0.0404 0.0269 0.0122 0.0183 0.0199 0.0009
AUC(PD, 7) 0.0811 0.2027 0.7297 0.6351 0.6216 0.8784 0.6892 0.6757 0.9729
AUC(PD, PF) 0.9772 0.7514 0.9796 0.9294 0.9891 0.9507 0.9932 0.9954 0.9978
Truck AUC(PF, 7) 0.0435 0.6278 0.0399 0.2230 0.0286 0.1215 0.0119 0.0093 0.0085
AUC(PD, 7) 0.3371 0.0562 0.7207 0.6067 0.6404 0.4269 0.8764 0.9047 0.9144

*The optimal results are displayed in bold, while the second-optimal results are marked with underlined.

model’s performance under different thresholds in detail. It is
evident that KDAD successfully maintains an effective balance
between the detection rates and the false alarm rates across all
datasets at different thresholds; furthermore, it not only exhibits
strong separability but also delivers outstanding performance
regarding AUC scores.

D. Ablation Experiment

To evaluate the effectiveness of each module in the KDAD
model, a series of ablation experiments is performed in this
section. The baseline model is referred to as “base,” which
contains only the ADM component, with AUC(PD, PF) serving
as the primary evaluation metric. The ablation studies focus
on ADM, SSFM, and KDWAE within REM. The ablation
experiments concerning the internal components of SSFM are
categorized into two types: For spatial information extraction,
the dual-window model is replaced by a sliding single-window
one; For image reconstruction, SPAM is eliminated, and the
dual-branch AE is replaced by a single-branch variant, with the
SSFM modules in these two scenarios denoted as SWSSFM
and SBSFM, respectively. The exploration of ADM involves
substituting it with the RX detector. In addition, separate abla-
tion analyses are performed on both the knowledge distillation
module and weight matrix module within KDWAE. The detailed
procedures are outlined as follows.

1) Eliminate the Knowledge Distillation Module: The pro-
portion parameter for the distillation component within the loss
function of KDWAE is set to 0, which is denoted as WAE

Ltotals = (aLrecons + OLdistill) x W. (29)

2) Eliminate the Weight Matrix Module: The weight matrix
from the loss function of KDWAE has been removed, resulting
in its revised formulation as KDAE

Ltotals = (aLrecons + BLdistill) . (30)

3) Substitute the Proposed Weight Matrix W With a Weight
Matrix Derived From Reconstruction Errors: Instead of utiliz-
ing the weight matrix W proposed in this article, adopt the
weight matrix construction approach of the Auto-AD algorithm,
which is based on reconstruction errors. This alternative variant
is referred to as KDRWAD.

Table II presents the results of integrating SSFM, WAE,
KDAE, and KDWAE into the model. As indicated in the table,
the incorporation of SSFM and KDWAE modules leads to a
significant enhancement in AUC(PD, PF) values across all three
datasets, thereby highlighting their essential roles within the de-
tection algorithm. Notably, the inclusion of the KDWAE module
yields an average increase of 0.9% in AUC (PD, PF) values,
affirming its critical role in enhancing background features while
suppressing anomalies. Within the SSFM module framework,
the dual-window model achieves an average AUC(PD, PF) value
that is 0.26% higher than that of the single-window model;
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TABLE I

ABLATION EXPERIMENTS [AUC(PD, PF)] OF THE PROPOSED METHOD ON
THREE DATASETS

House Tower Truck

dataset dataset dataset
base 0.9882 0.9786 0.9185
base+SSFM 0.9904 0.9913 0.9889
basetKDWAE 0.9894 0.9863 0.9692
base+SSFM+WAE 0.9932 0.9922 0.9929
base+SSFM+KDAE 0.9928 0.9979 0.9978
base+SWSSFM+KDWAE 0.9975 0.9937 0.9956
base+SBSFM+KDWAE 0.9938 0.9980 0.9932
base+SSFM+KDRWAE 0.9972 0.9950 0.9943
RX+SSFM+KDWAE 0.9917 0.9890 0.9901
base+SSFM+KDWAE 0.9980 0.9988 0.9979

The bold values indicate the optimal AUC(PD, PF) values under different ablation
configurations.

moreover, the dual-branch AE demonstrates a considerable
advantage over its single-branch equivalent. In relation to the
KDWAE module’s configuration, omitting the weight matrix
component has only a negligible overall effect on final per-
formance; nonetheless, it markedly influences specific datasets.
For instance, excluding this component improves detection out-
comes by 0.52% on the House dataset when compared with
results obtained with it retained. In contrast, removal of the
knowledge distillation module results in a notable decrease
in AUC(PD, PF) values; this underscores the significance of
background feature transfer within the teacher-student networks
for enhancing reconstruction residual quality. The comparison
between the proposed weight matrix construction method and
an alternative based on reconstruction error emphasizes addi-
tional benefits associated with utilizing the weight matrix W.
The table further illustrates superior performance exhibited by
ADM, which realizes an average improvement of 0.8% relative
to findings from employing RX detector methodology.

These experimental findings reveal that integration of any
module into the model results in substantial improvements in
detection performance, thereby affirming both the necessity and
efficacy of each component within the architectural framework.

E. Parameter Analysis

The proposed KDAD method incorporates several key pa-
rameters that necessitate analysis to enhance the performance of
anomaly detection. These parameters include the inner and outer
window sizes of the dual-window model, as well as the anomaly
threshold a and background threshold b. In the experimental
setup, the inner window size varies from 3 to 9, while the outer
window size ranges from 5 to 11, ensuring that the outer window
properly encompasses the inner window within an appropriate
spatial context. Concurrently, the thresholds a and b are adjusted
within the intervals [0.2, 0.3] and [0.05, 0.15], respectively. The
corresponding AUC(PD, PF) values under different parameter
configurations are displayed in Tables III and IV.
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To assess the impact of inner and outer window sizes on
performance, this study maintains all other parameters at con-
stant levels while evaluating various combinations within their
specified ranges. As illustrated in Table III, the AUC(PD, PF)
scores for the House, Tower, and Truck datasets exhibit vari-
ability across distinct pairings of window size. Notably, when
configured with an inner window size of 5 paired with an outer
window size of 7, the model achieves optimal AUC performance
across all datasets.

To determine the optimal values for parameters a and b,
a variety of threshold pairs within their specified ranges are
evaluated. As depicted in Table IV, the AUC(PD, PF) values
vary with different combinations of (a, b). Notably, however,
the combination where @ = 0.25 and b = 0.15 consistently
yields the highest performance across the House, Tower, and
Truck datasets. This pair demonstrates superior efficacy in dis-
tinguishing anomalies from background data.

F. Running Time

In this section, the computation time of various detection
methods is analyzed. All experiments reported in this article are
conducted on a computer equipped with a 12th Gen Intel Core
17-12700 processor and a 64-bit operating system, featuring a
main frequency of 2.10 GHz and 16.0 GB of RAM. The running
times for these models are presented in Table V. The traditional
algorithm RX is the fastest, exhibiting an average running time of
0.03 s across the three datasets; in contrast, the average running
times of LRSR and BS®*LNet increase significantly to 303.25
and 1211.48 s, respectively, which may be attributed to the
complex model structure and substantial processing demand for
the prolonged time; the average running time of Auto-AD is
recorded at 139.02 s, which indicates considerable consumption
of computing resources during feature extraction and model
inference processes; the proposed KDAD demonstrates an av-
erage running time of 88.24 s, revealing notable efficiency
advantages compared to most other comparative methods due
to its optimized computational approach that avoids excessive
iterative calculations and extensive parameter training. Although
SSCADE has a shorter average running time of only 58.82 s,
KDAD strikes a better balance between computational efficiency
and detection accuracy overall. Notably, on the Truck dataset,
KDAD achieves a remarkably lower running time of 40.43 s
compared to many competitive methods evaluated in this study.

G. Effectiveness Analysis of the Adaptive Parameter Network

To evaluate the effectiveness of APN in dynamically adjusting
the weights of knowledge distillation loss and reconstruction
loss, this study designs an experiment that compares static
weight assignments for these losses with dynamic weight assign-
ments managed by the APN. For the static weight assignment
experiment, nine sets of fixed combinations of («, 3) are defined,
encompassing a gradual range where « varies from 0.1 to 0.9
and (3 ranges from 0.9 to 0.1. The experimental results are
summarized in Table VL.

Under static weight assignment conditions, the AUC(PD, PF)
values corresponding to different («, 5) combinations exhibit
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TABLE III
EXPERIMENT ON THE ANALYSIS OF INNER AND OUTER WINDOW SIZE PARAMETERS [AUC(PD, PF)] ON THREE DATASETS

Dataset 3,5) 3,7) 3,9) (3,11) (5,7) (5,9) (5, 11) (7,9) (7, 11) 9, 11)
House 0.9954 0.9967 0.9945 0.9945 0.9980 0.9970 0.9963 0.9966 0.9939 0.9979
Tower 0.9969 0.9971 0.9980 0.9984 0.9988 0.9968 0.9946 0.9976 0.9945 0.9933
Truck 0.9919 0.9894 0.9872 0.9940 0.9979 0.9914 0.9877 0.9893 0.9938 0.9942
* The first row represents the combination of inner and outer window sizes. The bolded entries indicate the optimal values.
TABLE IV
EXPERIMENT ON THE ANALYSIS OF THRESHOLD PARAMETERS [AUC(PD, PF)] A AND B ON THREE DATASETS
Dataset (0.3, 0.05) (0.3,0.1) (0.3, 0.15) (0.25, 0.05) (0.25,0.1) (0.25,0.15) (0.2, 0.05) (0.2,0.1) (0.2,0.15)
House 0.9955 0.9952 0.9955 0.9948 0.9941 0.9980 0.9978 0.9977 0.9974
Tower 0.9951 0.9967 0.9974 0.9946 0.9970 0.9988 0.9914 0.9976 0.9890
Truck 0.9939 0.9918 0.9909 0.9951 0.9979 0.9979 0.9952 0.9938 0.9940
* The first row represents the combination of thresholds a and b (@, b). The bolded entries indicate the optimal values.
TABLE V
RUNNING TIME (S) OF VARIOUS MODELS ON THREE DATASETS
Dataset RX CRD MsRFQFT LRSR Auto-AD BS’LNet SSCADE GT-HAD KDAD
House 0.05 10.36 0.5 427.76 136.79 1342.43 68.15 3194 123.27
Tower 0.03 11.39 0.52 343.45 168.61 14443 79.09 162.37 101.02
Truck 0.02 4.48 0.28 138.54 111.67 847.7 29.22 130.05 40.43
Average 0.03 8.74 0.43 303.25 139.02 1211.48 58.82 203.94 88.24
TABLE VI
COMPARATIVE EXPERIMENTS [AUC(PD, PF)] BETWEEN APN AND STATIC WEIGHT ASSIGNMENT ON THREE DATASETS
Dataset (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4, 0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) APN
House 0.9973 0.9974 0.9977 0.9981 0.9974 0.9976 0.9959 0.9964 0.9962 0.9980
Tower 0.9948 0.9950 0.9945 0.9955 0.9975 0.9922 0.9954 0.9955 0.9968 0.9988
Truck 0.9915 0.9937 0.9955 0.9968 0.9945 0.9947 0.9930 0.9969 0.9955 0.9979

* The first row represents the combination of weight ratio parameters a and /8. The bolded entries indicate the optimal values.

significant fluctuations depending on varying parameter pair-
ings across datasets: on the House dataset, only the combina-
tion (0.4, 0.6) achieves an AUC(PD, PF) score of 0.9981—
the optimal result for this dataset—whereas most other pairs
yield notably lower AUC(PD, PF) scores than this optimal
benchmark. Similarly, within both Tower and Truck datasets,
only a limited number of («, ) pairs demonstrate optimal
performance; conversely, other combinations reveal substan-
tial performance gaps when compared to these top-performing
pairs. In contrast, under APN-based dynamic weight assignment
conditions, our model consistently reaches AUC(PD, PF) val-
ues across all three datasets—House, Tower, and Truck—that
not only exceed those achieved by most static (o, ) com-
binations but also exhibit significantly enhanced stability in
performance.

V. CONCLUSION

In this study, a thermal infrared HAD model based on dual-
window spectral-spatial information fusion and KDAD is pro-
posed. The anomaly detection is performed on three hyper-
spectral thermal infrared datasets, offering a novel approach for
identifying anomalies in TI_HSIs. KDAD accurately extracts the
spatial information map via a dual-window model and integrates

these with a dual-branch stacked AE to achieve the deep fusion of
spectral and spatial features, thereby significantly enhancing the
capability to differentiate between backgrounds and anomalies.
Subsequently, through the knowledge distillation weighted AE
framework, our approach employs dynamic adjustments within
the teacher-student network alongside the weight matrix. Ad-
ditionally, an adaptive parameter network is utilized to fine-
tune both reconstruction loss and distillation loss throughout
the network’s operation. This process strengthens the robust
modeling of background features while reducing anomalous re-
construction, thereby improving the sensitivity of reconstruction
residuals to anomalies. Finally, a lightweight anomaly detector
is designed to rely on clustering techniques combined with
cosine similarity analysis. This facilitates efficient integration
of spectral-spatial fusion images along with an enhanced recon-
struction residual map, thus ensuring a balance between detec-
tion accuracy and operational efficiency. Experimental results
indicate that the KDAD model surpasses existing algorithms in
detection performance across the three thermal infrared hyper-
spectral datasets, demonstrating enhanced background suppres-
sion capability and improved accuracy in anomaly localization.
Nevertheless, the current algorithm has certain limitations when
it comes to detecting single-point anomalies with an extremely
low pixel ratio or small targets with anomalous distributions.
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In future work, we will further explore more effective anomaly
detection frameworks to address this issue.
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