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Abstract— When predicting data for which limited supervised
information is available, hyperspectral target detection methods
based on deep transfer learning expect that the network will
not require considerable retraining to generalize to unfamiliar
application contexts. Meta-learning is an effective and practical
framework for solving this problem in deep learning. This
article proposes a new meta-learning based hyperspectral target
detection using Siamese network (MLSN). First, a deep residual
convolution feature embedding module is designed to embed
spectral vectors into the Euclidean feature space. Then, the
triplet loss is used to learn the intraclass similarity and interclass
dissimilarity between spectra in embedding feature space by
using the known labeled source data on the designed three-
channel Siamese network for meta-training. The learned meta-
knowledge is updated with the prior target spectrum through a
designed two-channel Siamese network to quickly adapt to the
new detection task. It should be noted that the parameters and
structure of the deep residual convolution embedding modules
of each channel in the Siamese network are identical. Finally,
the spatial information is combined, and the detection map of
the two-channel Siamese network is processed by the guiding
image filtering and morphological closing operation, and a final
detection result is obtained. Based on the experimental analysis
of six real hyperspectral image datasets, the proposed MLSN has
shown its excellent comprehensive performance.

Index Terms— Deep learning, hyperspectral imagery, meta-
learning, Siamese network, target detection.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is a 3-D cube containing
rich spatial and spectral information with hundreds of

narrow and contiguous wavebands by an imaging spectrom-
eter. Each pixel in the HSI contains a contiguous spectrum
whose characteristic is related to the materials contained
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therein. Thanks to their high spectral resolution, HSIs have
been applied and played an essential role in civilian search and
rescue [1], agricultural production [2], [3], military application
[4], urban planning [5], and so on. Target detection has
attracted more and more attention in these fields, and it has
become an urgent need for developing accurate and effective
target detection algorithms.

Hyperspectral target detection is a detection method that
identifies and locates the targets with similar spectral char-
acteristics as the prior target spectrum, mainly at the
pixel/subpixel level. Many target detection algorithms have
been proposed in the literature. In [6], the spectral angle
mapper (SAM) is proposed to detect the targets by evaluating
the spectral angle between the spectrum of each pixel in
the image and the prior target spectrum of interest. The
spectral information divergence (SID) is used in [7] to identify
the targets by the probability difference between spectral
features. Both the SAM and SID are direct and straightforward
target detectors. The target detector based on constrained
energy minimization (CEM) [8] constructs a finite impulse
response (FIR) filter. It constrains the characteristics of the
target to be detected with specific gain while minimizing the
influence of the background. Various of improved algorithms
based on the CEM algorithm are proposed afterward. The
hierarchical CEM (hCEM) [9] method uses a structure with
different layers of CEM detectors to preserve the target and
suppress the background through a layer-by-layer filtering
process, and the detection performance is gradually improved.
Algorithms such as the adaptive coherence/cosine estimator
(ACE) [10], [11] and the adaptive matched filter detector
(AMF) [12] are designed according to the hypothesis testing
method of the Gaussian distribution hypothesis. Subspace-
based hyperspectral target detection algorithms have also been
proposed, such as the orthogonal subspace projection (OSP)
[13] detector proposed by Chein-I Chang and the matched
subspace detector (MSD) designed in [14]. Some detectors
based on sparse representation have also been proposed suc-
cessively, such as the sparse target detector (STD) proposed
in [15] and the detector based on joint sparse and cooper-
ative representation (CSCR) proposed by Li [16]. In order
to get rid of the constraints of model assumptions, a tree-
structured encoding [17] method is proposed to eliminate the
influence of model assumptions on detection performance. The
ensemble learning-based hyperspectral target detection meth-
ods have also been proposed. Methods such as ensemble-based
information retrieval with mass estimation [18] and ensemble-
based cascaded constrained energy minimization (E-CEM)
[19] improve both the generalization and nonlinear discrim-
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inate capabilities of hyperspectral target detectors and obtain
higher detection accuracy and stability.

Due to the strong generalization and deep extraction of
advanced semantic features, deep learning has been gradually
applied in HSI processing, such as band selection [20], classi-
fication [21], unmixing [22], and super-resolution reconstruc-
tion [23]. In recent years, deep learning-based hyperspectral
target detection algorithms have gradually been proposed.
In [24], a shallow neural network structure in which the 2-D
convolutional layer and maximum pooling layer are alternately
connected is used to transform the spectral vectors of the target
and neighboring pixels into the 2-D matrix and feed it to
the network for learning. The convolutional neural network-
based target detection (CNNTD) model is proposed by Li [25].
It makes use of a known source data with label information,
where samples of the same class and samples between differ-
ent classes are matched into pixel pairs as training samples
to train a 1-D deep convolutional neural network (CNN), and
then, the trained 1-D deep CNN model is transferred to detect
targets. Since deep CNN requires a large amount of data for
training, whereas there are very few training data available
for hyperspectral target detection, it is necessary to expand
the training data. For this purpose, the deep network-based
hyperspectral target detection (HTD-Net) detector is proposed
in [26], and the U-autoencoder (AE) structure is designed
with the U-net [27] idea to generate potential target samples.
According to the known target samples, the background sam-
ples significantly different from the target are found by linear
prediction algorithm. Then, the target pixel is paired with
target pixel and background pixel, respectively, to expand the
training samples to train a 16-layer 1-D deep CNN. In [28],
the target pixel is subtracted from the background pixels of
different classes, and the background pixels of different classes
are subtracted from each other to expand the training dataset
to train the 30-layer 1-D CNN. In addition to the method of
CNN-based target detection, there are also detection methods
that use the idea of the generative adversarial network (GAN)
[29]. Background learning based on a target suppression con-
straint (BLTSC) detector is proposed in [30], and a variant of
GAN is used to the Adversarial AE (AAE) [31] to reconstruct
the background. The CEM algorithm is used to coarse filter the
HSI to obtain the background samples, feeding the background
samples to the AAE to learn until convergence. Target suppres-
sion constraint loss is added to the loss function to suppress
the AAE reconstruction target. The AAE will reconstruct the
HSI while inputting the original HSI. The reconstructed HSI
has good background reconstruction, and the targets would
be found with the large reconstruction errors. Variational AE
(VAE) [32] is also used for target detection. It performs
spectral regularization for the VAE through a designed spectral
regularization unsupervised network [33] so that the hidden
nodes could better characterize the spectral information of the
HSI. A weighted map is then obtained by weighting the feature
maps outputted by the hidden nodes, the background in the
weighted map is suppressed by the morphological opening
operation, and the detection result was finally obtained by
using the guide image filter to smooth the image. Due to

the low spatial resolution of HSI, many of the target pixels
in the HSI image are subpixels. In order to better detect the
subpixels, a two-stream CNN [34] is designed to learn the dis-
criminative ability of the difference between target and back-
ground spectra. It simulates the subpixels and expands training
samples by finding the typical background pixels and mixing
them with a priori target pixel. Furthermore, a semisupervised
domain adaptive few shot learning detector is proposed in [35]
to solve the problems of limited training samples and sensor-
dependent transferability. It adopts the ideas of metric learning
and domain adaptation to adaptively transfer the measurement
of spectral similarity in the embedded space (obtained by the
prototype network [36]) from the data in the source domain
to the target domain by generating adversarial training.

To overcome the problems of weak generalization ability
and adaptation to new tasks of the transferred models of
hyperspectral target detection algorithms based on deep trans-
fer learning and limited training samples for training deep
neural networks, this article proposes a new meta-learning
based hyperspectral target detection using Siamese network
(MLSN). By introducing the idea of meta-learning [37], the
meta-trained deep residual convolutional feature embedding
(DRFE) module can learn how to discriminate similarities
and differences between spectra and can be quickly adapted
to hyperspectral target detection tasks. Moreover, the meta-
training is performed on tasks constructed in the form of
triples on a known labeled dataset, which solved the problem
of limited training samples. Experiments on real hyperspectral
datasets show that the proposed MLSN algorithm has achieved
good comprehensive performance.

The remainder of this article is organized as follows.
Section II gives a detailed description of the proposed MLSN
method. In Section III, experimental results and analysis of six
real HSIs are presented. Finally, the conclusions are drawn in
Section IV.

II. PROPOSED METHOD

Most of the current deep learning models are typically
trained from scratch for specific tasks. Adaptive methods
based on deep learning have achieved great success in many
fields. However, there are also limitations. For example, the
successes are mainly in areas where large amounts of data
can be collected or simulated and large amounts of computing
resources can be used. When the data to be used are inherently
small, and no large amounts of computing resources are
available, or the computing resources are expensive, this kind
of algorithm often fails to work [37]. It is hoped that the
network does not require extensive retraining to be generalized
to unfamiliar application tasks. Meta-learning has always been
an effective and practical framework to solve such problems in
deep learning [38]. Meta-learning methods are roughly divided
into three categories [37]: model-based methods (or black box
methods) [39], optimization-based methods [40], and metric-
based methods (or nonparametric methods) [36], [41], [42].

Meta-learning is usually understood as learning to
learn [37]. During basic learning, the internal learning
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Fig. 1. MLSN algorithm block diagram.

algorithms can solve tasks defined by datasets and goals [43].
During the meta-learning period, the external algorithm will
update the internal learning algorithm so that the learned
model can improve the performance of the external algorithm.
The performance of deep CNN-based hyperspectral target
detection is often affected by the fact that the available
training samples are often limited, resulting in performance
degradation. Meta-learning can be used to solve the problem
of lacking training samples in deep learning and applied to
hyperspectral target detection. The flowchart of the proposed
algorithm is shown in Fig. 1.

A. Deep Residual Convolution Feature Embedding Module

Through the DRFE module, each pixel spectrum is embed-
ded into the Euclidean feature space. The formed feature
vector has high-level semantic feature information for HSI
target detection. The designed DRFE contains seven 1-D
convolutional layers and 40 1 × 3 convolution kernels with
a step size of 1. The pooling layer is replaced by using a 1-D
convolution layer, which has 40 1 × 3 convolution kernels
with a step size of 2, and residual connections are added
between convolutional layers [44] with a better preservation
of the gradient. As a result, it would be beneficial to extract
more advanced semantic feature information and distinguish
the similarities and differences between spectra if the network

is deeper. The penultimate layer of the network uses a 1-D
convolutional layer with a convolution kernel size of 1 × 1,
a step size of 1, and the number of convolution kernels
is 1, where the number of channels can be changed without
changing the dimension of the spectrum. Finally, the final
spectral embedding feature vector is obtained through a fully
connected layer.

As shown in Fig. 2, the DRFE inputs a spectral vector with
a dimension of 1 × d . In order to extract depth features for
a discriminant learning of intraclass similarity and interclass
dissimilarity, seven convolution layers and three pooling layers
consisting of convolution layers with a step size of 2 are used
to obtain richer spectral features of the original pixel spectrum.
Moreover, the feature information can be retained more by
adding a residual connection between the convolution layer
and the pooling layer. Finally, the final feature embedding vec-
tor is obtained to discriminate the spectral difference through
a 1 × 1 convolutional layer and a fully connected layer.

B. Triplet Loss

Embedding is represented by fθ (x) ∈ R
d , which embeds

the pixel spectrum into a d-dimensional Euclidean fea-
ture space. Furthermore, the embedding is limited to exist
on the d-dimensional hypersphere with the constraint of
� fθ (x)�2 = 1. In order to make the network learn to
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Fig. 2. Deep residual convolution feature embedding module (DRFE).

Fig. 3. Pixel spectra embedded in the Euclidean feature space schematic.

distinguish the similarity between the pixel spectra, it should
be ensured that xp

i (positive samples) from the same class as xa
i

(anchor) is as close to xa
i as possible and xn

i (negative samples)
from a different class is as far away from xa

i as possible in the
Euclidean feature space, respectively. The distance between
the anchor and a positive sample in the embedding feature
space, representing the intraclass spectral similarity between
pixels from the same class, is defined as follows:

d+ = ∥∥ fθ
(
xa

i

)− fθ
(
xp

i

)∥∥2
2. (1)

The distance between the anchor and a negative sample
in the embedding feature space, representing the interclass
spectral dissimilarity between pixels from different classes,
is as follows:

d− = ∥∥ fθ
(
xa

i

)− fθ
(
xn

i

)∥∥2
2. (2)

The schematic of the embedding feature space is shown in
Fig. 3. Triple loss [45], [46] encourages the positive samples
to constantly close to the anchor and the negative samples to
constantly move away from the anchor in the Euclidean feature
space, respectively. When d− = d+ + margin, the value of the
triplet loss is zero, which is expected. In other cases, the triplet
loss would be a nonzero value, and it will be optimized and
get closer and closer to zero through continuous training and
learning. Therefore, in order to make the distance of spectral
pixels from the same class as small as possible and the distance
of spectral pixels from different classes as large as possible in
the Euclidean feature space, this process can be formulated as

d+ + ι < d− ∀(xa
i , xp

i , xn
i

) ∈ Dsource (3)

where ι is a constant margin between positive and negative
sample pair. Dsource = {(xa

1 , x p
1 , xn

1

)
, . . . ,

(
xa

N , x p
N , xn

N

)}
is the

set of all possible triples in the training set. The loss function
minimized by training is

L =
N∑

i=1

max
{

0,
∣∣d+ + ι − d−∣∣}. (4)

C. Meta-Training Three-Channel Deep Residual Convolution
Siamese Network (Three-Channel DRSN)

The source domain HSI Ps ∈ R
Hs×Ws×Bs has C classes of

spectral pixels, and the triplet is used as the form of the train-
ing set in the meta-training process. There are many known
labeled HSI datasets by different sensors, and meta-training
chooses the known labeled HSI captured by the same sensor as
the HSI to be detected for training. In the meta-training stage,
five classes are randomly selected from the source domain
HSI with four spectra from each class to constitute a task
Tsource = {Dtr

source, Dte
source

}
in the form of triplets. The support

set Dtr
source is formed by the above randomly selected five

classes with two spectral pixels for each class. Since each
class has two samples, if one sample is selected as an anchor,
then the other one is set as the positive sample, and the
negative sample should be selected from the other classes
to form a triplet. A lot of triplet sets could be formed in
this way in the support set Dtr

source. The query set Dte
source is

constructed in the same way as the support set, but should
meet the condition that Dtr

source ∩ Dte
source = ∅. For traditional

supervised deep learning, the training process can train a
prediction model ŷ = fθ (x) with parameter θ by solving the
equation

θ∗ = arg min
θ

N∑
i=1

L
(

fθ
(
xa

i

)
, fθ
(
xp

i

)
, fθ
(
xn

i

); θ
)

(5)

where L is the triplet loss function shown in (4). In the
meta-learning process, training samples are obtained from
many different tasks in order to learn that a general learning
algorithm can generalize to various tasks, and ideally, each
new task is better than the previous one. Specifically, the
tasks are extracted from the distribution p(T ), and M tasks
Dsource = {

T i
source

}M

i=1 are constructed. The meta-goal is to
find the public parameters that can be applied to multiple
tasks, named meta-knowledge. The process can be formulated
as

w∗ = arg min
w

M∑
i=1

Li
(
T i

source; w
)
. (6)

In the training stage, most of the mainstream meta-
learning algorithms optimize the meta-parameter w based
on gradient descent. In order to solve the meta-training
problem in (6), the meta-training steps are usually trans-
formed into a bilevel optimization problem [38]. Bilevel
optimization refers to a hierarchical optimization problem,
in which one optimization is constrained by the other opti-
mization [37]. Then, the meta-training can be formalized as
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follows:

w∗ = arg min
w

M∑
i=1

L
(
T i

source; θ∗
i (w),w

)
s.t. θ∗

i (w) = arg min
θ

Li
(
T i

source; θ,w
) ∀i. (7)

Internally gradient updates are performed for each task
T i

source by

θ �
i = θ − α∇θ Li

(
Dtr(i)

source, θi , w
)
. (8)

Then, externally update the meta-knowledge w by

w = w − β∇w

∑
i

L
(

Dte(i)
source, θ

�
i , w

)
. (9)

The internal optimization only uses the support set of each
task, while the external optimization uses the query set of each
task and is performed through the loss obtained on a batch of
tasks. The stochastic gradient descent (SGD) is used to train
the three-channel deep residual convolution Siamese network
(DRSN), where parameters α and β are the learning rate.
The rectified linear units are used as the nonlinear activation
function in the model. The meta-training process is shown in
Algorithm 1.

Algorithm 1 Meta-Training Process
Input: source dataset Dsource ∼ p(T ), learning rate α, β,
three-channel DRSN fθ , number of iterations I
Output: good initialize parameters θ , which is meta- knowl-
edge w
1: randomly initialize θ
2: for i ≤ I do
3: sample M tasks from p(T ) as a batch, each task

T k
source = {Dtr(k)

source, Dte(k)
source

}
and Dtr(k)

source ∩ Dte(k)
source = ∅

4: for j ≤ M do
5: use Dtr( j)

source in task T j
source to calculate

∇θ L j
(

Dtr( j)
source, θ j , w

)
6: update parameters using gradient descent:

θ �
j = θ − α∇θ L j

(
Dtr( j)

source, θ j , w
)

7: j = j + 1
8: end for
9: use the loss generated by Dte(k)

source of each task in a
batch and update the meta-knowledge:

w = w − β∇w

∑
j

L
(

Dte(i)
source, θ

�
j , w
)

10: i = i + 1
11: end for

The three-channel DRSN is shown in Fig. 4. The intraclass
similarity corresponds to (1) and the interclass dissimilarity
corresponds to (2), and the discriminate module corresponds
to (4). By conducting meta-training on the constructed tasks,
the network will make the anchor continuously closer to the

positive sample and further away from the negative sample
in the Euclidean feature space. Through continuous training,
the network is expected to learn a shared representation from
various tasks and, finally, learn to distinguish the intraclass
similarities and interclass dissimilarities of spectra. Once the
network learns to distinguish the similarities and dissimilarities
between spectra, it can be applied to HSI target detection using
the learned meta-knowledge. It should be noted that, in the
three-channel DRSN, the DRFE module in each channel has
the same structure and model parameters.

D. Meta-Testing Target Detection Process
The HSI to be detected is represented as Pt ∈ R

Ht×Wt ×Bt

with its prior target spectrum xt∗, and the spectral vector of

each pixel is represented as Pt = {
xt

i

}Ht ×Wt

i=1 . Before target
detection, the meta-knowledge of the DRFE module is updated
using the prior target spectrum xt∗. The upper branch and lower
branch channels are fed into the prior target spectrum and
Pt , respectively, and the loss function of the meta-knowledge
updated two-channel DRSN is

L f = 1

N

N∑
i=1

∥∥∥∥∥ 1

π
arccos

fθ
(
xt∗
)T · fθ

(
xt

i

)∥∥ fθ
(
xt∗
)∥∥

2 · ∥∥ fθ
(
xt

i

)∥∥
2

− 1

∥∥∥∥∥
2

2

. (10)

In the meta-testing stage, the learned meta-knowledge w∗ is
updated to obtain the best parameters of the model for a given
detection task (such as task i). This process can be formulated
as follows:

θ∗
i = arg min

θ
L f i
(
xt

∗, θ |w∗). (11)

After updating the meta-knowledge, the parameters for a
specific detection task are changed from θ to θ∗

i to adapt to
the corresponding detection task. It should be noted that the
parameter updating process only updates those of the last fully
connected layer in the DRFE module, and the parameters of
the convolutional layer are frozen without updating. Through
the meta-knowledge update, it is hoped that the DRFE mod-
ule will increase the difference between the a priori target
spectrum and the background pixel spectral embedding feature
vector.

In the meta-testing stage, the two-channel DRSN is used
for target detection. The DRFE module of the two channels
is learned through meta-training and then updated through
meta-knowledge. Using the learned meta-knowledge, the two-
channel DRSN will discriminate the spectral similarity and
dissimilarity between pixels. Similar to the target spectrum
means it is likely to be a target, while dissimilar from the
target spectrum means that it is likely to be a background pixel.
The structure of the two-channel DRSN for target detection
is shown in Fig. 5. The prior target spectrum is inputted
into the upper branch channel, and the pixel spectrum of the
HSI under test is inputted into the lower branch channel.
The corresponding embedding feature vectors are obtained
through the upper and lower channels, respectively, and cosine
similarity is used to judge the similarity between the two
embedding feature vectors, shown as follows:

ki = fθ∗
i

(
xt∗
)T · fθ∗

i

(
xt

i

)∥∥ fθ∗
i

(
xt∗
)∥∥

2
· ∥∥ fθ∗

i

(
xt

i

)∥∥
2

. (12)
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Fig. 4. Meta-training three-channel deep residual convolution Siamese network (three-channel DRSN) structure.

Fig. 5. Meta-testing two-channel deep residual convolution Siamese network (two-channel DRSN) structure.

The closer the value is to 1, the more similar the two feature
vectors in the Euclidean feature space, and the more likely
that xt

i is a target. K = {ki}Ht×Wt
i=1 is the final detection map

outputted by the two-channel DRSN.

E. Joint Spatial Information for Target Detection

The HSI is a 3-D cube with both spectral information and
spatial information, but the two-channel DRSN detects targets
only by the spectral features, while the spatial information is
ignored. Using the spatial information to modify the detection
map obtained by the two-channel DRSN could further improve
the detection accuracy.

The guided image filtering [47] is chosen in this article to
make use of the spatial information, and it is performed on
the detection map K obtained in Section II-D. The guiding
image is obtained by the principal component analysis (PCA)
performed on the detected HSI Pt , and the first principal
component is selected as the guiding image. A general linear
shift variable filtering process is defined, including a guiding,
an input image K, and an output image Q of the joint
spatial–spectral detection result. The filtering output of pixel
i is represented as a weighted average, shown as follows:

Qi =
∑

j

Wi j(I)K j (13)

and the filter kernel weight Wi j(I) can be expressed as

Wi j(I) = 1

|e|2
∑

k:(i, j)∈ek

(
1 + (Ii − μk)

(
I j − μk

)
σ 2

k + ε

)
(14)

where ek is the window centered at the kth pixel, the window
size is (2r + 1) × (2r + 1) (r is the radius of the window),
and μk and σ 2

k are the mean and variance of the guiding,
respectively. |e| is the number of pixels in ek , and ε is a penalty
value. Ii and I j refer to the values of two adjacent pixels in
the guiding image. After the guided image filter, the detection
map K can be smoothed, and the boundary of the target region
can be maintained.

Finally, the morphological closing operation is performed
on the detection map Q after the guided image filtering, with
dilation and erosion in sequence, connecting the discontinuous
regions of the target. It can be formulated as follows:

Qfinal = Q · B = (Q ⊕ B)	B (15)

where Qfinal is the final joint spatial–spectral detection result,
B is a matrix of 2∗2 with all 1 elements, ⊕ represents the
dilation operation, and 	 represents the erosion operation.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Meta-Training Hyperspectral Dataset

1) Salinas Dataset: The Salinas dataset was collected by the
airborne visible light infrared imaging spectrometer (AVIRIS)
sensor over the Salinas Valley in California, USA, with
224 bands. The spatial resolution is 3.7 m with the original
image size of 512 × 217pixels. There are a total of 16 classes
in the image scene, including vegetables, bare soil, vineyards,
and so on. The pseudocolor image and ground truth are shown
in Fig. 6(a) and (b).
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Fig. 6. Meta-training hyperspectral datasets. (a) Salinas pseudocolor image.
(b) Salinas ground truth. (c) Washington DC pseudocolor image. (d) Wash-
ington DC ground truth.

2) Washington DC Dataset: The Washington DC dataset is
an HSI acquired by an airborne sensor of the hyperspectral
digital image collection experiment (HYDICE). The image
contains 210 bands in the visible and near-infrared ranges
from 400 to 2500 nm, and the original size is 1208 × 307.
A portion of the original image with a size of 208×307 pixels
is used in this article for experiments. There are a total of
nine classes, including roofs, streets, gravel roads, grasslands,
numbers, water, shadows, and so on. The pseudocolor image
and ground truth are shown in Fig. 6(c) and (d).

B. Meta-Testing Hyperspectral Dataset

1) HYDICE Dataset: The HYDICE dataset was collected
by the HYDICE sensor in an urban area in California, USA.
The spatial size of the original HSI is 307 × 307. It has
210 bands, with a wavelength range of 400–2500 nm, and
the spectral resolution is 10 nm. A portion of the original
HSI image with a size of 80 × 100 pixels is used in this
article for target detection, and each pixel corresponds to
a region of 2 × 2m2. Due to the influence of dense water
vapor and atmosphere, bands 1–4, 76, 87, 101–11, 136–153,
and 198–210 are removed, and 162 bands are retained for
hyperspectral target detection. The roof and the car in this
HSI dataset are the targets, and there are a total of 21 target
pixels, as shown in Fig. 7(a).

2) San Diego Dataset: The dataset of San Diego was
captured by the AVIRIS of the San Diego airport area in
California, USA. The original image size is 400 × 400, the
spatial resolution of the image is 3.5 m, and the spectral
resolution is 10 nm. In the experiment, a portion of the original
San Diego data with a size of 100 × 100 is named AVIRIS1,
and another portion with a size of 120 × 120 is named
AVIRIS2, corresponding to Fig. 7(b) and (c), respectively.
After removing the low signal-to-noise ratio and water absorp-
tion bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224),
189 bands remain, with a wavelength range of 400–2500 nm.
The targets are all airplanes. There are 134 target pixels in
AVIRIS1 and 58 target pixels in AVIRIS2.

3) El Segundo Dataset: The El Segundo dataset was cap-
tured by the AVIRIS sensor in the El Segundo area of
California, USA. The wavelength range is 400–2500 nm, the
spatial resolution of each pixel is 7.1 m, there are 224 bands
in total, the original size of the image is 250×300, and a size
of 100 × 100 is intercepted in the experiment. Target is the

facilities of the refinery, such as oil storage tanks and towers,
with a total of 715 target pixels, as shown in Fig. 7(d).

4) Beach and Urban Datasets: The Beach and Urban
datasets are captured by AVIRIS sensors. The sizes of the
Beach and Urban are 90×90×188 and 100×100×204 after
discarding noisy bands, respectively. The Beach dataset was
captured over Cat Island, and the spatial resolution of each
pixel is 17.2 m. The Urban dataset was captured over the Texas
coast, USA, and the spatial resolution is 17.2 m per pixel.
Target pixels in the beach and urban datasets are 19 and 67,
respectively. The pseudocolor image and reference detection
map of these two datasets are shown in Fig. 7(e) and (f).

C. Evaluation Indicators

In order to study the performance of the proposed MLSN
algorithm, the receiver operating characteristic (ROC) curve,
the area under the curve (AUC) value, and the target back-
ground separability box plot are used to measure the perfor-
mance of the algorithms.

The ROC curve has been widely used in the evaluation of
target detection performance in hyperspectral remote sensing
images. After the detection result is obtained, the target
detection probability and false alarm probability are calculated
through a given detection threshold, and different detection
probabilities and false alarm probabilities are obtained by
changing the threshold, so as to obtain the ROC curve for
quantitative analysis of detectability. The calculation formula
of detection probability and false alarm probability is

Pd = Nd

Nt
, Pf = N f

Ntotal
(16)

where Nd is the number of target pixels under a certain
threshold, Nt is the total number of target pixels in the real HSI
ground truth, N f is the number of background pixels that are
falsely detected as target pixels, and Ntotal is the total number
of pixels in the HSI to be detected.

The value of AUC is the size of the area under the ROC
curve. For the traditional ROC curve of detection probability
and false alarm probability, the value of AUC is between
0.5 and 1, and its value can be quantified as the evaluation
index of algorithm accuracy. In the case of AUC > 0.5, the
closer the value is to 1, the better performance of the target
detection algorithm.

The box plot of target-background separability can measure
the degree of separation between target and background.
According to the label of the HSI to be detected, the cor-
responding values of target and background are taken out in
the detection result, and the box plot of target and background
is drawn. Red represents the target, and green represents the
background. The larger the interval between the red box and
the green box is, the narrower the green box is, which indicates
that the target is separated from the background, and the
background is suppressed well.

D. Experimental Setup

The experiment is divided into two parts: meta-training
and meta-testing. The three-channel DRSN is meta-trained
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Fig. 7. Meta-testing hyperspectral datasets. (a) HYDICE Dataset. (b) AVIRIS1. (c) AVIRIS2. (d) El Segundo Data set. (e) Beach. (f) Urban.

through the training HSI datasets with known labels and sensor
types. In the meta-testing stage, the learned meta-knowledge
is updated in the two-channel DRSN using a priori target
spectrum so that the updated meta-knowledge can quickly
adapt and be more suitable for the target detection task of
the HSI scene to be detected.

In the process of meta-training, the pixel spectrum from the
same type of sensor is randomly extracted in the way of five-
way-two-shot to form tasks in the form of a triplet. Each task
is constructed into a task batch according to the batch size.
The hyperparameters of the meta-training process include the
batch size, the inner learning rate α, the outer learning rate
β, the margin, and the number of iterations, where, in our
experiments, the batch size is set to 4, the inner learning
rate is set to 10−2, the outer learning rate is set to 10−3,
the margin is set to 1, and the number of iterations is set
to 60 000, while, for the meta-testing process that is a task of
hyperspectral target detection, one HYDICE sensor dataset and
five AVIRIS sensor datasets are used to test the target detection
performance of the proposed MLSN algorithm. A two-channel
DRSN is used to update the learned meta-knowledge w∗ using
a priori target spectrum to adapt to the new target detection
tasks quickly. The hyperparameters’ epoch, batch size, and
learning rate are set to 5, 1000, and 0.001, respectively, for
the meta-knowledge update process. The upper branch channel
inputs the prior target spectrum in the HSI to be detected, and
the lower branch channel inputs the spectrum of each pixel
in the same HSI. By comparing with the embedding feature
vector of the prior target spectrum in the upper branch channel,
the similarity map between each pixel and the prior target is
obtained. The local window radius r of guided image filtering
corresponds to the HSI dataset to be detected in Fig. 7 and
is set to 2, 8, 2, 8, 4, and 2, respectively. The penalty value
of guided image filtering is set to 0.04 for all datasets in the
experiments.

In order to investigate the performance of MLSN, three
traditional target detection algorithms and two deep learning
target detection algorithms are used for comparison. Three
traditional algorithms include ACE, CEM, and CSCR, and on
the other hand, two deep learning-based methods are CNNTD
and BLTSC, respectively.

The parameters of the algorithms are set as follows. For the
CSCR algorithm, the sizes of the double window (wout , win)
are set to (11,3) for Fig. 7(a), (c), (e), and (f), while they are
set to (11,5) for Fig. 7(b) and (d). For the CNNTD algorithm,
when detecting the data of Fig. 7(a) captured by the HYDICE
sensor, the Washington DC dataset of Fig. 6(c) captured by
the same sensor is used for pretraining the model, and the
knowledge learned in the transfer is used for target detection;
when detecting the remaining hyperspectral datasets captured
by the AVIRIS sensor, the CNNTD method uses the Salinas
hyperspectral dataset collected by the same sensor, as shown
in Fig. 6(a), to train the model and uses the trained model
to detect the AVIRIS hyperspectral datasets. The learning rate
is 1e-3, the batch size is 256, and the epoch is 50. For the
BLTSC algorithm using a GAN, the coarse detection uses a
classic CEM detector, the learning rate is set to 1e-4, and the
epoch is set to 500. The experimental hardware configuration
is Intel Core i7-10875h eight-core CPU, NVIDIA GeForce
RTX 2080 GPU. The three traditional algorithms (ACE, CEM,
and CSCR) are implemented on MATLAB 2017b platform.
The deep learning-based CNNTD and the proposed MLSN
methods are implemented using Python 3.8.3 and PyTorch
version 1.60. The BLTSC algorithm uses MATLAB 2017b
to implement coarse detection and background search, and is
then implemented using Python 3.6.2 and TensorFlow version
1.80 for AAE to reconstruct the background with suppressed
targets.

E. Results and Analysis

The above six algorithms (including three traditional algo-
rithms of ACE, CEM, and CSCR, two state-of-the-art deep
learning-based algorithms, CNNTD and BLTSC, and the pro-
posed MLSN) are conducted on six hyperspectral datasets, and
the detection results are shown in Figs. 8–13.

For these six hyperspectral datasets, the two classic target
detectors, ACE and CEM, can detect most of the target
pixels, but there are many false detected pixels, where some
target pixels are falsely detected as the background, and some
background pixels are falsely detected as the target. The
CSCR detector can detect most targets, but the background
suppression is not good, and the targets are not significantly
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Fig. 8. HYDICE Dataset detection map. (a) ACE. (b) CEM. (c) CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

Fig. 9. AVIRIS1 Dataset detection map. (a) ACE. (b) CEM. (c)CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

Fig. 10. AVIRIS2 Dataset detection map. (a) ACE. (b) CEM. (c) CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

Fig. 11. El Segundo Dataset detection map. (a) ACE. (b) CEM. (c) CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

Fig. 12. Beach Dataset detection map. (a) ACE. (b) CEM. (c) CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

Fig. 13. Urban Dataset detection map. (a) ACE. (b) CEM. (c) CSCR. (d) CNNTD. (e) BLTSC. (f) MLSN.

separated from the background. The detection map obtained
by the CNNTD detector is the worst, where a large number of
background pixels are falsely detected as the targets, and the
targets are not separated from the background. For the BLTSC
detector, some reliable background pixels are found from the

coarse detection results of the CEM detector. The reliable
background pixels are then used as training samples to train
AAE. The trained network will reconstruct the background of
the HSI to be detected. The distance weight map is obtained
by comparing the reconstructed background with the original
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Fig. 14. ROC curve of the six target detectors for different HSI datasets. (a) HYDICE. (b) AVIRIS1. (c) AVIRIS2. (d) El Segundo. (e) Beach. (f) Urban.

TABLE I

AUC VALUES FOR THE COMPARED METHODS ON DIFFERENT DATASETS

HSI pixel by pixel. It can be seen from the detection map that
BLTSC has corrected most of the background pixels falsely
detected as target pixels in the CEM detector. However, the
quality of background reconstruction depends entirely on the
performance of the CEM detector. When the coarse filter
detector is not good, it will have a significant impact on the
detection performance. The detection map obtained by the
proposed MLSN algorithm has the most significant difference
between targets and background pixels, and the edge shape of
the target remains the best.

To assess different algorithms quantitatively, the ROC
curves are plotted for comparison. Fig. 14 shows the ROC
curves of different algorithms using different HSI datasets,
where each subfigure includes all algorithms for the same HSI
data. In order to compare the minor performance difference,
each subfigure provides the original ROC curve on the left
and a zoom-in ROC curve with a range of 0–0.1 on the right
of each subfigure with better observation. For the HYDICE
dataset, the ROC curve of the proposed MLSN detector has
always been above the curves of other detectors with the

best performance. For the AVIRIS1, AVIRIS2, El Segundo,
and Beach datasets, although the proposed MLSN method
is sometimes lower than the detection probability of other
detectors in the zoom-in curves, the proposed MLSN method is
the first to reach 1 from the overall ROC curve. For the Urban
dataset, the ROC curve of the proposed MLSN detector first
rises between 0 and 0.1 with a higher detection probability and
then slightly lower than the ROC curve of the CSCR algorithm.

However, it can be seen from the AUC values that the
performance of the proposed MLSN detector is still better.
The AUC values of the six methods for the six hyperspectral
datasets are shown in Table I. For each hyperspectral dataset,
the maximum AUC value detected is highlighted in the form
of coarsening, and the AUC values of the proposed MLSN
algorithm are always the highest among the six algorithms.
The classical ACE detector has a similar detection perfor-
mance to the CEM detector, but the AUC values of CEM
are always higher than those of the ACE algorithm. The
CSCR detector has better detection accuracy for each dataset,
but the accuracy is lower than that of the proposed MLSN
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Fig. 15. Box plot of the separability of the target and background. (a) HYDICE. (b) AVIRIS1. (c) AVIRIS2. (d) El Segundo. (e) Beach. (f) Urban.

method, and the target of the CSCR detector is not obviously
separated from the background even though the AUC performs
well with high values. The CNNTD method based on transfer
learning has the worst detection performance in most cases.
This might be because the CNNTD algorithm increases the
training samples using the subtractions of spectral pixels,
losing the spectral details between pixels, and then leading
to a decrease in the detection performance. The AUC values
of the BLTSC algorithm will be significantly improved in
some hyperspectral datasets compared with CEM because it
utilizes the CEM detector for coarse filtering detection, then
selects reliable background samples to generate adversarial
training and reconstruct the background, and adds suppression
targets in generating adversarial training to expect relatively
pure background. If the coarse detection method is good,
the selected background samples will be more reliable. The
reconstructed background obtained by AAE and the original
HSI to be detected is used to calculate the SAM pixel by pixel.
The obtained distance weight map will be with small values of
the background and large values of the target pixels. Finally,
it is used to correct the detection map of the coarse detector
and correct the pixels in the CEM detector that the background
pixels are falsely detected as the targets so that the detection
accuracy can be improved. However, it is greatly affected
by the coarse filter detection method. If the background
sample is not well selected, the AUC value will decrease. For
example, for the HYDICE, Beach, and Urban datasets, the
AUC values of the BLTSC detector are lower than the coarse
detection CEM detector. The proposed MLSN method does
not rely on searching for pure background pixels. It maintains
a good edge on the targets with high detection accuracy
and can quickly adapt to new detection tasks. It conducts
meta-training on the source domain hyperspectral datasets in
the form of a three-channel DRSN. The network learns to
distinguish the difference between spectra and updates the

learned meta-knowledge with the prior target spectrum so that
the learned meta-knowledge can quickly and better adapt to
the HSI to be detected. Each pixel in the HSI under test
and the prior target spectrum are discriminated by embedding
into the Euclidean feature space, and the optimal detection
result is obtained.

Finally, in order to compare the separability between the
target and the background of different algorithms, the box
plot of the target background separability is used for a
comparable analysis. The box plots of the target background
separability for different algorithms on different datasets are
shown in Fig. 15. The red box indicates the distribution range
of the target, the green box indicates the distribution range
of the background, and the interval between the red box and
the green box indicates the degree of separation between the
target and the background. It would be better if the red box
and the green box have fewer overlapping regions and are far
away from each other, which means that the targets and the
background are better separated. It is obviously seen that the
proposed MLSN algorithm can best separate the target from
the background for all six datasets, which further proves the
superior comprehensive performance of the proposed MLSN
algorithm.

IV. CONCLUSION

The generalization ability of the transferred model and its
adaptation to new tasks, as well as limited training samples for
deep neural networks, limit the hyperspectral target detection
algorithm based on deep transfer learning. In order to address
these issues, a method of MLSN is proposed. By introducing
the meta-learning method, the three-channel DRSN structure
is designed, and the triplet loss is used for meta-training on
the known label dataset. A similar spectral distance in the
Euclidean feature space is learned. The DRFE module with
the same parameters and structure is then used to form a
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two-channel DRSN, and the prior target spectrum is used to
update the meta-knowledge so that the model can quickly
and better adapt to the new target detection task. The prior
target spectrum is inputted into the upper branch channel, and
each pixel spectrum of the HSI to be detected is inputted into
the lower branch channel. The pixel spectrum is embedded
into the Euclidean feature space through the DRFE module,
and the spectral similarity is calculated by cosine similarity
to obtain the detection map. Since HSI contain abundant
spatial information, guided image filtering is used to maintain
the edge of the target and smooth the background. Finally,
the morphological closing operation is used to connect the
target region to obtain the final joint spectral–spatial detection
result. The experimental results show that MLSN has a good
comprehensive performance.

The main contributions of this article are given as follows.

1) A deep residual convolution feature embedding mod-
ule (DRFE) is designed to embed the spectrum of
pixels into the Euclidean feature space, and it is then
used to construct a three-channel deep residual con-
volution Siamese network (three-channel DRSN) for
meta-training so that the DRFE module has the ability
to discriminate spectral similarities and differences and
then forms a two-channel deep residual convolution
Siamese network (two-channel DRSN) for meta-testing
so that the meta-knowledge of the DRFE module is
suitable for the detection task and further increases the
discrimination ability of target and background spectra.

2) The idea of meta-learning is first introduced to HSI
target detection so that the DRFE module obtained by
meta-training can be generalized to unfamiliar applica-
tion scenarios without extensive retraining and has better
generalization capability when predicting data for which
almost no supervised information is available. A good
comprehensive performance is obtained by testing on
several datasets collected by different sensors.

REFERENCES

[1] M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated
hyperspectral cueing for civilian search and rescue,” Proc. IEEE, vol. 97,
no. 6, pp. 1031–1055, Jun. 2009.

[2] K. Sendin, P. J. Williams, and M. Manley, “Near infrared hyperspectral
imaging in quality and safety evaluation of cereals,” Crit. Rev. Food Sci.
Nutrition, vol. 58, no. 4, pp. 575–590, Mar. 2018.

[3] B. Lu, P. Dao, J. Liu, Y. He, and J. Shang, “Recent advances of hyper-
spectral imaging technology and applications in agriculture,” Remote
Sens., vol. 12, no. 16, p. 2659, Aug. 2020.

[4] B. Zhang, W. Yang, L. Gao, and D. Chen, “Real-time target detection in
hyperspectral images based on spatial–spectral information extraction,”
EURASIP J. Adv. Signal Process., vol. 2012, no. 1, p. 142, Dec. 2012.

[5] X. Kang, X. Zhang, S. Li, K. Li, J. Li, and J. A. Benediktsson, “Hyper-
spectral anomaly detection with attribute and edge-preserving filters,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5600–5611,
Oct. 2017.

[6] F. A. Kruse et al., “The spectral image processing system (SIPS)-
interactive visualization and analysis of imaging spectrometer data,”
Remote Sens. Environ., vol. 44, nos. 2–3, pp. 145–163, 1993.

[7] C.-I. Chang, “An information-theoretic approach to spectral variability,
similarity, and discrimination for hyperspectral image analysis,” IEEE
Trans. Inf. Theory, vol. 46, no. 5, pp. 1927–1932, Aug. 2000.

[8] C.-I. Chang and D. Heinz, “Constrained subpixel target detection for
remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 38,
no. 3, pp. 1144–1159, May 2000.

[9] Z. Zou and Z. Shi, “Hierarchical suppression method for hyperspectral
target detection,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1,
pp. 330–342, Jan. 2016.

[10] D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image
processing for automatic target detection applications,” Lincoln Lab. J.,
vol. 14, no. 1, pp. 79–116, 2003.

[11] S. Kraut and L. L. Scharf, “The CFAR adaptive subspace detector is
a scale-invariant GLRT,” IEEE Trans. Signal Process., vol. 47, no. 9,
pp. 2538–2541, Sep. 1999.

[12] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A CFAR
adaptive matched filter detector,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 1, pp. 208–216, Jan. 1992.

[13] C.-I. Chang, “Orthogonal subspace projection (OSP) revisited: A com-
prehensive study and analysis,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 3, pp. 502–518, Mar. 2005.

[14] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE
Trans. Signal Process., vol. 42, no. 8, pp. 2146–2157, Aug. 1994.

[15] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Sparse representation for
target detection in hyperspectral imagery,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 3, pp. 629–640, Jun. 2011.

[16] W. Li, Q. Du, and B. Zhang, “Combined sparse and collaborative
representation for hyperspectral target detection,” Pattern Recognit.,
vol. 48, no. 12, pp. 3904–3916, Dec. 2015.

[17] X. Sun et al., “Target detection through tree-structured encoding for
hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5,
pp. 4233–4249, Sep. 2020.

[18] X. Sun et al., “Ensemble-based information retrieval with mass esti-
mation for hyperspectral target detection,” IEEE Trans. Geosci. Remote
Sens., vol. 60, pp. 1–23, 2022.

[19] R. Zhao, Z. Shi, Z. Zou, and Z. Zhang, “Ensemble-based cascaded
constrained energy minimization for hyperspectral target detection,”
Remote Sens., vol. 11, no. 11, p. 1310, 2019.

[20] W. Xie, J. Lei, J. Yang, Y. Li, Q. Du, and Z. Li, “Deep latent
spectral representation learning-based hyperspectral band selection for
target detection,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3,
pp. 2015–2026, Mar. 2020.

[21] Q. Liu, L. Xiao, J. Yang, and Z. Wei, “CNN-enhanced graph con-
volutional network with pixel-and superpixel-level feature fusion for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 59, no. 10, pp. 8657–8671, Oct. 2020.

[22] D. Hong et al., “Endmember-guided unmixing network (EGU-Net):
A general deep learning framework for self-supervised hyperspec-
tral unmixing,” IEEE Trans. Neural Netw. Learn. Syst., early access,
May 28, 2021, doi: 10.1109/TNNLS.2021.3082289.

[23] J.-F. Hu, T.-Z. Huang, L.-J. Deng, T.-X. Jiang, G. Vivone, and
J. Chanussot, “Hyperspectral image super-resolution via deep spa-
tiospectral attention convolutional neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Jun. 9, 2021, doi:
10.1109/TNNLS.2021.3084682.

[24] X. Liu, C. Wang, Q. Sun, and M. Fu, “Target detection of hyperspectral
image based on convolutional neural networks,” in Proc. 37th Chin.
Control Conf. (CCC), Jul. 2018, pp. 9255–9260.

[25] W. Li, G. Wu, and Q. Du, “Transferred deep learning for hyperspectral
target detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2017, pp. 5177–5180.

[26] G. Zhang, S. Zhao, W. Li, Q. Du, Q. Ran, and R. Tao, “HTD-net: A
deep convolutional neural network for target detection in hyperspectral
imagery,” Remote Sens., vol. 12, no. 9, p. 1489, 2020.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput.-Assist. Intervent., 2015, pp. 234–241.

[28] J. Du and Z. Li, “Hyperspectral target detection with CNN using
subtraction model,” in Proc. 2nd IEEE Adv. Inf. Manage., Com-
municates, Electron. Autom. Control Conf. (IMCEC), May 2018,
pp. 2330–2335.

[29] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

[30] W. Xie, X. Zhang, Y. Li, K. Wang, and Q. Du, “Background learning
based on target suppression constraint for hyperspectral target detec-
tion,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 13,
pp. 5887–5897, 2020.

[31] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” 2015, arXiv:1511.05644.

[32] D. P Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

http://dx.doi.org/10.1109/TNNLS.2021.3082289
http://dx.doi.org/10.1109/TNNLS.2021.3084682


WANG et al.: META-LEARNING BASED HYPERSPECTRAL TARGET DETECTION 5527913

[33] W. Xie, J. Yang, J. Lei, Y. Li, Q. Du, and G. He, “SRUN: Spectral
regularized unsupervised networks for hyperspectral target detection,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1463–1474,
Oct. 2019.

[34] D. Zhu, B. Du, and L. Zhang, “Two-stream convolutional networks
for hyperspectral target detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 59, no. 8, pp. 6907–6921, Aug. 2021.

[35] Y. Shi, J. Li, Y. Li, and Q. Du, “Sensor-independent hyperspectral target
detection with semisupervised domain adaptive few-shot learning,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6894–6906, Oct. 2021.

[36] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4080–4090.

[37] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-
learning in neural networks: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., early access, May 11, 2021, doi: 10.1109/TPAMI.2021.3079209.

[38] D. Mandal, S. Medya, B. Uzzi, and C. Aggarwal, “Meta-learning
with graph neural networks: Methods and applications,” 2021,
arXiv:2103.00137.

[39] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2018. [Online]. Available: https://arxiv.org/abs/1707.03141

[40] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2017, pp. 1126–1135.

[41] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 29, 2016, pp. 3630–3638.

[42] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and
T. M. Hospedales, “Learning to compare: Relation network for few-
shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1199–1208.

[43] K. Fu, T. Zhang, Y. Zhang, Z. Wang, and X. Sun, “Few-shot SAR target
classification via metalearning,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–14, 2021.

[44] S. Targ, D. Almeida, and K. Lyman, “ResNet in ResNet: Generalizing
residual architectures,” 2016, arXiv:1603.08029.

[45] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[46] G. Kertész and I. Felde, “One-shot re-identification using image pro-
jections in deep triplet convolutional network,” in Proc. IEEE 15th Int.
Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 597–602.

[47] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

Yulei Wang (Member, IEEE) was born in Yantai,
Shandong, China, in 1986. She received the B.S. and
Ph.D. degrees in signal and information processing
from Harbin Engineering University, Harbin, China,
in 2009 and 2015, respectively.

She is awarded by the China Scholarship Council
in 2011 as a joint Ph.D. Student to study in Remote
Sensing Signal and Image Processing Laboratory,
University of Maryland, Baltimore, MD, USA, for
two years. She is an Associate Professor with the
Hyperspectral Imaging in Remote Sensing (CHIRS),

Information Science and Technology College, Dalian Maritime University,
Dalian, China. Her research interests include hyperspectral image processing
and vital signs signal processing.

Xi Chen was born in Kuitun, Xinjiang Uygur
Autonomous Region, China, in 2000. He received
the B.E. degree in electronic information engineering
from Dalian Maritime University, Dalian, China,
in 2020. He is pursuing the M.S. degree in infor-
mation and communication engineering with the
Information Science and Technology College, Dalian
Maritime University.

His research interests include hyperspectral target
detection and deep learning.

Fengchao Wang was born in Dalian, Liaoning,
China, in 1997. He received the B.E. degree in
electronic information engineering from Dalian Mar-
itime University, Dalian, in 2020, where he is pur-
suing the M.S. degree in information and communi-
cation engineering with the Information Science and
Technology College.

His research interests include hyperspectral anom-
aly detection and deep learning.

Meiping Song received the Ph.D. degree from
the College of Computer Science and Technol-
ogy, Harbin Engineering University, Harbin, China,
in 2006.

From 2013 to 2014, she was a Visiting Associate
Research Scholar with the Remote Sensing Signal
and Image Processing Laboratory, University of
Maryland, Baltimore, MD, USA. She is an Associate
Professor with the College of Information Science
and Technology, Dalian Maritime University, Dalian,
China. Her research includes remote sensing and
hyperspectral image processing.

Chunyan Yu received the B.S. and Ph.D. degrees
in environment engineering from Dalian Maritime
University, Dalian, China, in 2004 and 2012,
respectively.

In 2004, she joined the College of Computer
Science and Technology, Dalian Maritime Univer-
sity. From 2013 to 2016, she was a Post-Doctoral
Fellow with the Information Science and Technology
College, Dalian Maritime University. From 2014 to
2015, she was a Visiting Scholar with the College
of Physicians and Surgeons, Columbia University,

New York, NY, USA. She is an Associate Professor with the Information
Science and Technology College, Dalian Maritime University. Her research
interests include image segmentation, hyperspectral image classification, and
pattern recognition.

http://dx.doi.org/10.1109/TPAMI.2021.3079209

