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ABSTRACT 

A novel multi-scale fusion maximum entropy subspace 

clustering (MFMESC) for hyperspectral image (HSI) band 

selection is proposed in this paper. Subspace clustering is 

combined as a self-expression layer with stacked 

convolutional autoencoder, so that subspace clustering 

working in linear subspaces can deal with complicated HSI 

data with nonlinear characteristics. Multiple fully-connected 

linear layers are inserted between the encoder layers and 

their corresponding decoder layers to promote learning more 

favorable representations for subspace clustering. A multi-

scale fusion module is designed to guide the fusion of multi-

scale information extracted from different layers to learn a 

more discriminative self-expression coefficient matrix. 

Furthermore, the maximum entropy regularization is 

introduced in the subspace clustering to promote the 

connectivity within each subspace. Experimental results 

demonstrate the superiority of the proposed model against 

state of-the-art methods. 

 

Index Terms— hyperspectral band selection, maximum 

entropy regularization, subspace clustering, multi-scale 

fusion, stacked convolutional autoencoder 

1. INTRODUCTION 

Hyperspectral image (HSI) captures the spectral and spatial 

information of the target scene in hundreds of narrow and 

continuous spectral bands, thus providing an enormous 

amount of information about the region of interest. HSI has 

achieved great success in various application fields such as 

environmental detection and medical diagnosis. However, 
the high dimensionality and strong correlation of bands have 

brought the problems of data redundancy, heavy burden of 

computation and storage, and the curse of dimensionality. 

Therefore, dimensionality reduction has become an 

important technology in hyperspectral image processing [1]. 

There are two main measures for HSI dimensionality 

reduction: feature extraction and band selection (BS). Band 

selection is to select the most representative subset of bands 

from the original band set. Compared with feature extraction, 

band selection maintains the physical significance of the 

data, which makes it a research hotspot in the field of HSI 

processing. 

According to the availability of label information, band 

selection (BS) methods can be categorized into supervised, 

unsupervised and semi-supervised BS methods. Considering 

the high cost of labelling data and the difficulty of obtaining 

sufficient labels, unsupervised BS is more flexible and 

applicable for HSI without using any prior knowledge. As a 

popular technology, self-representation uses the self-

expressive property of data and various regularization terms 

to fulfill unsupervised BS, which has attracted much 

attention. Self-representation-based subspace clustering 

(SSC) models have made remarkable achievements in 

unsupervised BS [2], [3].  

However, many BS methods based on subspace 

clustering only consider linear subspace, which is not 

suitable for the typical nonlinear structure of HSI, making it 

unable to achieve excellent performance. In addition, the 

subspace clustering-based BS methods commonly ignore the 

spatial information of HSI, which is also important for 

further process. 

In recent years, deep learning-based models have been 

widely applied in band selection. Zeng et al. [4] proposed 

deep subspace clustering (DSC) for HSI band selection, and 

improved the SSC by embedding the self-representation into 

the deep convolutional autoencoder to learn the nonlinear 

spectral-spatial relationship. However, DSC model does not 

consider the low-level and high-level information of the 

input data to obtain more favorable representations for 

subspace clustering, and ignores the important multi-scale 

information embedded in deep autoencoder. Besides, the 

adopted regularization terms by DSC model ignore the 

connectivity within each subspace, which compromises the 

subsequent spectral clustering to some extent. 

In this paper, a multi-scale fusion maximum entropy 

subspace clustering (MFMESC) is proposed for HSI band 

selection. Different from the existing DSC method, to learn 

more informative and discriminative subspace clustering 

representations, multiple fully-connected linear layers are 

inserted between the encoder layers and their corresponding 

decoder layers to generate multiple sets of self-expressive 
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and informative representations at different levels of the 

encoder. The multi-scale fusion module is introduced to fuse 

the multi-scale information extracted from different layers in 

stacked convolutional autoencoder to learn a more 

discriminative self-expression coefficient matrix, which is 

achieved by stacking the coefficient matrix extracted from 

different self-expression layers and then applying a 

convolutional kernel on the stacked coefficient matrix to 

fuse its channel. In addition, the maximum entropy 

regularization is introduced to strengthen the connectivity 

within each subspace, in which its elements corresponding to 

the same subspace are uniformly and densely distributed, 
benefiting the subsequent spectral clustering. 

2. METHOD 

In this section, the proposed MFMESC method for 

hyperspectral band selection is described. As shown in Fig. 

1, the proposed MFMESC method is divided into four parts: 

feature extraction, self-expression, multi-scale fusion and 

subspace clustering. The feature extraction step extracts the 

inherent spatial information of HSI data through stacked 

convolutional autoencoder. The self-expression step embeds 

the self-expression model into stacked convolutional 

autoencoder to imitate the “self-expression” property. Multi-

scale fusion is framed to generate the coefficient matrix of 

each convolutional layer in stacked convolutional 

autoencoder and then fuses them with the convolutional 

kernel. The subspace clustering selects band subset via 

spectral clustering. 

2.1. Deep subspace clustering for band selection 

Given HSI samples  
1

X
N

w h

i i
i

x x 


  ， where w h  and 

N  denote the number of pixels and spectral bands, 

respectively. The goal of BS is to select a band subset with 

the size of n ( n N ), which contains the maximum 

information with minimum redundancy. 

The convolutional autoencoder is used in DSC model. 

The encoder is denoted as  ; ,eu E x  where u is latent 

representation. The decoder can be defined as  ˆ ; .dx D u   

In addition, DSC model embeds self-expression model into 

convolutional autoencoder to achieve self-expression 
property. The latent representation u is first unfolded into a 

d-dimensional vector z. Besides, assuming that N band 

images are located in a union of n affine subspace S, 

where 1 2 ... nS S S S  denote n subspaces with 

dimensions
1 2, ,..., nd d d  in the full space ,n  and satisfy with 

1
.

n

ii
d d


  Therefore, the complete cost function of DSC 

model is expressed as: 

   
2 2 2

2 22

1 ˆC X X U UC C s.t. diag C 0
2 2 2

 
     ，  (1) 

where, 
2

2
U UC  is a self-expression term. 

2

2
C  is regarded 

as an additional network layer using back propagation, using 

l2-norm regularization. X  is the tensor form of the input 

band images, X̂  is the reconstructed band images. 

 1 2U , ,...,
T

N    is the latent matrix. C N N  is the 

coefficient matrix.   and   are two balancing coefficients. 

2.2. Multi-scale fusion module 

Inspired by providing increasingly complex input data 

representations based on different layers of the encoder, the 

feature learning process can be promoted by learning the 

low-level and high-level information of the input data 

through multi-level representation learning, so as to generate 

multiple sets of representations that satisfy the self-

expressiveness property [5]. C N N

C

  is defined as the 

consistency matrix to capture the relational information 

between the encoder layers and  
1

D
L

l N N

l




  as 

distinctive matrices to produce the unique information of the 

individual layers. Promote learning of self-expressive 

representations through the following loss function 

          
2

2
1

U U C D
L

l l l

exp C

l

            (2) 

The self-expression loss 
exp

 is used to promote 

learning self-expressive feature representations at different 

levels of the encoder. For the distinctive matrices, Frobenius 

norm is used to ensure the connectivity of the affinity graph 

associated with each fully connected layer. For the 

consistency matrix, l1-norm is employed to generate a sparse 

representation of the data. Therefore, we add the following 

regular terms 

               
1

C
CC C                 (3) 

              
2

1

D
L

l

D F
l

                (4) 

The multi-scale fusion module is used to fuse the 

consistency matrix and distinctive matrices of each 

convolution layer in the encoder. Stacked matrix CS is 

 
Fig. 1. Flowchart of proposed band selection method 
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obtained by stacking the consistency matrix and 

discrimination matrix along the channel dimension. A 

convolutional kernel k is used to integrate the channels of 

C ,S C C ,N N

F Sk   where   means convolution 

operation [6]. The multi-scale fusion module obtains a more 

distinctive self-expression coefficient matrix CF
. 

2.3. Maximum entropy regularization 

The element of  CF
 denoted by 

,i jFC could be thought of as 

the similarity degree between data samples i and j. By 

applying maximum entropy regularization on the self-

expression coefficient matrix, as well as the fact 

   max C min C ,H H   the loss function driving the 

learning of the self-expression coefficient matrix can be 

written as 

      
, , ,

1 1

ln ,   s.t. 0
F i j i j i j

N N

C F F F

i j

C C C
 

         (5) 

When
,

0,
i jFC  the value of the corresponding summand 

, ,
ln

i j i jF FC C  is 0. Intuitively, when a sample is represented 

only by samples from the same subspace, minimizing Eq. (5) 

will force the connection strengths between samples 

belonging to the same subspace to be equal. Therefore, the 

previous constraint  diag C 0  is not required. 

2.4. Multi-scale fusion maximum entropy subspace 

clustering for band selection 

The overall cost function of MFMESC model is written as 

  
   

, , ,

22
1

1 12 2
1

2

2 3

1 1 1

1 ˆC X X U U C D C
2 2

             D ln ,  s.t.  0
i j i j i j

L
l l l

F C C

l

L N N
l

F F FF
l i j

C C C




 



  

     

  



 

       (6) 

where 1 1 2 3, , , 0      are hyperparameters to balance the 

contribution of different losses. Adam gradient method is 

used to train the network. Standard back propagation is used 

to update parameters. Once CF  is obtained, we can create a 

symmetric affinity matrix W in the following form 

            1
W C C

2

T

F F               (7) 

which shows the pairwise relations between bands. 
According to the affinity matrix, we use spectral clustering 

to get the clustering results that segments all spectral bands 

into n clusters. Based on the clustering results, the average 

band in each class is used as the cluster center. Calculating 

the distance between the cluster center and each band. The 

selected band subset can be further determined by selecting 

these bands closest to their cluster centers. 

3. EXPERIMENTS AND RESULTS 

In this section, to demonstrate the effectiveness of our 

proposed method, we conduct experiments on real HSI data 

set and compare with existing band selection algorithms. 

3.1. Data description 

The Indian Pines data set was taken from the Multispectral 

Image Data Analysis System group at Purdue University. It 

was acquired by the AVIRIS sensor from JPL to record a 

scene from Northwest Indiana on June 12, 1992, covering an 

area of 6 miles west of West Lafayette, Indiana. It mainly 

consists of 220 spectral bands with the size of 145 × 145 

pixels from 0.4 to 2.5 µm. The data has 20 m spatial 

resolutions and 10 nm spectral resolutions. There are 16 

different classes of land cover objects of interest and 10249 

pixels are labeled in the scene. We remove 20 spectral 

bands in 104–108, 150–163 and 200 with heavy noises due 

to water absorption, and finally get 200 bands in the 

experiment. 

3.2. Experimental setup 

To verify the superiority of the proposed MFMESC, we 

consider four other unsupervised hyperspectral band 

selection methods for comparison. The comparison methods 

are as follows: uniform band selection (UBS) [1], improved 

sparse spectral clustering (ISSC) [2], adaptive subspace 

partition strategy with minimum noise (ASPS_MN) [3] and 

deep subspace clustering (DSC) [4]. Support vector machine 

(SVM) with radial basis function kernel as the classifier is 

selected to prove the performance of different band selection 

methods. The parameters are selected via cross-validation. 

We utilize overall accuracy (OA), average accuracy (AA) 

and Kappa coefficient (Kappa) as quantitative assessments. 

In order to make the experiment more effective, we also add 

all bands to the experiment for comparison. During the 

experiment, 10% of labeled samples per class are randomly 

selected as training data and the rest are employed for 

testing. To ensure the fairness of random sampling, we 

repeat all experiments ten times and average results are 

reported. 

We have employed an autoencoder model consisting of 

three stacked convolutional encoder layers with 10, 20 and 

30 filters of sizes 5 × 5, 3 × 3, and 3 × 3, respectively. The 

parameters used in the experiments are as 

follows: 1

1 1.0 10 ,   2

1 1.0 10 ,   2

2 1.0 10 ,  

2

3 1.0 10 ,   the learning rate is set to 41.0 10 .  For 

multi-scale fusion module, k is set to the convolutional 

kernel with 3 × 3 size. 

3.3. Analysis of classification results 

To evaluate the performance of MFMESC, we vary the 

number of selected bands n in the range of [5, 50] with a 

step size of 5, and compared the mean values of OA, AA, 

and Kappa on the Indian Pines dataset with competitors, as 

shown in Fig. 2. We also report the classification results 
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when using all the spectral bands for reference. It can be 

clearly shown that the OA, AA and kappa of the proposed 

MFMESC method outperforms that of the other four 

methods with different numbers of selected bands. With the 

increase of n, the OA, AA and Kappa curves of MFMESC 

method are gradually rise and approach the whole band 

curve, and the performance becomes saturated when n is 

large. Only when n = 45, the value of AA is higher than the 

whole band. To analyze the effect of band selection method 

more intuitively, we also compared the performance of OA, 

AA and Kappa on Indian Pines using 30 bands, as shown in 

Table 1. Compared with other algorithms, MFMESC has 

higher classification accuracy. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Classification results: OA, AA, and Kappa curves of Indian 

Pines by SVM classifier, respectively. (a) OA. (b) AA. (c) Kappa. 

Table 1. Performance comparison of different methods in 30 bands 

of Indian Pines dataset 

4. CONCLUSION 

In this paper, a novel band selection method based on multi-

scale fusion maximum entropy subspace clustering is 

proposed. The basic idea is to combine the subspace 

clustering as a self-expression layer into the stacked 

convolutional autoencoder, enabling it be trained end to end. 

To learn more informative representations for subspace 

clustering, the input HSI data is transformed into multi-level 

representations on the union of subspaces by leveraging 

information at different levels of the encoder. A multi-scale 

fusion module is devised to learn a more discriminative self-

expression coefficient matrix. Maximum entropy regularizer 

is employed to strengthen the connectivity within each 

subspace, in which its elements corresponding to the same 

subspace are uniformly and densely distributed, so as to 

select a more discriminative bands subset through spectral 

clustering. Experiments on a benchmark dataset demonstrate 

that our method outperforms than other state-of-the-art band 

selection methods in classification accuracies. 
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 OA AA Kappa 
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ISSC 81.52±1.15% 81.55±3.80% 78.35±1.36% 

APS_MN 83.39±1.27% 82.65±2.18% 80.53±1.49% 

DSC 83.72±1.51% 82.11±3.97% 80.91±1.80% 

MFMESC 86.95±1.09% 86.43±2.87% 84.68±1.27% 
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