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ABSTRACT

A novel multi-scale fusion maximum entropy subspace
clustering (MFMESC) for hyperspectral image (HSI) band
selection is proposed in this paper. Subspace clustering is
combined as a self-expression layer with stacked
convolutional autoencoder, so that subspace clustering
working in linear subspaces can deal with complicated HSI
data with nonlinear characteristics. Multiple fully-connected
linear layers are inserted between the encoder layers and
their corresponding decoder layers to promote learning more
favorable representations for subspace clustering. A multi-
scale fusion module is designed to guide the fusion of multi-
scale information extracted from different layers to learn a
more discriminative self-expression coefficient matrix.
Furthermore, the maximum entropy regularization is
introduced in the subspace clustering to promote the
connectivity within each subspace. Experimental results
demonstrate the superiority of the proposed model against
state of-the-art methods.

Index Terms— hyperspectral band selection, maximum
entropy regularization, subspace clustering, multi-scale
fusion, stacked convolutional autoencoder

1. INTRODUCTION

Hyperspectral image (HSI) captures the spectral and spatial
information of the target scene in hundreds of narrow and
continuous spectral bands, thus providing an enormous
amount of information about the region of interest. HSI has
achieved great success in various application fields such as
environmental detection and medical diagnosis. However,
the high dimensionality and strong correlation of bands have
brought the problems of data redundancy, heavy burden of
computation and storage, and the curse of dimensionality.
Therefore, dimensionality reduction has become an
important technology in hyperspectral image processing [1].
There are two main measures for HSI dimensionality
reduction: feature extraction and band selection (BS). Band
selection is to select the most representative subset of bands
from the original band set. Compared with feature extraction,
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band selection maintains the physical significance of the
data, which makes it a research hotspot in the field of HSI
processing.

According to the availability of label information, band
selection (BS) methods can be categorized into supervised,
unsupervised and semi-supervised BS methods. Considering
the high cost of labelling data and the difficulty of obtaining
sufficient labels, unsupervised BS is more flexible and
applicable for HSI without using any prior knowledge. As a
popular technology, self-representation uses the self-
expressive property of data and various regularization terms
to fulfill unsupervised BS, which has attracted much
attention. Self-representation-based subspace clustering
(SSC) models have made remarkable achievements in
unsupervised BS [2], [3].

However, many BS methods based on subspace
clustering only consider linear subspace, which is not
suitable for the typical nonlinear structure of HSI, making it
unable to achieve excellent performance. In addition, the
subspace clustering-based BS methods commonly ignore the
spatial information of HSI, which is also important for
further process.

In recent years, deep learning-based models have been
widely applied in band selection. Zeng et al. [4] proposed
deep subspace clustering (DSC) for HSI band selection, and
improved the SSC by embedding the self-representation into
the deep convolutional autoencoder to learn the nonlinear
spectral-spatial relationship. However, DSC model does not
consider the low-level and high-level information of the
input data to obtain more favorable representations for
subspace clustering, and ignores the important multi-scale
information embedded in deep autoencoder. Besides, the
adopted regularization terms by DSC model ignore the
connectivity within each subspace, which compromises the
subsequent spectral clustering to some extent.

In this paper, a multi-scale fusion maximum entropy
subspace clustering (MFMESC) is proposed for HSI band
selection. Different from the existing DSC method, to learn
more informative and discriminative subspace clustering
representations, multiple fully-connected linear layers are
inserted between the encoder layers and their corresponding
decoder layers to generate multiple sets of self-expressive
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Fig. 1. Flowchart of proposed band selection method

and informative representations at different levels of the
encoder. The multi-scale fusion module is introduced to fuse
the multi-scale information extracted from different layers in
stacked convolutional autoencoder to learn a more
discriminative self-expression coefficient matrix, which is
achieved by stacking the coefficient matrix extracted from
different self-expression layers and then applying a
convolutional kernel on the stacked coefficient matrix to
fuse its channel. In addition, the maximum entropy
regularization is introduced to strengthen the connectivity
within each subspace, in which its elements corresponding to
the same subspace are uniformly and densely distributed,
benefiting the subsequent spectral clustering.

2. METHOD

In this section, the proposed MFMESC method for
hyperspectral band selection is described. As shown in Fig.
1, the proposed MFMESC method is divided into four parts:
feature extraction, self-expression, multi-scale fusion and
subspace clustering. The feature extraction step extracts the
inherent spatial information of HSI data through stacked
convolutional autoencoder. The self-expression step embeds
the self-expression model into stacked convolutional
autoencoder to imitate the “self-expression” property. Multi-
scale fusion is framed to generate the coefficient matrix of
each convolutional layer in stacked convolutional
autoencoder and then fuses them with the convolutional
kernel. The subspace clustering selects band subset via
spectral clustering.

2.1. Deep subspace clustering for band selection

N
, where wxh and

Given HSI samples X = {xi |xl. eR™ }
N denote the number of pixels and spectral bands,
respectively. The goal of BS is to select a band subset with
the size of n ( n<N ), which contains the maximum
information with minimum redundancy.

The convolutional autoencoder is used in DSC model.

The encoder is denoted as u = E(x;6,), where u is latent

representation. The decoder can be defined as %= D(u;0, ).

In addition, DSC model embeds self-expression model into
convolutional autoencoder to achieve self-expression
property. The latent representation u is first unfolded into a
d-dimensional vector z. Besides, assuming that N band
images are located in a union of » affine subspace S,
where S=S5US,U...US, denote n subspaces with

dimensions d,,d,,...,d, in the full space R", and satisfy with

n

d= Z; d,. Therefore, the complete cost function of DSC

model is expressed as:

L(c):%“x-ﬁ

+2Ju-Uc + 2l st diag(C)=0 (1)

where, ||U- UC||§ is a self-expression term. ||C||z is regarded

as an additional network layer using back propagation, using
L-norm regularization. X is the tensor form of the input

band
U:[,ul,,uz,...,,u,\,]T is the latent matrix. C e R™" is the

images, X is the reconstructed band images.

coefficient matrix. ¢ and A are two balancing coefficients.
2.2. Multi-scale fusion module

Inspired by providing increasingly complex input data
representations based on different layers of the encoder, the
feature learning process can be promoted by learning the
low-level and high-level information of the input data
through multi-level representation learning, so as to generate
multiple sets of representations that satisfy the self-
expressiveness property [5]. C. e R"" is defined as the

consistency matrix to capture the relational information

n*t NxN
between the encoder layers and {D }/—1 eR as

distinctive matrices to produce the unique information of the
individual layers. Promote learning of self-expressive
representations through the following loss function

L 2
£, =>|u-u(c.+D )“2 @)
I=1

The self-expression loss £, is used to promote

learning self-expressive feature representations at different
levels of the encoder. For the distinctive matrices, Frobenius
norm is used to ensure the connectivity of the affinity graph
associated with each fully connected layer. For the
consistency matrix, /;-norm is employed to generate a sparse
representation of the data. Therefore, we add the following
regular terms

. =l ®

&=l @

The multi-scale fusion module is used to fuse the
consistency matrix and distinctive matrices of each
convolution layer in the encoder. Stacked matrix Cg is
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obtained by stacking the consistency matrix and
discrimination matrix along the channel dimension. A
convolutional kernel & is used to integrate the channels of
Cy, C,eRY =k®C,, where ® means convolution
operation [6]. The multi-scale fusion module obtains a more
distinctive self-expression coefficient matrix C,. .

2.3. Maximum entropy regularization

The element of C, denoted by CF” could be thought of as

the similarity degree between data samples i and j. By
applying maximum entropy regularization on the self-
expression coefficient matrix, as well as the fact
max H(C)=min—-H (C), the loss function driving the
learning of the self-expression coefficient matrix can be
written as

N N
Le, = ZZCF

i=1 j=1

InC

£y

st.C, 20 (5)

When C, =0, the value of the corresponding summand
C; InC, is 0. Intuitively, when a sample is represented

only by samples from the same subspace, minimizing Eq. (5)
will force the connection strengths between samples
belonging to the same subspace to be equal. Therefore, the

previous constraint diag(C) =0 is not required.

2.4. Multi-scale fusion maximum entropy subspace
clustering for band selection

The overall cost function of MFMESC model is written as
1 R L
£(c,)=5]x- X|; +%;Hu'_ U’ (Ce+ D)} + 4 e,
L N N
”’Z,ZHD[HZF Mﬁzl“z]cﬁ_/ InC, ,
=1 i=l j=

where o;,4,,4,,4, >0 are hyperparameters to balance the

(6)

s.t. CE >0

contribution of different losses. Adam gradient method is
used to train the network. Standard back propagation is used
to update parameters. Once C, is obtained, we can create a

symmetric affinity matrix W in the following form

w==(lcsl+e ) )
which shows the pairwise relations between bands.
According to the affinity matrix, we use spectral clustering
to get the clustering results that segments all spectral bands
into n clusters. Based on the clustering results, the average
band in each class is used as the cluster center. Calculating
the distance between the cluster center and each band. The
selected band subset can be further determined by selecting
these bands closest to their cluster centers.

3. EXPERIMENTS AND RESULTS
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In this section, to demonstrate the effectiveness of our
proposed method, we conduct experiments on real HSI data
set and compare with existing band selection algorithms.

3.1. Data description

The Indian Pines data set was taken from the Multispectral
Image Data Analysis System group at Purdue University. It
was acquired by the AVIRIS sensor from JPL to record a
scene from Northwest Indiana on June 12, 1992, covering an
area of 6 miles west of West Lafayette, Indiana. It mainly
consists of 220 spectral bands with the size of 145 x 145
pixels from 0.4 to 2.5 pum. The data has 20 m spatial
resolutions and 10 nm spectral resolutions. There are 16
different classes of land cover objects of interest and 10249
pixels are labeled in the scene. We remove 20 spectral
bands in 104-108, 150—-163 and 200 with heavy noises due
to water absorption, and finally get 200 bands in the
experiment.

3.2. Experimental setup

To verify the superiority of the proposed MFMESC, we
consider four other unsupervised hyperspectral band
selection methods for comparison. The comparison methods
are as follows: uniform band selection (UBS) [1], improved
sparse spectral clustering (ISSC) [2], adaptive subspace
partition strategy with minimum noise (ASPS_MN) [3] and
deep subspace clustering (DSC) [4]. Support vector machine
(SVM) with radial basis function kernel as the classifier is
selected to prove the performance of different band selection
methods. The parameters are selected via cross-validation.
We utilize overall accuracy (OA), average accuracy (AA)
and Kappa coefficient (Kappa) as quantitative assessments.
In order to make the experiment more effective, we also add
all bands to the experiment for comparison. During the
experiment, 10% of labeled samples per class are randomly
selected as training data and the rest are employed for
testing. To ensure the fairness of random sampling, we
repeat all experiments ten times and average results are
reported.

We have employed an autoencoder model consisting of
three stacked convolutional encoder layers with 10, 20 and
30 filters of sizes 5 x 5, 3 x 3, and 3 x 3, respectively. The
parameters used in the experiments are as
a, =1.0x10", 4 =1.0x107, A, =1.0x107,
A, =1.0x107, the learning rate is set to 1.0x10™. For

multi-scale fusion module, k& is set to the convolutional
kernel with 3 x 3 size.

follows:

3.3. Analysis of classification results

To evaluate the performance of MFMESC, we vary the
number of selected bands »n in the range of [5, 50] with a
step size of 5, and compared the mean values of OA, AA,
and Kappa on the Indian Pines dataset with competitors, as
shown in Fig. 2. We also report the classification results
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when using all the spectral bands for reference. It can be
clearly shown that the OA, AA and kappa of the proposed
MFMESC method outperforms that of the other four
methods with different numbers of selected bands. With the
increase of n, the OA, AA and Kappa curves of MFMESC
method are gradually rise and approach the whole band
curve, and the performance becomes saturated when n is
large. Only when n = 45, the value of AA is higher than the
whole band. To analyze the effect of band selection method
more intuitively, we also compared the performance of OA,
AA and Kappa on Indian Pines using 30 bands, as shown in
Table 1. Compared with other algorithms, MFMESC has
higher classification accuracy.
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Fig. 2. Classification results: OA, AA, and Kappa curves of Indian
Pines by SVM classifier, respectively. (a) OA. (b) AA. (c) Kappa.

Table 1. Performance comparison of different methods in 30 bands
of Indian Pines dataset

AA

Kappa

OA
UBS 82.98+1.37%
ISSC 81.52+1.15%
APS_MN  83.39+£1.27%
DSC 83.72+£1.51%
MFMESC  86.95+1.09%

81.86+2.67%
81.55+3.80%
82.65+2.18%
82.11+3.97%
86.43+2.87%

80.06+1.58%
78.35+£1.36%
80.53+£1.49%
80.91£1.80%
84.68+1.27%
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4. CONCLUSION

In this paper, a novel band selection method based on multi-
scale fusion maximum entropy subspace clustering is
proposed. The basic idea is to combine the subspace
clustering as a self-expression layer into the stacked
convolutional autoencoder, enabling it be trained end to end.
To learn more informative representations for subspace
clustering, the input HSI data is transformed into multi-level
representations on the union of subspaces by leveraging
information at different levels of the encoder. A multi-scale
fusion module is devised to learn a more discriminative self-
expression coefficient matrix. Maximum entropy regularizer
is employed to strengthen the connectivity within each
subspace, in which its elements corresponding to the same
subspace are uniformly and densely distributed, so as to
select a more discriminative bands subset through spectral
clustering. Experiments on a benchmark dataset demonstrate
that our method outperforms than other state-of-the-art band
selection methods in classification accuracies.

5. ACKNOWLEDGEMENTS

This work is supported by the National Nature Science
Foundation of China (61801075), China Postdoctoral
Science Foundation (2020M670723) and the Fundamental
Research Funds for the Central Universities (3132022232).

REFERENCES

[1] C.-I. Chang and S. Wang, “Constrained band selection for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44,
no. 6, pp. 1575-1585, Jun. 2006.

[2] W. Sun, L. Zhang, B. Du, W. Li and Y. M. Lai, “Band
selection using improved sparse subspace clustering for
hyperspectral imagery classification,” /IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2784-2797, June
2015.

[3] Q. Wang, Q. Li and X. Li, “Hyperspectral Band Selection via
Adaptive Subspace Partition Strategy,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 12, pp. 4940-4950, Dec.
2019.

[4] M. Zeng, Y. Cai, Z. Cai, X. Liu, P. Hu and J. Ku,
“Unsupervised Hyperspectral Image Band Selection Based on
Deep Subspace Clustering,” IEEE Geosci. Remote Sens. Lett., vol.
16, no. 12, pp. 1889-1893, Dec. 2019.

[5] M. Kheirandishfard, F. Zohrizadeh and F. Kamangar, “Multi-
Level Representation Learning for Deep Subspace Clustering,”
2020 IEEE Winter Conference on Applications of Computer Vision
(WACYV), 2020, pp. 2028-2037.

[6] Z. Dang, C. Deng, X. Yang and H. Huang, “Multi-Scale Fusion
Subspace  Clustering Using  Similarity  Constraint,” 2020
IEEE/CVF  Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 6657-6666.

[7] Z. Peng, Y. Jia, H. Liu, J. Hou and Q. Zhang, “Maximum
Entropy Subspace Clustering Network,” [EEE Transactions on
Circuits and Systems for Video Technology (2021).

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on November 25,2025 at 09:28:27 UTC from IEEE Xplore. Restrictions apply.



