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Progressive Band Subset Fusion for Hyperspectral
Anomaly Detection

Fang Li

Abstract—This article presents a new approach, called pro-
gressive band subset fusion (PBSF) for hyperspectral anom-
aly detection. Unlike band selection (BS) which selects bands
according to band prioritization or band search strategies,
PBSF fuses band subsets progressively during data collection
processing. It is completely opposite to BS that must be done after
data are acquired and then select bands by removing spectral
redundancy as post-data processing. To accomplish PBSF, two
versions of PBSF are derived: PBSF of the multiple-band subset
(PBSF-MBS) and PBSF of uniform BS (PBSF-UBS). In particu-
lar, the fusion process takes place in an anomaly detector from a
real-time processing perspective. Three approaches are developed
to realize PBSF of two-band subsets simultaneously: PBSF-band
sequential (PBSF-BSQ), PBSF-RT, and PBSF-zigzag. Extensive
experiments demonstrate that PBSF has advantages over BS in
many ways.

Index Terms— Anomaly detection (AD), band fusion (BF),
progressive band subset fusion (PBSF).

NOMENCLATURE
AD Anomaly detection.
BF Band fusion.
BP Band prioritization.
BS Band selection.
BSQ Band sequential.
BSS Band subset selection.
CEM-AD CEM anomaly detector.
HFC Harsanyi—Farrand—Chang.
MBS Multiple-band subset.
PBSF Progressive band subset fusion.
PBSF-BSQ  PBSF performed by band sequential.
PBSF-MBS  Progressive fusion of multiple-band subsets.
PBSF-RT PBSF performed by real time.
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PBSF-UBS  Progressive fusion of uniformly selected
bands.

R-AD Correlation matrix-based anomaly detector.
ROC Receiver operating characteristic.

RT Real time.

SBF Sequential band fusion.

SBFS Sequential backward floating algorithm.
SBSF Sequential band subset fusion.

SFFS Sequential forward floating algorithm.
TD Target detectability.

TDBS Target detection and BKG suppression.
UBS Uniform band selection.

VD Virtual dimensionality.

I. INTRODUCTION

F has been around for some time but has not received as

much attention as BS does. It is quite different from BS in
three crucial aspects. One is their functionalities. More specif-
ically, BF intends to integrate spectral information as opposed
to BS that tries to remove redundant spectral information.
Another is their applications where BF is used for data fusion
compared to BS that is spectral dimensionality reduction (DR).
A third one is their processed information where BF processes
data in RT progressively by fusing bands to integrate spectral
information, while BS selects a set of appropriate bands to
represent the data, so as to achieve band efficiency after all
bands are acquired. A fourth one is their implementation where
BF starts with a few initial bands and then fuses more bands
until it reaches a satisfactory performance compared to BS that
selects a predetermined number of appropriate bands from the
entire full bands. Nevertheless, in spite of these differences,
both BF and BS share similar design rationales in terms of
how bands are fused corresponding to how bands are selected
as follows.

In general, there are two ways to design and develop BS
algorithms [1], [2]. One is sequential BS (SBS) that imple-
ments the SFFS or SBFS developed in [3] to find desired bands
one band at a time in a forward or backward manner according
to a certain BS criterion. Another is BSS that selects multiple
bands simultaneously, such as band clustering/combinations
and band subset finding. In BF, a recent work in [4], called
SBF, was developed in a similar fashion that a sequential
floating forward or backward algorithm can be designed to
fuse desired bands one band at a time in a forward and
backward manner in parallel to SFFS and SBFS used by SBS.
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However, it is interesting to note that there is no counterpart
of BSS found for BF reported in the literature. This article fills
in this gap by developing PBSF in correspondence to BSS.

In SBS, one general approach is to select bands ranked
by a BP criterion sequentially one band at a time based
on their calculated priority scores [5]. Such SBS is referred
to as BP-SBS where all bands must be prioritized. Another
is to implement a BS search strategy, in which case BS
can be implemented by either SFFS or SBFS to select a
predetermined number of bands [6]-[9]. This type of SBS is
referred to as BS-SBS. The difference between these two is
that BS-SBS does not necessarily run through all bands, but,
instead, it needs to know the number of bands to be selected,
nps beforehand.

Following similar ideas to BP and SFFS/SBFS, Song ef al.
[4] developed four versions of SBF with BP-SBF and BS-SBF
as counterparts of BP-SBS and BS-SBS. It particularly took
advantage of the BSQ acquisition format by a hyperspec-
tral imaging sensor [10], [11] to perform BF sequentially.
As a result of such SBF, it offers sequential changes in
spectral profiles across the wavelength range so that the
performance of each band can be evaluated band-by-band for
data analysis in RT. Then, appropriate bands can be selected
and terminated according to their corresponding sequential
band profiles, while the bands are acquired at the same time
simultaneously.

Unfortunately, SBS suffers from the band correlation issue
in the sense that, if a band is selected, then its adjacent bands
will be very likely to be selected as well. To resolve this issue,
BSS [12]-[15] is developed to consider selected bands as a
band subset or band combinations [16]—-[18] as a whole band
package so that band correlation among selected bands can be
taken care of by BSS. Since SBF uses a similar idea to SBS
by sequentially selecting one band at a time to be added to the
previously selected band set to fuse one band at a time with an
already fused band subset, an interesting question arises: “can
we also extend SBF in a similar manner that SBS to BSS by
fusing band subsets rather than a single band fused with a band
subset?” To answer this question, we need to look into how
BSS resolves the issue of band correlation. It exhausts all the
possible band subsets or combinations for a given nps, a task
that is practically impossible. As a result, all the BSS methods
are indeed suboptimal and produce approximate solutions.
To translate this issue to BF, we need to deal with band
correlation between two-band subsets, particularly the fusion
of one band subset with another already fused band subset.
Apparently, direct use of the same treatment that extends SBF
to SBSF is not applicable to MBS fusion since SBSF requires
knowing how many band subsets needed to be fused and also
their sequential orders, i.e., the priorities of band subsets to be
fused. This issue goes back to exactly the same issue that BSS
faces where all possible MBSs to be fused must be exhausted
and ranked for their prioritized orders.

This article reinvents the wheel by deviating from the idea
of BSS. It introduces a new concept of PBSF that fuses
two-band subsets at a time progressively, so as to achieve
MBS fusion. In addition, it also takes advantage of UBS to
develop PBSF-UBS that can fuse UBS to run through different
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bands for its initialization. The central idea of PBSF-MBS is to
fuse MBSs. Thus, it does not need to determine the number
of bands to be fused as BS does but rather the number of
band subsets and their progressive orders to be fused. This
is a key difference between PBSF and BS. On the contrary,
to implement PBSF-UBS, it does require the number of bands
needed to be selected uniformly. Nevertheless, neither BP nor
BS is involved in PBSF-MBS or PBSF-UBS. This is a key
difference between PBSF and BS. Accordingly, applications
in SBF/SBSF are quite different from that in PBSF.

There are three salient differences between SBF/SBSF and
PBSF. One is that SBF/SBSF requires BP or BS to select
bands to be fused, whereas PBSF does not. A second one
is that SBF/SBSF is mainly used in post-band processing as
opposed to PBSF, which can be used for hyperspectral data
communication and transmission, an area that has yet to be
investigated in the future in hyperspectral data exploitation,
specifically, hyperspectral satellite communication. For exam-
ple, transmitting enormous hyperspectral data from a remote
site, such as space-borne satellites or airborne aircraft or
drones down to receiving stations on the Earth, presents a great
challenge due to limited bandwidth. PBSF provides a feasible
solution by communicating data in RT progressively instead of
transmitting all data simultaneously. In addition, by means of
MBS fusion, PBSF allows receiving stations to download data
with predetermined specific band subsets and fuse their results
with other band subsets currently being acquired. This cannot
be done by BS or SBF/SBSF. Finally, the most and significant
difference is that SBF/SBSF fuses a single band with a band
subset, whereas PBSF fused two different band subsets, which
yields results identical to that obtained by directly combining
band subsets. This indicates that there is no need of waiting
for all bands to be completely acquired.

There is also one key idea of PBSF that cannot be found
in BS. That is, its fusion process takes place in its processor’s
architecture, not data. This is why PBSF can be implemented
in RT progressively. It also distinguishes itself from data fusion
that fuses data acquired by different sensors at the same time.
Therefore, PBSF is heavily determined by a processor used
for a particular application. In this article, AD is selected for
our application. In this case, PSBF is operated on a selected
AD, which is the well-known covariance matrix-based AD
developed by Reed and Xiaoli [19], referred to as RX-AD,
and also on a correlation matrix-based ADs developed in [20],
referred to as R-AD with mathematical derivations and proofs
provided in [21] and [22]. Most importantly, by virtue of
PBSF, data collection and fusion can be carried out at the same
time in a sequential or progressive manner without waiting for
completing data acquisition. This cannot be achieved by data
fusion and BS.

Several contributions derived from PBSF are summarized
as follows.

1) In order to ensure that the results of fusing different
bands by PBSF are identical to the result using their joint
bands, theoretical derivations and mathematical proofs
are provided.

2) Two versions of PBSF, PBSF-MBS, and PBSF-UBS are
developed for PBSF.
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3) To implement the fusion of two-band subsets, three
versions are also derived: BSQ format processed
PBSF (PBSF-BSQ), RT-processed PBSF (PBSF-RT),
and zigzag-processed PBSF (PBSF-zigzag).

4) PBSF offers RT capability that provides progressive
spectral profiles of MBSs to be fused. In this case, each
band subset can be evaluated and analyzed based on
its corresponding spectral performance to determine its
significance.

5) PBSF enables users to deal with limited bandwidth of
data transmission, storage constraints, and data process-
ing effectiveness and efficiency for data communication
and transmission with band subsets selected at the dis-
posal of users for fusion.

II. MATHEMATICAL DERIVATIONS OF FUSING TWO-BAND
SUBSETS FOR ANOMALY DETECTION

Since PBSF is developed to fuse data of different bands
during data acquisition by a sensor, its fusion will take
place in the architecture of the processor to be specified by
applications. Due to nature of anomalies that generally appear
and vanish from time to time, detecting anomalies on a timely
basis is critical. This certainly cannot be accomplished by BS.
Accordingly, in this section, AD is selected to demonstrate its
application due to the fact that AD is one of the fundamental
tasks and has shown a great success in hyperspectral data
exploitation. AD is quite different from target detection in
several aspects. First, according to Chang [10], [21], AD is
a passive target detection, which does not need any type of
prior target knowledge, while target detection is an active
target detection, which requires the knowledge of known
targets to be detected. Second, compared to known targets,
anomalies are unknown and generally characterized by four
unique properties. One is that anomalies cannot be known
by prior knowledge or visual inspection. Another is that the
presence of anomalies is unexpected and has a low probability.
A third one is that anomalies usually occur at the subpixel
level with no spatial information. Finally and most importantly,
once anomalies are present, their population is relatively small,
and thus, anomalies cannot be characterized by Gaussian
distributions. Detailed discussions on anomalies can be found
in [21] and [22].

Despite that many approaches have been reported in the
literature for AD, they are mainly designed and developed
based on two classic ADs. One is RX-AD developed in [19]
and given by

FXAP(r) = (r — )KL (r — p) (1)

where r € RE*! is a data sample currently being processed,
u is the sample mean of the image, K;,; € NE*E is the
global sample data covariance matrix given by Kpyx; =
(1/NYSSNY, (v — p)(x; — @)7, N is the total number of pix-
els, and L is the total number of bands. Since RX-AD in (1)
uses the covariance matrix K 4y, it is called the covariance
K1 «r-based AD, referred to as K-AD. The RX-AD specified
by (1) was derived from the generalized likelihood ratio test
based on a binary composite hypothesis problem where the

probability distributions of hypotheses were assumed to be
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Gaussian. As result, RX-AD turns out to be the Mahalanobis
distance. For detailed derivations, we refer to [21] and [22].

The other is correlation sample matrix R-based AD, R-AD,
but, recently, it has been shown to be a special case of the
constrained energy minimization AD (CEM-AD) in [22] given
by

OEMAP (1) = k"R L, r 2)

Lx1 i a data sample currently being processed

where r € N

and Ry, € ME*L is the global sample correlation matrix
given by Rp.; = (1/N) SN r;x!. As a result, R-AD can
be obtained by (2) with x = 1, also called correlation-AD.
Of particular interest is R-AD that can be easily implemented

as a recursive form to be used for BF [2]. Due to the fact that
Kixr = Rpxr — pup’. (3)

K-AD can be actually realized by R-AD. Because of (3), only
R-AD is discussed in this article.

This section presents the BF of any arbitrary pair of two
disjoint band subsets, which is the key concept of implement-
ing PBSF. It should be noted that, if two-band subsets have
overlapped bands, we can simply remove the overlapped bands
from one band subset to make two-band subsets disjoint. Thus,
without loss of generality, we assume that two-band subsets
to be fused are disjoint thereafter.

Assume that there is another band set, B;, =
{bs,bs,,...,b;}. Then, the data matrix using the two-band
Sets? Bs,m = {bsl ’ sza R bSm} and Bl,n = {bll ’ bZZ’ crr bln}»
can be represented by

I'ls, g, F(N=1)s; I'Ng,
X | XB | [T T2, F(N=D)sy  T'Ns,
BB, = | x| =
o B, iy T2y r'(N—-»n, TNy
L1, T2, F(N—-Di, TNt |
4)
—1 T
Rg,,8, = (m+n)" Xg 8,Xg s,
T T
— -1 XB3=”XB,v,n XBA:"XBI,u (5)
= T T
XBr,nXBV»,, XBz,uXB,»“
~1
T T
o | Xs,Xg, X, Xp, ©)
BB T T T
' XBz,u XBx,n XBz,u XB,»,,
Then, the (By,,B;,)-fused AD is given by
T —1 . T p-1
g5, Ry B, 8,8, 0 terms of ry Ry rp, and
T p-I1 I T \T :
rg, Ry re,,. where rg g, = (rg .rg ) . Its recursive

equation is given by with detailed derivations provided in the
Appendix

1
R-AD R-AD T T
%8, =%, t (‘"BJ‘U, vs,,B,,[B, — N rB,‘n)ﬁBx,mB,,,,|Bx,m
T
x (”Bx,mB,,,,|Bv,,,, T, — N rs,m) )

where « is a constant resulting from the signal-to-noise ratio
approach derived in [23], vg,,8B,,B,, = R];lmXBwXBM, and
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P, 8,8, = (xp [P T ]XBL”)_I with detailed derivation
provided in the Appendlx

The novelties of this section are theoretical derivations, and
mathematical proofs of fusing MBSs for AD are completely

new and have never been derived.

III. PROGRESSIVE BAND SUBSET FUSION OF UNIFORM
BAND SELECTION

PBSF is different from SBF in the sense that it fuses
any arbitrary pair of two disjoint band subsets and then can
be further extended to fuse multiple disjoint band subsets
two at a time progressively. It utilizes the fusion technique
developed for two-band subsets in Section II to allow users
to fuse band subsets of interest, which are not necessarily
selected by BP or BS. In other words, the band subsets to
be fused by PBSF can be arbitrary, such as visible bands
fused with near-infrared bands, shortwave infrared bands,
or bands in specific wavelengths of interest and so on. Such
PBSF has great potential in the future hyperspectral data com-
munication and transmission operated from unmanned aerial
vehicles (UAVs) or satellite platforms where several receiving
stations can simultaneously acquire different disjoint bands,
and their, respectively, processed results can be further fused
by PBSF at the same time without waiting for all full bands
completely acquired. Such capability is particularly suitable
for RT monitoring in many applications, such as military
combat, environmental pollution, food safety and inspection,
and law enforcement.

A. Progressive Fusion of Multiple-Band Subsets

As it is designed by (7), PBSF can be also modified to be
applicable to fusing any progressive order of J band subsets,
{B j};=1- The most significant advantage resulting from PBSF
is that PBSF can produce J-1 progressive anomaly maps,
{PAMap j}jj‘:z by repeatedly implementing PBSF (J-1) times
for AD, which can be further analyzed along with the J
anomaly maps {AMapj}JJ-=1 produced by J individual band
subsets, and {B;} ,1:1 for comparative and relative performance
analysis.

However, when PBSF is implemented, the progressive order
of fusing MBSs must be specified as will be demonstrated by
experiments conducted in Sections V and VI.

B. Progressive Band Subset Fusion of Uniformly
Selected Bands

Another immediate application of PBSF is to fuse bands
produced by UBS. It corresponds to uniform sampling in sig-
nal processing. According to compressive sensing theory [24],
[25], UBS achieves the maximum possible band incoherence
and also achieves the maximum entropy from the information
theory perspective. Thus, UBS generally performs reasonably
well in BS. In analogy with the Nyquist rate, we can also
define a similar concept for UBS; the UBS rate is given as

Rugs = {—}

2 (®)

where ngg is the number of bands to be selected. Two options

can be used to determine ni"4: floor by | (L/nps)] and ceiling

ngs
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by [(L/ngs)] with [(L/ngs)] < &l < [(L/nps)]. For the
case of |(L/ngs)], the last band subset may contain more
than npg. For the case of [(L/nps)], the last band subset may
contain bands less than ngs. However, to implement UBS,

there are n{}‘ﬂ‘g possible different initial bands, denoted by

{Bm‘“al}nUBS, each of which can be used to initialize UBS.

For the jth initial band, Blnlllal in {Bm“‘al}lUBlS to initialize
UBS, a jth band subset, denoted by Bsubset j can be gen-
erated. Accordingly, there are niM@ different band subsets,

{Bsubset/}; UBS Since each Bsubset;j yields a different per-
formance, 1t is highly desirable to take advantage of PBSF

|n|l al
BS

to exhaust these {Bsubset;j} Ul

initial conditions, {Blj““‘"‘l};lUBS by UBS. The resulting PBSF is
PBSF of bands uniformly selected by different initial bands
and referred to as PBSF-UBS.

For a given progressive order ranked by {B‘m“al}n‘fﬁs, there

|mldl

to run through all possible

are several ways t to fuse {Bsubset,};* nuBs

1) {Bsubset;}; UBS is fused by {B"""a'}'ZUBS in a forward
manner from j =1 to pitial Thrs scenario turns out
to be exactly the same as the PBSF-RT to be presented
in Section IV B

. inital
{Bsubset/}; UBS is fused by {Bljm“al}j»‘ff in a backward
manner from ] = nil4 down to 1. -
{Bsubset;} ;" UBS is fused by {Bi}‘mal}';ff in an alter-
nating forward and backward manner from j
(g8 /21

P inital
{Bsubset}; UBS is fused by {B‘j"“‘a'};ff in a midway
manner from j=1,[nbial 27 2, [pin@l /2741, ...

inital
— 1 or n{jEg

2)

3)

inital inital
1, n{gs, 2, nUBS —1,...,

4)
until

whichever [nilidl /2]

5) {Bsubsetj}!l
order.

reaches first.

is fused by {B‘m“al}"m in an arbitrary

Since UBS does not need any prior knowledge or BS
criteria or BS search algorithms, it can be implemented
in RT. In addition, different initial bands used to initial-
ize UBS yield different results. This leads to an issue of
which initial band should be used by UBS to yield the best
performance. PBSF-UBS resolves this dilemma by fusing
them all. The other is that PBSF of UBS shares a similar
idea to the exhaustive uniform band sampling developed
in [26].

The developments of PBSF-MBS and PBSF-UBS in this
section are considered as novelties and have never been
explored in hyperspectral band processing.

IV. VARIOUS VERSIONS OF FUSING TWO-BAND
SUBSETS FOR PBSF

Since a band subset consists of more than one band, when
two-band subsets are fused, how to fuse individual bands in
both band subsets is an interesting issue arising in PBSF that
does not exist in SBF. This is because SBF always fuses
one single band with the previously fused band subset. Thus,
in what follows, we describe three different ways to perform
p band subsets.
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Band subset A

PBSF-BSQ

Band subset B

b

()
bl._ra|

(AUB)

ny+l

E (AB)
b o

(AUB)
bn‘

Fig. 1. Schematic of PBSF-BSQ.

A. PBSF-Band Sequential

One immediate approach is to extend SBF-BSQ in [4] to
PBSF-BSQ where two BF stage processes are involved. The
first BF stage process is carried out by fusing the bands in
each of p band subsets in parallel simultaneously by BSQ.
It is then followed by the second BF stage process, which
fuses p band subsets progressively discussed in Section III.

Using two-band subsets as an illustrative example, let
two-band subsets, QW = {bl(A)};ll and Q¥ = {b(B)}l 1>
with n; < n, without loss of generality. The first BF stage
process is to apply BSQ directly to each of the two-band
subsets simultaneously as follows:

b — b = {bﬁ")} U {bﬁ*‘)} — b)) = {b(A)} U by
A A
N {b(’)’(m 1)} UbW
and
b = bfz’ = {b{”} U {b" } — b2} = {bia} LB

N m—>b§3) . :{bEB) B }Ub(B)

.....

are fused in parallel.

After bands are run out in the band subset A, the fusion
will take place, and the remaining bands in the band subset B
by SBF

ni+1

— bfl‘;‘UB) = {bffll} U {b("z)}

are then fused. Fig. 1 depicts a schematic of fusing two-band
subsets, Q@ = {b(A)}”‘1 and Q& = {b(B)}l 1» as described
above.

(AUB) _ 1.(AUB (B)
bn1+1 - bELI ) U {b }

B. PBSF-Real Time

Unlike PBSF-BSQ that fuses p individual band subsets in
parallel simultaneously by BSQ, PBSF-RT is carried out by

a single process, which takes place in RT by fusing bands
starting from the first bands in each of p band subsets, then
the second bands in each of p band subsets, then the second
band, and so on. This process can be also illustrated by fusing
two-band subsets, Q4 = (b} and Q® = (b®}2 | with
n; < n, as follows:

b® Up® = p{AvB)
béA) U béB) _ bgAUB)

— b up{"? = p@ — Y UBP = p{*P
— b@ Uub{"® = p® - Y U = p*P

b U by P
S p®

L...m

=b@ - ... > p™

(B) n
= {b{),, b,
After b( )

_____ n, 18 obtained, the fusion will then take place by
SBF and the remaining bands in the band subset B

bE), > o> b® = {bf,fll} U b,

Fig. 2 shows a schematic of the above process fusing
two-band subsets: QW) = (b} and QB = (b},
Interestingly, PBSF of UBS presented in Section III-B can

UBS

be also implemented in PBSF-RT if we fuse {Bsubset ]

according to the progressive order ranked by {B““‘“"l}"UBS

C. PBSF-Zigzag

Since PBSF-RT fuses band subsets as bands are being
transmitted and received band-by-band in RT at the p receiving
stations simultaneously according to the BSQ format, it does
not take care of interband correlation in each band subset.
To address this issue, a third approach is derived from an
idea similar to JPEG, which decomposes each image into
64 x 64 blocks with each block compressed by discrete
cosine transform (DCT) in a zigzag manner [27], [28]. It is

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 12,2023 at 13:15:33 UTC from IEEE Xplore. Restrictions apply.



5532724

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

PBSF-RT

Band subset B

E!
h{®

A 4

bi& UE)

i+l

Fig. 2. Schematic of PBSF-RT.

Band subset A

PBSF-ZIGZAGI1

bi& UB)

i+l

Band subset B |

b b}

Fig. 3. Schematic of PBSF-zigzag]l.

TABLE I
BAND SUBSETS SELECTED FOR VIS, NIR, AND SWIR SPECTRAL RANGES FOR HYDICE DATA IN FIG. 4
Receiving station Bsubset Spectral wavelength (nm) Spectral bands
1 Byis 400-750 1-56
2 Buir 750-1400 57-97
3 Bswir 140-25000 98-169

2) PBSF-zigzag2 processes bgA) — bgB) —

called PBSF-zigzag, which can be considered as a hybrid
of PBSF-BSQ and PBSF-RT and can be described in two
versions, PBSF-zigzagl and PBSF-zigzag2, as follows with
the schematic of PBSF-zigzagl fusing two-band subsets:
QW = (b} and QB = (bP}}2,.

processes bgA) — bgA) —

1) PBSF-zigzagl
bff) as follows:

bgB) — by - . =

(4) ) (A) A
b, b, by b; )

coe 1

—> —>
(B)/ (B)/ (B)
b, — b, bnl

After bff), the fusion will then take place by SBF in the

band subset B, as shown in Fig. 3 for illustration.

bgA) _ bgA N — bf(lf) as follows:

) () (4) A
b b b b
! ) cee n

B) (B) (B)
b, b, > bnl

After b{®), the fusion will then take place by SBF in the

band subset B.
It should be pointed out that all the results presented in this

section are new and have never been reported in the past.

V. 3-D ROC CURVE-DERIVED DETECTION MEASURES
To measure detection performance, the 2-D ROC curve

has been commonly used as an evaluation tool. It is a plot
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P11, P12, P13
P211, P22, P23

P221
P31, P312, P32, P33

Pat1, Par2, P42, P43

Psi1, Ps2, Ps3
Ps21

—>

Fig. 4. (a) HYDICE panel scene which contains 15 panels. (b) Ground-truth
map of spatial locations of 19 R panel pixels.

of detection probability Pp versus false alarm probability
Pr, and then, the area under this curve (AUC), denoted
by AUC(p,r), is calculated to assess the effectiveness of a
detector. Unfortunately, it has been shown in [29] and also
in [21]-[23] that using AUCp r) alone often resulted in
incorrect final conclusions. The major reason caused by such
misleading is simply because both Pp and Pp are calculated
by the same threshold 7 used by a detector. Consequently,
when both Pp and Pr are very high, its calculated AUCp, ) is
also very high. Conversely, when both Pp and Py are very low,
its calculated AUC(p ry is also very low. More specifically,
Pp and Pr are not independent parameters. Accordingly, Pp
and Pp cannot individually measure TD and BKG suppress-
ibility (BS), respectively. To resolve this dilemma, Chang [29]
developed an effective 3-D ROC analysis-based evaluation tool
to extend the traditional 2-D ROC analysis by including the
threshold 7 as an additional parameter to represent a 3-D ROC
curve as a function of three parameters, Pp, Pr, and 7, as a
triplet parameter vector specified by (Pp, Pr, ). Using this
3-D ROC curve, three 2-D ROC curves of (Pp, Pr), (Pp, 7),
and (Pp, 7) can be, therefore, generated with their respective
AUC values, denoted by AUCp, ), AUC(p,;), and AUCf ;).
In this case, AUC(p,;) and AUCr ;) can be used to evaluate
TD and BS, respectively. In addition to these three AUC
values, five new AUC measures developed in [29] to measure
joint TD, joint BS, TDBS, the signal-to-noise probability ratio
(SNPR), and overall detection probability (ODP) can be also
defined in the following.

1) AUCp r): Effectiveness of a detector.

2) AUCp,r): TD of a detector.

3) AUC,r): BS of a detector.

4) AUCrtp: Joint TD of a detector is defined by

0 < AUCtp = AUC(D,F) + AUC(D,T)) < 2. )
5) AUCgs: Joint BS of the detector is defined by

—1 < AUCgs = AUCp,r) — AUCE,)) < 1. (10)
6) AUCtpgs: TDBS of a detector is defined by
—1 < AUCrps = AUC(p,;) — AUCrr)) < 1. (11)
7) AUCgnpr: SNPR of a detector is defined by
0 < AUCgsnpr = %- (12)
AUCE, o)
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anomaly abundance detection maps

Otsu-thresholded anomaly binary maps
Bair

BVIS BSWIR

anomaly abundance detection maps

Otsu-thresholded anomaly binary maps

VIS UB UBSW]R

VIS U l?’SWIR

anomaly abundance detection maps

Otsu- thresholdcd anomaly binary maps

B

VIS UBSW[R UBNIR NIR Y SWIR UBVIS

©

VIS UBNIR UBSWIR

Fig. 5. R-AD detected anomaly abundance maps of different BF sets.
(a) R-AD detection results of using single-band subsets. (b) R-AD detection
results of fusing two-band subsets. (c) R-AD detection results of fusing three-
band subsets.

8) AUCopp: ODP of a detector is defined by
—1 < AUCopp = AUC(p,p)

+AUC(DJ) — AUC(FJ) <2. (13)
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TABLE 11
VARIOUS AUC VALUES CALCULATED FROM THE THREE 2-D ROC CURVES OF DETECTION RESULTS IN FIG. 7 USING DIFFERENT BAND SUBSETS

Band subsets AUCp,r) AUCwp,y AUCFy
Buis 0.9445 0.3661 0.0388
Bar 0.9727 0.1424 0.0160
Bswir 0.9931 0.3297 0.0355
Byis UBnir 0.9767 0.2392 0.0290
Byis UBgwir 0.9926 0.4192 0.0451
Bk UBswir 0.9881 02797 0.0384
Byis UByr UBswir 0.9894 0.3450 0.0434

VI. REAL IMAGE EXPERIMENTS OF MULTIPLE BANDS
FUSED BY PBSF

An airborne hyperspectral digital imagery collection exper-
iment (HYDICE) scene shown in Fig. 4 was used to demon-
strate the full utility of PBSF. The data were collected in
August 1995 from a flight altitude of 10000 ft. There are
15 square panels in Fig. 4(a) with three different sizes,
3mx3m,2mx2m,and 1 m x 1 m, respectively. Due
to the ground sampling distance of approximately 1.56 m, the
each of panels in the first column except the first row contains
two panel pixels highlighted by red, p»;; and py;; in row 2,
p311 and p3ip in row 3, p4i; and pgpp in row 4, and psi; and
Ps21 in row 5, as shown in Fig. 4. All the remaining 11 panels
in Fig. 1 contain one single panel pixel for each panel also
highlighted by red, pi1, pi12, and pi3 in row 1, py and p3 in
row 2, ps; and p33 in row 3, p4r and p43 in row 4, and ps;
and ps3 in row 5. Therefore, there are a total of 19 red panel
pixels. Fig. 4(b) shows their precise spatial locations with the
pixels in yellow (Y pixels) indicating panel pixels mixed with
the BKG. This particular scene was used for subpixel target
detection of panel pixels in the third column and mixed target
detection of panel pixels highlighted by yellow in the first and
second columns. Detailed descriptions of this data scene and
discussions on experiments can be found [31, Secs. 9.3 and
9.4], [35], [36].

A. Multiple-Band Fusion by PBSF

The following experiments were particularly designed to
show how PBSF fuses MBSs subset-by-subset. It is partic-
ularly useful in satellite data transmission due to its limited
bandwidth. Assume that there are a number of satellite
data receiving stations, each of which can be designated
to receive a certain range of spectral wavelengths at the
same time. PBSF-MBS allows these stations to receive,
process, and fuse all their datasets simultaneously. In this
case, there is no need of determining how many bands
to be fused but rather determined by spectral ranges of
interest.

Generally speaking, a common spectral range used by
a hyperspectral imaging spectrometer covers from 400 to
2500 nm. In this case, we can divide this range into three
regions of interest: the visible range from 400 to 750 nm, the
NIR range from 750 to 1400 nm, and the short-wave infrared
(SWIR) range from 1400 to 2500 nm. Let these three-band

AUCtp AUCss AUCrTpss AUCopr AUCsner
1.3105 0.9056 0.3272 1.2717 9.4288
1.1151 0.9567 0.1264 1.0990 8.8886
1.3229 0.9577 0.2943 1.2874 9.2957
1.2159 0.9477 0.2102 1.1869 8.2552
1.4118 0.9474 0.3741 1.3666 9.2877
1.2679 0.9498 0.2414 1.2295 7.2875
1.3344 0.9460 0.3016 1.2910 7.9489
. i . i .
Byir UBgwir {BNir>Bswir ) differential results
Bys UBy\r {Byis.Bnr} differential results
05
. imn. H 0
500 05
Byis UBswir {BVIS’BSWIR} i

1500
1000
500

BNIR UBSWIR UBVIS BNIR’BSW]RfBVIS

1500
1000

BVIS UBSWIR UBNIR BVISDBSWIR’BNIR

1500 1500
1000 1000

BVIS u BNIR U BSWIR

differential results

differential results

BVIS > BNI'R > BSWIR
(b)

Fig. 6. Validation of fusion equation (7). (a) Fusion of two-band subsets.
(b) Fusion of three-band subsets.

subsets be denoted by Byis, Bar, and Bgwir with their bands
tabulated in Table I, which are assumed to be transmitted to
three different receiving stations.
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Fig. 7. 3-D ROC curves along with their generated three 2-D ROC curves of R-AD detected anomaly maps of Byis, BNir, Bswir, Bvis UBNir, Byvis UBswir,

and BNIR @] BSWIR~

TABLE III
BAND SUBSETS SELECTED FOR PBSF-UBS FOR HYDICE DATA IN FIG. 4

Receiving stations Bsubsets
1 1 19 38 57 76 94 113 132 151
2 2 20 39 58 77 95 114 133 152
3 3 21 40 59 78 96 115 134 153
4 4 22 41 60 79 97 116 135 154
5 5 23 42 61 80 98 117 136 155
6 6 24 43 62 81 99 118 137 156
7 7 25 44 63 82 100 119 138 157
8 8 26 45 64 83 101 120 139 158
9 9 27 46 65 84 102 121 140 159
10 10 28 47 66 85 103 122 141 160
11 11 29 48 67 86 104 123 142 161
12 12 30 49 68 87 105 124 143 162
13 13 31 50 69 88 106 125 144 163
14 14 32 51 70 89 107 126 145 164
15 15 33 52 71 90 108 127 146 165
16 16 34 53 72 91 109 128 147 166
17 17 35 54 73 92 110 129 148 167
18 18 36 55 74 93 111 130 149 168
19 37 56 75 112 131 150 169

(1U19)U2

Fig. 8. R-AD detected anomaly maps of different BF subsets.

Three scenarios were performed by PBSF in terms of
different progressive orders of fusing these three-band sub-
sets. One is to first fuse Byig with Bygr and then fol-
lowed by fusing the third band subset, Bswir, denoted by
(Bvis U Bnir) UBswir. A second scenario is to fuse Byjs with
Bswir and then followed by fusing with Byr, denoted by
(Bv[s @) BSWIR) U Bnir. A third scenario is to first fuse Byr
with Bgwir and then followed by fusing with Byjs, denoted
by (Bnir UBswir) U Byis. Fig. 5(a)—(c) shows the anomaly
abundance detection maps of R-AD using these three scenarios

((1U19)..)U18 ((1U19)..)U3 ((1U19)..)U17 ((1U19)..)U4((1U19)..)U1l6 ((1U19)..)U5 (1U19)..)U15

(1U19)..)U6 ((1U19)..)U14 ((1U19)..)U7(1U19)...)U13 ((1U19)...

YUS ((1U19)..)U12 ((1U19)..)U9 ((1U19)..)U11 ((1U19)...)U10

along with their anomaly binary maps that were obtained by
Otsu’s thresholding method [30].

By visual inspection of Fig. 5, using Bswir performed
better than the other two single-band subsets and nearly the
same as PBSF of fusing two or three-band subsets with
no visible differences. Interestingly, PBSF fusing three-band
subsets did not provide advantages compared to PBSF fus-
ing two-band subsets. The results in Fig. 5 demonstrated
that panel signatures could be detected using only SWIR
bands. It also showed that, if SWIR bands were not used,

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 12,2023 at 13:15:33 UTC from IEEE Xplore. Restrictions apply.



5532724

U9  (1U19)U2

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

((1U19)..)U18 ((1U19)..)U3 ((1U19)..)U17 (1U19)..)U4((1U19)..)U16 ((1U19)..)U5 (1U19)..)Ul5

((1U19)..)U6 ((1U19)..)U14 ((1U19)..)U7((1U19)..)U13 (1U19)..)U8 ((1U19)..)U12 ((1U19)..)U9 ((1U19)..)U11((1U19)...)U10

Fig. 9. Binary maps of different BF subsets by Otsu’s method.
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Fig. 10.

3-D ROC curves along with their generated three 2-D ROC curves of R-AD detected anomaly maps by fusing different subsets.

TABLE IV
VARIOUS AUC VALUES CALCULATED FROM THE THREE 2-D ROC CURVES OF DETECTION RESULTS IN FIG. 10 USING DIFFERENT BAND SUBSETS

Band subsets AUCw,r AUCp,y AUCFq5
1U19 0.9837 0.4071 0.0225
(1U19)u2 0.9702 0.3771 0.0242
(1U19)U2)U 18 0.9812 0.3687 0.0242
(1U19)U...UI8)U3 0.9755 0.3661 0.0273
(1U19Hu...U3U17 0.9806 0.3682 0.0289
(1U19U...U1THU4 0.9757 0.3692 0.0324
(1U19uU...U4U16 0.9799 0.3882 0.0369
(TtU19)u...Ul6)USs 0.9817 0.2818 0.0265
(1U19)U...U5U15 0.9846 0.2929 0.0279
(1U19)U...U15U6 0.9841 0.3018 0.0293
(1U9u...U6)U14 0.9833 0.3092 0.0316
(QU19U...U14) U7 0.9849 0.3145 0.0316
(TU19)u...uTHU13 0.9856 0.3197 0.0343
(1U19U ... UI3)U8 0.9889 0.3271 0.0352
(1U19)uU...UBUI12 0.9883 0.3339 0.0379
(Q1U19)U...U12)U9 0.9899 0.3403 0.0414
(TU19)uU... U9 UI11 0.9892 0.3429 0.0440
(TU19uU...U1HU10 0.9894 0.3450 0.0434

fusing VIS and NIR bands could also do as well as SWIR
bands.

In order to validate the fusion equation (7) used for fusing
two-band subsets and three-band subsets, Fig. 6(a) and (b)
shows their respective fused anomaly abundance maps in
the first column, anomaly abundance detection maps of joint
band subsets without fusion in the second column, and their
differential anomaly maps for the second and third scenarios
in the third column where the values of differential results
were nearly zeros, which were not zeros because of numerical
errors.

AUCtp AUCss AUCrtpss AUCopr AUCsner
1.3908 0.9612 0.3846 1.3683 18.1193
1.3473 0.9460 0.3529 1.3231 15.5867
1.3499 0.9570 0.3445 1.3257 15.2569
1.3416 0.9482 0.3387 1.3142 13.3958
1.3487 0.9517 0.3393 1.3198 12.7408
1.3449 0.9433 0.3368 1.3125 11.4000
1.3681 0.9430 0.3513 1.3312 10.5186
1.2636 0.9552 0.2553 1.2371 10.6384
1.2774 0.9567 0.2650 1.2495 10.4969
1.2860 0.9548 0.2725 1.2566 10.2962
1.2925 0.9517 0.2776 1.2609 9.7845
1.2994 0.9532 0.2828 1.2677 9.9366
1.3053 0.9512 0.2854 1.2710 9.3153
1.3160 0.9538 0.2919 1.2809 9.2994
1.3222 0.9504 0.2961 1.2843 8.8157
1.3301 0.9485 0.2989 1.2888 8.2277
1.3321 0.9453 0.2989 1.2882 7.8012
1.3344 0.9460 0.3016 1.2910 7.9489

In order to further conduct detailed quantitative analysis,
the 3-D ROC curve-derived detection measures presented in
Section V were used to evaluate the detection performance
in Fig. 5. Fig. 7 plots the 3-D ROC curves in logjy of
the anomaly abundance detection maps in Fig. 5 along with
their corresponding three 2-D ROC curves where R-AD using
single-band subset specified by SWIR produced the best AUC
value of (Pp, Pr), denoted by AUCp r), while R-AD using
fused two-band subsets, Byis UBgswir, produced the best AUC
value of (Pp, 7), denoted by AUC(p .. Interestingly, R-AD
using single-band subset specified by NIR produced the least

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 12,2023 at 13:15:33 UTC from IEEE Xplore. Restrictions apply.



TABLE V

LI et al.: PROGRESSIVE BAND SUBSET FUSION FOR HYPERSPECTRAL ANOMALY DETECTION

BAND SUBSETS FOR PBSF-BSQ FOR HYDICE DATA IN FIG. 4

Station 5

Station 1 Station 2 Station 3 Station 4 Station 6 Station 7 Station 8 Station 9
(Bsubset 1) (Bsubset 2) (Bsubset 3) (Bsubset 4) (Bsubset 5) (Bsubset 6) (Bsubset 7) (Bsubset 8) (Bsubset 9)
1 19 38 57 76 94 113 132 151
2 20 39 58 77 95 114 133 152
3 21 40 59 78 96 115 134 153
4 22 41 60 79 97 116 135 154
5 23 42 61 80 98 117 136 155
6 24 43 62 81 99 118 137 156
7 25 44 63 82 100 119 138 157
8 26 45 64 83 101 120 139 158
9 27 46 65 84 102 121 140 159
10 28 47 66 85 103 122 141 160
11 29 48 67 86 104 123 142 161
12 30 49 68 87 105 124 143 162
13 31 50 69 88 106 125 144 163
14 32 51 70 89 107 126 145 164
15 33 52 71 90 108 127 146 165
16 34 53 72 91 109 128 147 166
17 35 54 73 92 110 129 148 167
18 36 55 74 93 111 130 149 168

37 56 75 112 131 150 169

5532724

Bsubsetl Bsubset2

Bsubset6

Bsubset7

Fig. 11. R-AD detection maps of each receiving station.

AUC value of (Pp, 7), denoted by AUCf ;) which indicated
the best BS. These results showed that different band subsets
offered different advantages of evaluating detection perfor-
mance. In addition to AUCp ry, AUCp ), and AUCf ),
Table II also tabulates the results of five detection measures
specified by (9)-(13) for detailed quantitative studies and
comparison where the best results were boldfaced and were
produced by Byjs UBgwir, which fused the two-band subsets,
Byis and Bswir. This table further demonstrated an important
fact that relying only on AUCp, r), AUC(p ;), and AUCf ;) to
evaluate AD performance was not sufficient. This is because
Bswir performed nearly the same as Byis U Bswir by visual
inspection of Figs. 4 and 5.

B. PBSF of UBS
The next experiments are designed to validate PBSF-UBS.
In this case, we need to know the number of bands to be

Bsubset3

Bsubset4

Bsubset5

Bsubset8 Bsubset9

selected. According to Chang [31], [33] and Chang and Du
[32], VD can be used to estimate the number of spectrally
distinct signatures. Assume that nyp is the value estimated
by VD. Thus, if each signature can be accommodated by
one particular spectral band, we only need only nyp bands
to differentiate nyp signatures. This also suggests that the
entire full band set can be decomposed into nyp band subsets
so that one band subset can be distinguished from another
and represents particular spectral information, which cannot
be offered by other band subsets. For the HYDICE scene in
Fig. 4, nyp was estimated to 9 by HFC [34]. Accordingly,
nyp = 9 was used to select nine-band subsets to be fused by
PBSF for experiments where each band subset is assumed
to be able to represent the dataset for AD. To maximize
its representation in the sense of maximum band incoher-
ence according to compressive sensing, UBS was used, and
each band subset was initialized by a different initial band,
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Bsubsetl Bsubset2 Bsubset3 Bsubset4 Bsubset5
Bsubset6 Bsubset7 Bsubset8 Bsubset9
Fig. 12. Binary maps of Fig. 11 thresholded by Otsu’s method.
npr=18 npr=37 npr=56 npr=75 npr=93

nBF:1 12 an:13l

Fig. 13. R-AD detection maps of using PBSF-MBS.

as described in Section III-B. In this case, we can assume that
the 169 bands of HYDICE are divided into nine-band subsets
and transmitted to the corresponding nine receiving stations,
each of which will receive 18 or 19 bands simultaneously.
By virtue of PBSF-UBS, we can immediately see the detection
results produced by each band subset at the same time and then
observe their progressive profiles as more bands in the same
band subsets are fused. This unique advantage can be only
gained by PBSF but not SBF.

As noted in Section III-B, there are five different scenarios
that can be implemented by PBSF of UBS. For an illustrative
purpose, we only select scenario 3_‘flor experiments, which
fuses the nif@ MBSs, {Bsubsetj ;'1‘331% in an alternating for-
ward and backward manner. That is, it first fuses the first
UBS band subset (Bsubsetl) with the last UBS band subset

(Bsubset(ni{}ﬂ%l)), then second UBS band subset (Bsubset2)

nB]::150

an:169

inital — 1)), and
/2|, and then, the

with the second last band subset (Bsubset(n
so on, until it reached its halfway, [n{lid
fusion is completed.

When ngs = 9, [169/97 = 19, and the last one band subset
has only seven bands. In this case, there are 19 receiving
stations that are collected synchronously beginning with dif-
ferent initial bands. Except for the last 19th station receiving
seven bands, all other 18 receiving stations will receive nine
bands. Since [19/2] = 10, the fusion will be terminated
at the tenth band subset, Bsubsetl0. Table III tabulates
19 receiving stations, each of which receives nine bands
according to UBS except the last receiving station, which
receives only seven bands. Fig. 8 shows the anomaly abun-
dance detection maps of PBSF implemented by R-AD along
with their binary maps thresholded by Otsu’s method shown
in Fig. 9.
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ngr=1 8 nBF:3 7

nBF=1 12 nB]:=131

an:56

ngr=75 nBF:93

I’lB]:=150

NBr— 169

Fig. 14. Binary maps of detection maps in Fig. 13 thresholded by Otsu’s method.

TABLE VI
DETECTED ABUNDANCE VALUES OF 19 R PANEL PIXELS OF DIFFERENT SUBSET FUSIONS

Band 1 1U2 1U2U3 1U...U4
subsets
P 11.1740 41.4735 426.1467 565.6894
P12 9.2488 27.7433 150.9704 188.2856
P13 18.3494 35.5914 57.7685 75.4854
P21 25.0753 128.4919 245.9841 320.0450
D221 32.8168 135.6778 249.3081 339.4237
P22 15.3810 99.6586 173.4740 249.0514
P23 13.3460 51.3182 68.3732 102.8535
Pain 22.8192 73.9901 717.7234 752.5319
P31z 17.0104 75.5526 825.8751 852.6194
P32 16.3910 40.8510 339.0274 358.1216
P33 17.7917 44.8807 166.9810 181.5010
Pan1 38.7299 237.4271 262.4541 483.9900
pai2 55.8119 344.7630 388.9848 566.4575
Paz 35.7348 188.1820 212.0321 390.8717
D43 16.5454 36.3748 49.0050 133.5310
Psi1 37.7443 393.2389 434.9214 478.6209
Ps21 118.6343 709.8326 747.8079 829.6747
ps2 64.4979 423.6777 448.5125 513.3513
Ps3 19.2434 59.7609 67.4249 126.2885

As shown in Figs. 8 and 9, fusing only three-band subsets
Bsubsets (1U19)U2 already produced very good AD results
where most anomalies were detected, and background was
sufficiently suppressed. The detection results were then stable
after a second fusion process of fusing a third band subset
by PBSF. Then, the fusion of subsequent band subsets did
not have much impact on the detection results afterward.
To further conduct quantitative analysis, Fig. 10 plots the
3-D ROC curves of the anomaly abundance detection maps
in Fig. 8 along with their corresponding three 2-D ROC
curves. Table IV tabulates the AUC values calculated from
the eight detection measures in Section V where the best
results are boldfaced. From Table IV, if we solely rely on
the AUC(p, ) values, the best result was 0.9899 produced by
fusing ((1U19)U - - - U12)U9. However, if we further compare
seven other detection measures, the best result was actually the
one after the first fusion process, i.e., 1U19, which yielded the

1U...US5 1U...U6 1U...U7 1U...U8 1U...U9
803.8325 1365.5095 1496.3245 1524.2666 1534.2729
242.9625 467.9701 536.2556 560.6689 594.5325
91.2803 169.1479 199.3187 222.3994 244.6013
403.5514 485.9469 640.7112 704.2427 733.5450
452.6913 531.8716 649.6164 712.1286 733.8726
377.5580 452.0189 562.6282 646.1052 717.7250
148.4547 199.1693 233.6518 248.6583 295.0736
766.9882 806.5271 848.6405 868.9768 887.3359
871.8016 933.9430 1006.6296 1021.5325 1042.5020
376.5358 391.6702 447.3673 470.0582 488.6069
194.4998 218.2995 239.8715 271.2274 301.2609
601.0014 783.5891 876.3403 1001.3679 1079.1877
651.8406 757.6087 870.5034 937.6919 1006.1327
456.8636 554.5633 667.2411 745.1382 789.8681
151.0750 186.3171 224.1015 237.2814 287.5233
521.7614 572.1187 661.7849 697.1774 732.7601
937.2388 1009.4289 1116.0018 1150.3468 1192.3064
570.5321 705.1881 798.1036 841.0248 858.3700
143.3660 168.9125 196.2244 216.1771 240.7273

best results across the board except for AUCp, ry, which was
0.9837 slightly worse than 0.9899. This indicated that PBSF
of UBS could be very effective by fusing only two UBS band
subsets, and using full bands was not necessary to produce
the best results. Similar conclusions can be also drawn for the
other four scenarios.

VII. INTERBAND SUBSETS IMPLEMENTED BY PBSF

In Section III-A, we only describe how PBSF fuses the
MBS band subset-by-band subset progressively. However, the
issue of how to fuse individual bands in different band subsets
is not addressed. In what follows, we describe three different
ways to fuse individual bands in two separate band subsets.

A. Progressive Band Fusion-BSQ

Since PBSF-BSQ performs the BSQ format, nine Bsubsets
to be fused must be consecutive, as tabulated in Table V,
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Fig. 15. Detected abundance values of 19 R panel pixels as the number of band subsets is increased. (a) Detection of R panel pixels in row 1. (b) Detection
of R panel pixels in row 2. (c) Detection of R panel pixels in row 3. (d) Detection of R panel pixels in row 4. (e) Detection of R panel pixels in row 5.

TABLE VII
BAND SUBSETS FOR PBSF-RT FOR HYDICE DATA IN FIG. 4

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 Station 9
Bsubset 1 1 19 38 57 76 94 113 132 151
Bsubset 2 2 20 39 58 77 95 114 133 152
Bsubset 3 3 21 40 59 78 96 115 134 153
Bsubset 4 4 22 41 60 79 97 116 135 154
Bsubset 5 5 23 42 61 80 98 117 136 155
Bsubset 6 6 24 43 62 81 99 118 137 156
Bsubset 7 7 25 44 63 82 100 119 138 157
Bsubset 8 8 26 45 64 83 101 120 139 158
Bsubset 9 9 27 46 65 84 102 121 140 159
Bsubset 10 10 28 47 66 85 103 122 141 160
Bsubset 11 11 29 48 67 86 104 123 142 161
Bsubset 12 12 30 49 68 87 105 124 143 162
Bsubset 13 13 31 50 69 88 106 125 144 163
Bsubset 14 14 32 51 70 89 107 126 145 164
Bsubset 15 15 33 52 71 90 108 127 146 165
Bsubset 16 16 34 53 72 91 109 128 147 166
Bsubset 17 17 35 54 73 92 110 129 148 167
Bsubset 18 18 36 55 74 93 111 130 149 168
with Bsubsetl: 1U2U---U18, Bsubset 2: 19U20U--- U confirmed the results in Figs. 4 and 5, where using Bswir

37,...,Bsubset 9: 151U152U---U169, in which case each
receiving station fuses one Bsubset simultaneously by BSQ in
parallel. Fig. 11 shows the R-AD detected anomaly abundance
maps of nine Bsubsets received and processed by each of
nine receiving stations individually and simultaneously along
with Fig. 12, which shows their corresponding binary maps
obtained by Otsu’s method. It should be noted that the number
of bands used by each receiving station was the same, but the
detection results in Figs. 11 and 12 show that different band
subsets yielded different detection capabilities. For example,
station7 detected most of the panel pixels in Fig. 11, which

produced good results. By contrast, station5 detected almost
nothing except two anomalous pixels at the upper left corner,
which were rocks in Fig. 11.

The results in Fig. 11 illustrated that using PBSF-BSQ was
not effective, and MBS fusion was needed. Fig. 13 shows their
progressively fused detection results obtained by PBSF-MBS,
which fused BsubsetlUBsubset2U, ..., UBsubset9 with the
number of bands being fused, (ngg) specified under-
neath each figure. For example, fusing the first three-
band subsets, BsubsetlUBsubset2UBsubset3 with ngg
56 showed a large change in detection results, and then, the
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ngr=18 ngr=36 npr=54 ngr=90
nBF=108 nB]:=126 I’lB]:=144 I’lB]:=169
Fig. 16. R-AD detection maps of using PBSF-RT.
npr=18 npr=36 ner=54 ngr=72 npr=90
nBF:108 l’pr:126 I’IBF:144 an:169
Fig. 17. Binary maps of Fig. 16 thresholded by Otsu’s method.

detection performance was slightly improved until it reached
BsubsetlUBsubset2U, . .., UBsubset6 with ngg = 112 where
the detection performance became stable afterward. When all
bands were fused with ngr = 169, the fusion result was
identical to that obtained by using all bands simultaneously
for detection. Fig. 14 also shows the binary maps obtained
from Fig. 13 by Otsu’s method, and Table VI tabulates the
detected abundance values of 19 R panel pixels in the fusion
process, which are plotted in Fig. 15, as the number of band
subsets is increased.

The results in Table VI and Fig. 13 show that the more the
band subsets were fused, the greater the detected values were
for all 19 R panel pixels. In the PBSF-BSQ, the bands to be
processed were distributed to different receiving stations where
each receiving station processed the data in parallel to produce
their own detection results, and then, their results were further

fused station by station. The disadvantage of PBSF-BSQ is
that the fusion process must follow the BSQ format band by
band consecutively.

B. Progressive Band Subset Fusion in Real Time

This experiment is designed to illustrate PBSF-RT which is
actually scenario 1 discussed in PBSF of UBS in Section III-B
where each receiving station receives bands in parallel, and
then, these received bands will form a band subset for RT-AD
every time a band is received. The 169 bands of HYDICE data
were distributed to nine receiving stations, which processed
band subsets in parallel, as tabulated in Table VII. For exam-
ple, each receiving station receives its first band in its own
designated band subset, and then, the first bands were fused
by SBF to produce detection results, denoted by Bsubsetl.
After the first bands in all band subsets were processed
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Fig. 18. Detected abundance values of 19 R panel pixels using PBSF-BSQ and PBSF-RT. (a) Detection of R panel pixels in row 1. (b) Detection of R panel
pixels in row 2. (c) Detection of R panel pixels in row 3. (d) Detection of R panel pixels in row 4. (e) Detection of R panel pixels in row 5.

simultaneously, the second band received by all receiving
stations in their own band subsets were also in process and
fused by SBF with Bsubsetl to produce detection results,
denoted by Bsubset2. The same process was repeated until all
169 bands were fused. It is worth noting that three processes,
the transmission of bands, the detection of anomalies, and the
fusion of band subsets, were carried out simultaneously in
RT. Fig. 16 shows the abundance changes in R-AD detection
maps during the fusion process of PBSF-RT, which not only
detected anomalies on a timely basis but also suppressed
the background as well. To further see quantitative detection
results in Fig. 16, Otsu’s method was used to threshold the
detection maps in Fig. 16 to produce their respective binary
maps in Fig. 17.

As shown in Figs. 16 and 17, most anomalies were detected
at the initial stage of PBSF-RT. The anomaly abundance
detection maps of the fusion process were improved steadily as
more bands were fused. Fig. 18 shows the detected abundance
values of 19 R panel pixels using PBSF-BSQ and PBSF-RT
where the plots generated by PBSF-BSQ and PBSF-RT are
marked by dotted lines and solid lines, respectively.

Comparing PBSF-RT to PBSF-BSQ, the detected abun-
dance values of 19 R panels by PBSF-RT after initial fusion
were greater than PBSF-BSQ. Also, when the same number
of bands were fused, the detected abundance values of pan-
els by PBSF-RT were generally greater than that detected
by PBSF-BSQ. This indicated that PBSF-RT could detect
more anomalies by fusing fewer bands. The last but not
least, PBSF-RT can be implemented in RT detection, while
PBSF-BSQ could not but rather be implemented progressively.

TABLE VIII
DETECTION VALUES OF 19 R PANEL PIXELS

. Detection values
panel pixel I HReEES PBSF-RT PBSF-zigzagl/2
P 11.17 546.20 274.70
pPi2 9.25 118.50 57.34
Pi3 18.35 36.30 28.46
P211 2508 292.50 141.40
P221 32.82 282.30 160.60
P22 15.38 203.20 89.23
P23 13.35 31.39 29.66
312 17.01 182.40 130.60
P32 16.39 92.85 61.25
P33 17.79 51.27 37.47
Pait 38.73 529.70 464.10
Pai2 55.81 561.70 506.40
Paz 35.73 347.20 315.30
P43 16.55 28.64 28.59
Psii 37.74 286.90 302.90
Ps21 118.63 520.30 589.30
Ps2 64.50 340.40 354.00
Ps3 19.24 17.57 21.45

C. Progressive Band Fusion-Zigzag (PBSF-ZIGZAG)

This section performed experiments by fusing band sub-
sets in a zig-zag manner. Two PBSF-zigzag methods,
PBSF-zigzagl and PBSF-zigzag? introduced in Section IV-C,
were implemented to detect anomalies of HYDICE, respec-
tively. Fig. 19 shows the detected abundance values of 19 R
panel pixels using PBSF-BSQ and two PBSF-zigzag methods
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Detection value fractions of 19 R panel pixels using PBSF-BSQ and PBSF-zigzag. (al) detection of R panel pixels in row 1. (a2) Detection of

R panel pixels in row 2. (a3) Detection of R panel pixels in row 3. (a4) Detection of R panel pixels in row 4. (a5) Detection of R panel pixels in row 5,
PBSF-zigzagl. (bl) Detection of R panel pixels in row 1. (b2) Detection of R panel pixels in row 2. (b3) Detection of R panel pixels in row 3. (b4) Detection

of R panel pixels in row 4. (bS) Detection of R panel pixels in row 5, PBSF-zigzag2.

where the plots by PBSF-BSQ and PBSF-zigzag are marked

by dotted lines and solid lines, respectively.

Similar to PBSF-RT, PBSF-zigzagl and PBSF-zigzag2,
denoted by PBSF-zigzag1/2, also produced greater abundance

values in their initial fusions. In addition, PBSF-zigzagl1/2
detected more panel pixels fusing fewer bands than PBSF-RT.
To conduct quantitative analysis, the detected abundance val-
ues of all 19 R panel pixels were tabulated in Table VIII for

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on December 12,2023 at 13:15:33 UTC from IEEE Xplore. Restrictions apply.



5532724
1200 — . . . . . . —
Py, ZIGZAGT- - - p511BSQ,,,/—' ——
1000 |——Pgy,ZIGZAGT /p5mBSQ
p522|GZAq/1/,,r——'— ps,BSQ
S 800 *7p532/|9(ZAG/1 =-=P53B8Q
g T =
.S 600l /- _——
g "'/ | ////77*’ _ e
B 400 /
200 I/ ]
= ;777'//77 )
0 =" L L L L L L
2 4 6 8 10 12 14 16 18
number of band subsets
(a5)
Fig. 19.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

ZIGZAG2- -~ p,,BSQ
| PgyZIGZAG2 pg,yBSQ
ps,ZIGZAG2 " p,BSQ

ZIGZAG2 -~ p,,BSQ

P51

F Ps3

detection value
(2}
o
o
\
\
\
\
\
\
<

,/—//W B /,
/// -
400 o
200 f - o
;ﬁ,‘//"*
PTG - TP L
number of band subsets

(b3)

(Continued.) Detection value fractions of 19 R panel pixels using PBSF-BSQ and PBSF-zigzag. (al) detection of R panel pixels in row 1.

(a2) Detection of R panel pixels in row 2. (a3) Detection of R panel pixels in row 3. (a4) Detection of R panel pixels in row 4. (a5) Detection of R panel
pixels in row 5, PBSF-zigzagl. (bl) Detection of R panel pixels in row 1. (b2) Detection of R panel pixels in row 2. (b3) Detection of R panel pixels in
row 3. (b4) Detection of R panel pixels in row 4. (b5) Detection of R panel pixels in row 5, PBSF-zigzag2.

(b

Fig. 20. (a) AVIRIS scene. (b) Ground-truth map of spatial locations of ten
anomalous pixels.

PBSF-BSQ, PBSF-RT, and PBSF-zigzagl/2 where the best
results are boldfaced. As shown in Table VIII, PBSF-RT did
the best for all panel pixels in rows 1-4 except for the panel
pixels in row 5 for which PBSF-zigzag1/2 did the best.

VIII. AVIRIS IMAGE EXPERIMENTS FOR PBSF-MBS
AND PBSF-UBS

A second dataset was for experiments. It is an airborne
visible/infrared imaging spectrometer (AVIRIS) sensor col-
lected over the Bay Champagne area in April 2010 [37]. The
image has a size of 100 x 100 x 188 pixels with noisy bands
removed. The spatial resolution of the image is 4.4 m. The
ground truth of this dataset includes ten anomalous pixels. The
sample image and reference detection map for this dataset are
shown in Fig. 20(a) and (b), respectively.

Since similar conclusions drawn for HYDICE data in
Fig. 4 are also applicable to the AVIRIS dataset, only experi-
ments similar to that designed for PBSF-MBS and PBSF-UBS
for HYDICE data were also conducted for this dataset.

A. PBSF-MBS

In analogy with Section VI-A, we also divide this range into
three regions of interest: the visible range from 400 to 750 nm,
the NIR range from 750 to 1400 nm, and the SWIR range

from 1400 to 2500 nm. Let these three-band subsets be
denoted by Byis, Bnr, and Bgswir with their bands tabu-
lated in Table IX, which are assumed to be transmitted to
three different receiving stations. Fig. 21 shows the detected
anomaly abundance maps by R-AD using single-band subset
Bvis, Bair, and Bswir, fusing three-band subsets, Byis UBxir,
BVIS U BSWIRy and BNIR U BSWIR» and also fllSng three-
band subsets, (Byis UBnir) U Bswir, (Bvis U Bswir) U Bir,
and (Bnr U Bswir) U Byis. Based on visual inspection, all
the detection results in Fig. 21 were very close where the
anomalies were detected and the background was also well
suppressed. In this case, Otsu’s method was used to threshold
the anomaly abundance maps in Fig. 21, and Fig. 22 shows
their corresponding binary AD maps where the best results
were obtained by Bswir, Bvis UBswir, (Bvis U Bair) UBswir,
(Bvis U Bswir) UBnir, and (Bair U Bswir) U Byis.

To conduct detailed quantitative studies, Fig. 23 plots
3-D ROC curves along with their corresponding three 2-D
ROC curves. Table X tabulates AUC values calculated by
eight detection measures introduced in Section V where the
best results are boldfaced. Specifically, Byr U Bswir and
(Bv[s U BNIR)UBSWIR produced the highest value of AUC(D,F)
to evaluate the effectiveness of AD. On the other hand,
Byis U Byr produced the highest value of AUCp ) to show
the best TD of anomalies as opposed to Bswr that produced
the lowest value of AUCr ;) to reflect the best BS for AD.
Nevertheless, overall speaking, the best result was produced
by Byis U Bk, which has the best values among four out of
eight detection measures.

However, if we further examine the thresholded binary maps
in Fig. 22, Byis U Byir was among the four worst results
but was one of the best results in abundance AD maps in
Fig. 21. This intriguing scenario demonstrated an important
fact that relying on single-thresholded binary maps, such as
Otsu’s method, is not reliable where Otsu’s threshold method
is a widely used technique in image thresholding [38] but not
necessary to be optimal [39]. This also explains why 3-D ROC
curve-derived detection measures are needed. For example,
a common practice to conduct a comparative performance
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Fig. 21. R-AD detected anomaly maps of different BF sets.

(BVTS UBNTR)UBSWTR

Fig. 22.  Binary maps of different BF sets thresholded by Otsu’s method.
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TABLE IX
BAND SUBSETS SELECTED FOR VIS, NIR, AND SWIR SPECTRAL RANGES FOR AVIRIS DATA IN FIG. 20

Receiving station Bsubset Spectral wavelength(nm) Spectral band
1 Byis 400-750 1-32
2 Buir 750-1400 33-96
3 Bswir 140-25000 97-188
analysis is evaluated based on the value of Pp with a fixed B. PBSF-UBS

value or based on the value of Pp by fixing Pp at a certain
value, such as experiments in [40, Tables II and III and
Figs. 10-15]. However, it was shown in [41] that such an
approach may, unfortunately, mislead conclusions. To resolve
this dilemma, the 3-D ROC analysis has been recently used
for the performance evaluation of AD [21]-[23], [41]-[44].

To implement PBSF-UBS, we need to estimate VD for the
AVIRIS scene in Fig. 20, which is nyp = 13 by HFC [34].
Accordingly, nyp = 13 was used to determine 13-band subsets
to be fused by PBSF-UBS for experiments. In this case,
we can assume that the 188 bands of AVIRIS are divided
into 13-band subsets and transmitted to the corresponding
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TABLE X

VARIOUS AUC VALUES CALCULATED FROM THE THREE 2-D ROC CURVES OF DETECTION RESULTS IN FIG. 23 USING DIFFERENT BAND SUBSETS

Band subsets AUCp,p AUCp,) AUCF, AUCtp AUCss AUCTpBs AUCopp AUCsnpr
Buis 0.9950 0.2832 0.0253 1.2782 0.9697 0.2579 1.2529 11.1850
B 0.9963 0.4332 0.0366 1.4294 0.9596 0.3965 1.3928 11.8210
Bswir 0.9996 0.3795 0.0171 1.3791 0.9825 0.3625 1.3620 22.2034
Byis UByr 0.9979 0.5259 0.0392 1.5238 0.9587 0.4867 1.4846 13.4113
Byis UBgwir 0.9996 0.4486 0.0214 1.4483 0.9782 0.4272 1.4269 20.9418
Byir UBswir 0.9997 0.4486 0.0239 1.4483 0.9758 0.4247 1.4244 18.7667
Byis UBNr UBswir 0.9997 0.4886 0.0257 1.4884 0.9740 0.4629 1.4627 19.0190
TABLE XI
BAND SUBSETS SELECTED FOR PBSF-UBS FOR AVIRIS DATA IN FIG. 20
Receiving stations Bsubsets

1 1 15 29 44 58 73 87 102 116 131 145 160 174

2 2 16 30 45 59 74 88 103 117 132 146 161 175

3 3 17 31 46 60 75 89 104 118 133 147 162 176

4 4 18 32 47 61 76 90 105 119 134 148 163 177

5 5 19 33 48 62 77 91 106 120 135 149 164 178

6 6 20 34 49 63 78 92 107 121 136 150 165 179

7 7 21 35 50 64 79 93 108 122 137 151 166 180

8 8 22 36 51 65 80 94 109 123 138 152 167 181

9 9 23 37 52 66 81 95 110 124 139 153 168 182

10 10 24 38 53 67 82 96 111 125 140 154 169 183

11 11 25 39 54 68 83 97 112 126 141 155 170 184

12 12 26 40 55 69 84 98 113 127 142 156 171 185

13 13 27 41 56 70 85 99 114 128 143 157 172 186

14 14 28 42 57 71 86 100 115 129 144 158 173 187

15 43 72 101 130 159 188

TABLE XII

VARIOUS AUC VALUES CALCULATED FROM THE THREE 2-D ROC CURVES OF DETECTION RESULTS IN FIG. 26 USING DIFFERENT BAND SUBSETS

Band subsets AUCp,p AUCp,r AUCF,qr AUCrtp AUCss AUCTpBs AUCopp AUCsnpr
1U15 0.9997 0.4486 0.0156 1.4484 0.9841 0.4330 1.4328 28.7477
(1U15U2 0.9997 0.4968 0.0215 1.4965 0.9781 0.4753 1.4749 23.0692
(1U15)U2)U14 0.9997 0.5114 0.0236 1.5110 0.9761 0.4878 1.4874 21.6836
(1U15U...U14)U3 0.9998 0.4823 0.0214 1.4820 0.9783 0.4609 1.4606 22.5203
(1U15)U...U3)U13 0.9996 0.4959 0.0239 1.4955 0.9757 0.4720 1.4716 20.7598
(1U15U...U13)U4 0.9996 0.4777 0.0212 1.4774 0.9784 0.4565 1.4561 22.4961
(1U15)U...U4UI12 0.9997 0.4814 0.0237 1.4811 0.9761 0.4577 1.4574 20.3425
(1U15)U...U12)U5 0.9997 0.4614 0.0225 1.4611 0.9772 0.4389 1.4386 20.5078
(1U15)U...U5)UI1 0.9997 0.4768 0.0235 1.4765 0.9761 0.4533 1.4530 20.2522
(1U15U...U11)U6 0.9998 0.4768 0.0240 1.4766 0.9757 0.4528 1.4525 19.8269
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Fig. 23. 3-D ROC curves along with their generated three 2-D ROC curves of R-AD detected anomaly maps of Byis, BNir, Bswir, Bvis UBNR, Byis UBswir,
Bnir U Bswir, and (Byis U BNir) U Bswir-

13 receiving stations, each of which will receive 14 or
15 bands simultaneously. When ngs = 13, [188/13] = 15,
and the last one band subset has only six bands. In this case,

there are 15 receiving stations that are collected synchronously
beginning with different initial conditions. Except for the last
15th station receiving six bands, all other 14 receiving stations
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Fig. 24. R-AD detected anomaly maps of different BF subsets.
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Fig. 25. Binary maps of different BF subsets by Otsu’s method.
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Fig. 26.

will receive 13 bands. Since [15/2] = 8, the fusion will
be terminated at the eight-band subset, Bsubset8. Table XI
tabulates the bands in each of 13-band subsets according
to different bands used to initialize UBS except the last
receiving station that receives only six bands. Fig. 24 shows
the anomaly abundance detection maps of PBSF implemented
by R-AD along with their Otsu’s thresholded binary maps
shown in Fig. 25.

As shown in Figs. 24 and 25, fusing only two-band
subsets Bsubsets (1U15) already provided very good AD
results where most anomalies were detected, and the back-
ground was sufficiently suppressed. Fusing subsequent band
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3-D ROC curves along with their generated three 2-D ROC curves of R-AD detected anomaly maps in Fig. 24 by fusing different subsets.

subsets did not have much impact on their detection
results.

To further conduct quantitative analysis, Fig. 26 shows the
3-D ROC curves generated from Fig. 24 along with their three
corresponding 2-D ROC curves. Table XII tabulates various
AUC values where the best results are boldfaced. Apparently,
the best overall performance was produced by ((1U15)U2)U14.
However, if we only look at AUC values of (D,F), all values
are either 0.9997 or 0.9998 with an error range within 1074,
This shows why using AUCp, r) alone could not work. As for
the best BS, it would be 1U15, while ((1U15)U2)U14 yielded
the best TD.
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TABLE XIIT
COMPUTING TIMES REQUIRED BY PBSF-MBS AND NO-PBSF

computing time (ms)
Band subsets HYDICE data AVIRIS data
no-PBSF [PBSF-MBS| no-PBSF | PBSF-MBS
Buis 49.05 36.01 253.63 211.89
B 4339 35.78 293.74 211.78
Bswi 49.90 36.38 319.79 213.20
Byis UBnir 57.86 37.67 325.59 215.65
Byis UBswir 61.95 3742 370.25 220.01
Byir UBgwir 60.37 37.11 413.86 22130
Byis UByir UBswr | 80.52 3891 460.80 222.81
TABLE XIV

COMPUTING TIMES REQUIRED BY PBSF-UBS AND
No-PBSF FOR HYDICE DATA

Number of band Computational time (ms)
subsets no-PBSF PBSF-UBS
1 40.03 35.15
2 41.36 35.81
3 41.07 3551
4 42.37 35.57
5 42.44 35.66
6 48.21 35.82
7 49.88 35.90
8 49.90 36.38
9 52.99 36.34
10 54.12 36.65
11 59.15 36.67
12 58.03 37.32
13 62.09 37.72
14 64.79 37.97
15 68.08 38.03
16 68.48 38.08
17 74.12 38.45
18 80.52 3891

TABLE XV

COMPUTING TIMES REQUIRED BY PBSF-UBS AND
NO-PBSF FOR AVIRIS DATA

Computing time (ms)
Number of band No-PBSF PBSF-UBS
subsets
1 239.98 209.35
2 250.29 212.20
3 260.32 210.63
4 280.80 213.91
5 297.83 214.16
6 310.01 213.18
7 327.18 213.63
8 331.63 214.97
9 349.58 219.04
10 369.56 214.25
11 385.64 217.32
12 413.86 221.30
13 426.85 220.61
14 460.80 22281

IX. COMPUTATIONAL COMPLEXITY

This section presents a computing time analysis of R-AD

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

were run on a computer with Intel Core i17-6700 and
8-GB memory, the OS is Windows 10, and the platform is
MATLAB R2018a.

Table XIII shows a comparative analysis of the computing
time required by R-AD with PBSF and with no-PBSF for two
hyperspectral images where the computing time required by
R-AD using PBSF was less than that required by R-AD with
no-PBSF when R-AD processed the same band set, and its
computing time was not affected by the number of bands in
the band set. On the contrary, the computing time required by
R-AD with no-PBSF was susceptible to the number of bands
to be processed and increased as the number of bands in a
band subset was increased.

Tables XIV and XV also tabulate the computing times
required by R-AD with PBSF-UBS and with no-PBSF for the
HYDICE data and AVIRIS data, respectively.

As we can see from Tables XIV and XV, when the number
of band subsets was increased, the computing time required by
R-AD with no-PBSF was increased proportionally. However,
since PBSF realizes RT capability via fusion taking place in
R-AD, its computing time was not affected by the number of
band subsets and remained unchanged.

X. CONCLUSION

This article presents a new innovational concept of PBSF for
AD from a data communication and transmission perspective.
Two specific applications are developed for PBSE. One is
PBSF-MBS that fuses MBSs progressively in RT. The other
is PBSF-UBS that fuses bands uniformly selected by different
initial bands. A key concept of PBSF is its fusion actually
taking place in an AD but not AD maps. As a consequence,
PBSF can be implemented in RT progressively during data
acquisition. This is quite different from BS that is considered a
postprocessing technique with full data needed to be acquired
in advance. It is also different from data fusion that fuses
data and sensor fusion that fuses different types of sensors.
Several significant results of this article can be summarized as
follows.

1) PBSF can work exactly the same as SBF when it fuses
one single band with a band subset.

2) The progressive fusion of MBS is completely new and
has never been explored in the past.

3) Progressive fusion of band subsets by UBS using differ-
ent initial bands is also new.

4) The fusion equations derived from (4) to (7) are applica-
ble to any operator, which utilizes the sample covari-
ance/correlation matrix to take care of spectral correla-
tion. An immediate application is target detection, such
as CEM.

5) It has potential advantages for future developments of
hyperspectral data communication, specifically, satellite
or UAV data communication and transmission.

APPENDIX

(A1), as shown at the top of the next page, where
—1
vB,,B,.B, = Rg Xp Xp, and fg 8,8, =

s, m

with/without PBSF-MBS and PBSF-UBS. All experiments (%g,,[Pgi Ixs,,) 7"

s, m
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