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Anomaly detection generally requires real-time processing to find
targets on a timely basis. However, for an algorithm to be
implemented in real time, the used data samples can be only those up
to the data sample being visited; no future data samples should be
involved in the data processing. Such a property is generally called
causality, which has unfortunately received little interest thus far in
real-time hyperspectral data processing. This paper develops causal
processing to perform anomaly detection that can be also
implemented in real time. The ability of real-time causal processing
is derived from the concept of innovations used to derive a Kalman
filter via a recursive causal update equation. Specifically, two
commonly used anomaly detectors, sample covariance matrix
(K)–based Reed-Xiaoli detector (RXD), called K-RXD, and sample
correlation matrix (R)–based RXD, called R-RXD, are derived for
their real-time causal processing versions. To substantiate their
utility in applications of anomaly detection, real image data sets are
conducted for experiments.

I. INTRODUCTION

Because of availability of very high spectral
resolution, a hyperspectral imaging sensor is now capable
of uncovering many subtle signal sources that cannot be
known by prior knowledge or be visually inspected by
image analysts [1]. Many such signal sources generally
appear as anomalies in the data. As a result, anomaly
detection has received considerable interest in
hyperspectral imaging in recent years [1–15]. While a
cut-and-dried definition of anomaly may not be possible
[9], a consensus is that an anomaly should be a target
whose presence cannot be known before data processing
but that can be characterized by several unique features:
(1) unexpected presence, (2) low probability of
occurrence, (3) relatively small sample population, and (4)
most importantly, a signature spectrally distinct from
spectral signatures of its surrounding data samples.
Targets with these properties include endmembers defined
as pure signatures to specify spectral classes, special
species in agriculture and ecology, rare mineral in
geology, toxic wastes in environmental monitoring, oil
spills in water pollution, drug and smuggler trafficking in
law enforcement, man-made objects in battlefields,
unusual terrorism activities in intelligence gathering, and
tumors in medical imaging. To effectively detect such
targets, an algorithm developed by Reed and Yu [2], called
the Reed-Xiaoli detector (RXD), has been widely used for
this purpose. Since then, many RXD-like anomaly
detectors have been proposed [1, 3, 9–13]. Of particular
interest are anomaly detectors that modify RXD by
replacing the global sample covariance matrix K with the
global sample correlation matrix R. The resulting RXD
using matrix R is called R-RXD, while the RXD using
matrix K is denoted as K-RXD for distinction. R-RXD
was further used as a base to develop a causal version of
R-RXD (CR-RXD) in [1, 9, 12], which implements
R-RXD using a so-called causal sample correlation matrix
R(n) formed by only data sample vectors {ri}n−1

i=1 up to the
data sample vector rn being processed and rn. This
CR-RXD is then used to derive a causal version of
K-RXD (CK-RXD). One of most important applications
for anomaly detection is detection of moving unknown
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targets in real time to locate these targets before they
disappear, or are compromised by background, or are
dominated by other signal sources. Both CR-RXD and
CK-RXD pave a way for real-time causal versions of
anomaly detectors to be designed later in this paper.

Although many real-time processing algorithms have
been proposed for target detection and classification in the
literature [16–20], none of reports in [17–20] are
technically true real-time processing algorithms; rather,
they are fast computational algorithms. Theoretically, a
true real-time processing algorithm must produce its
output at the same time as an input comes in. In reality,
this is impossible, because there is always a time delay
caused by data processing. With this interpretation, all
claimed real-time processing algorithms can be only called
near real time with an assumption that the data processing
time is negligible, such as constrained linear discriminant
analysis developed in [17–19] or parallel processing
algorithms, such as anomaly detection using a multivariate
normal mixture model and a graphics processing unit [20].
Nevertheless, from a practical point of view, such a time
delay is determined by a specific application. For example,
in surveillance and reconnaissance applications, finding
moving targets such as missiles is imminent and the
responding time must be instantaneous. In this case, little
time delay should be allowed. As another example, for
applications in fire damage management and assessment,
the time to respond can be minutes or hours, in which case
the allowable time delay can be longer. So, as long as an
algorithm can meet a required time constraint, it can be
considered a real-time processing algorithm.

In anomaly detection, real-time causal processing is
particularly crucial. First, it saves tremendous cost and
payload in data storage and archiving in data
communication, specifically in satellite communication.
Second, it meets the constraint of available limited
bandwidth. Third, it achieves data compression while the
data are being processed. Fourth, it can detect anomalies,
such as moving targets, which may not stay long enough
and have duration of their presence that is very short. In
many cases, they may show up suddenly and instantly and
then vanish quickly afterward. Finally, and most
importantly, real-time processing allows users to see
progressive background suppression, which cannot be
accomplished by traditional one-shot operation anomaly
detectors. This is crucial in anomaly detection because no
prior knowledge is available for anomaly detection and
progressive background suppression provides an
opportunity for seeing how anomalies are detected in real
time as the detection process moves along. It is also
particularly critical when weak anomalies are detected and
may be overwhelmed by subsequently detected strong
anomalies. Therefore, for an algorithm to be able to detect
these targets on a timely basis, the process must be in real
time. In the meantime, the data that can be used for
real-time data processing should be only those that already
have been visited and processed. Accordingly, an anomaly
detection process should be carried out causally. However,

because of the nature of anomaly detection, an anomaly
generally has distinct spectral properties from those in its
surrounding neighborhood. To capture such distinct
spectral characteristics, an anomaly detector generally
requires intersample statistics, such as sample correlation,
and covariance statistics, such as using a sliding window
centered on the data sample being processed. This
requirement makes anomaly detection inapplicable to
causal processing because it must calculate sample
covariance or correlation statistics from the entire set of
data sample vectors or the samples within a used window,
which cannot be calculated causally. For example, K-RXD
uses the global sample covariance matrix K, which needs
to be calculated from the global sample mean of all data
sample vectors. This cannot be done without full access to
the entire data set, and it must be done before anomaly
detection. Therefore, from an algorithmic implementation
point of view, K-RXD is neither a causal processing
algorithm nor a real-time processing algorithm. To resolve
this issue, CR-RXD, proposed in [9, 12], suggested the
use of the sample correlation matrix R to replace the
sample covariance matrix in K-RXD so that CR-RXD can
be implemented via a QR decomposition in real time [16].
However, neither this approach nor [17–20] addressed the
issue of causality in real-time implementation.
Interestingly, on one end, a causal processing does not
have to be real time. On the other end, real-time
processing must be causal. Unfortunately, this causal issue
has never been addressed in the many reported real-time
processing algorithms. This paper takes a different
approach to design and development of “causal
processing” for real-time implementation via the concept
of innovation information discussed in [21, footnote
pp. 78], which is defined as the new information of the
current input sample that cannot be predicted from the
past. It was originally proposed by Kailath [22] to develop
a Kalman filter and has been shown to be a promising and
effective means of updating data in a causal and real time
manner. Two commonly used anomaly detectors, K-RXD
and CR-RXD, are selected for investigation, because many
existing anomaly detectors are variants of one of them.

The idea of the proposed causal processing arises in
updating needed information only through the data sample
vector being processed and the information generated by
processing previous data sample vectors. Although it is
similar to Kalman filtering, there are several notable
differences between these two. First, because anomaly
detection is performed on a single data sample basis, there
is no counterpart of a state equation used by a Kalman
filter corresponding to anomaly detection. Second, the
measurement equation used by an anomaly detector is
quite different from that used by a Kalman filter, where a
noise term involved in a Kalman filter is not present in an
anomaly detector. Third, an anomaly detector usually
requires inversion of a sample correlation and covariance
matrix. To implement anomaly detection in real time, the
matrix inversion must be updated sample by sample. Such
an update is not found in the measurement equation in a
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Kalman filter, which is updated from the state equation.
So, direct application of real-time Kalman filtering to
anomaly detection is not feasible because of the lack of a
state equation that can be derived for an anomaly detector.
To resolve this issue, an alternative approach is to use
Woodbury’s identity [23] to derive causal innovation
information update equations for CK-RXD and CR-RXD
in the same way used to derive a Kalman filter. With this
approach, only the data sample vector being processed and
the processed information obtained by previous data
sample vectors can be used to generate the innovation
information and then update data processing sample by
sample.

II. ANOMALY DETECTION

One of most widely used anomaly detectors is
K-RXD, the algorithm developed by Reed and Yu in [2].
K-RXD uses the global sample covariance matrix K to
account for spectral statistics among data sample vectors.
Since its development, many various K-RXD–like
anomaly detectors have been proposed. Among them,
CR-RXD, developed in [9], is of particular interest. In
what follows, we describe these two anomaly detectors.
Assume that {ri}Ni=1, where N is the total number of entire
data sample vectors in the data and ri = (ri1,ri2, · · · , riL)T

is the ith data sample vector, where L is the total number
of spectral bands.

A. K-RXD

K-RXD, denoted by δK-RXD(r), is specified by

δK-RXD (r) = (r − μ)T K−1 (r − μ) (1)

where μ is the sample mean and K is the sample data
covariance matrix. The form of δK-RXD(r) in (1) is the
well-known Mahalanobis distance. However, from a
detection point of view, the use of K−1 can be interpreted
as a whitening process to suppress image background.

B. CR-RXD

Let {ri}Ni=1 be a set of data sample vectors to be
processed. CR-RXD, denoted by δCR-RXD(r), is specified
by

δCR-RXD (rn) = rT
n R(n)−1rn (2)

where rn is the nth data sample vector being processed
and R(n) is the sample data autocorrelation matrix formed
by R(n) = (1/n)

∑n
i=1 rirT

i . Here, ri = (ri1,ri2, · · · , riL)T

is the ith data sample vector, where L is the total number
of spectral bands. Because of (2), CK-RXD in (1) can be
reexpressed as

δCK-RXD (rn) = (rn − μ(n))T K(n)−1 (rn − μ(n)) (3)

where μ(n) = (1/n)
∑n

i=1 ri is the causal sample mean
averaged over all data sample vectors {ri}ni=1 and
K(n) = (1/n)

∑n
i=1 (ri − μ(n)) (ri − μ(n))T is the causal

covariance matrix formed by the data sample vectors
{ri}ni=1. In light of (3), K-RXD can be considered a special
case of CK-RXD, but the two detectors are identical only
when both detectors reach the last data sample vector rN .
That is, K-RXD in (1) can be reexpressed as
δK-RXD (rn) = (rn − μ(N))T K(N)−1 (rn − μ(N)), where
μ(N) = (1/N )

∑N
i=1 ri is the global sample mean

averaged over all data sample vectors {ri}Ni=1 and
K(N) = (1/N )

∑N
i=1 (ri − μ(N)) (ri − μ(N))T is the

global covariance matrix formed by all data sample
vectors {ri}Ni=1.

If the rT
n in (2) is replaced by

(
d/dT R−1(n)d

)T
, where

the d is the desired signature to be detected, (2) becomes a
causal version of a well-known subpixel detector, called
constrained energy minimization (CEM) in [1, 24].

III. CAUSAL PROCESSING OF ANOMALY DETECTION

Once CR-RXD and CK-RXD are specified by (2) and
(3), a follow-up task is to implement these causal anomaly
detectors sample by sample so as to achieve real-time
processing. The following Woodbury’s matrix identity [23]

[
A + uvT

]−1 = A−1 −
[
A−1u

] [
vT A−1

]
1 + vT A−1u

(4)

is helpful.

A. Real-Time CR-RXD

Because the causal sample autocorrelation matrix is
defined by R(n) = (1/n)

∑n
i=1 rirT

i , R−1(n) can be
reexpressed as R−1(n) = [((n − 1)/n) R(n − 1)
+ (1/n) rnrT

n ]−1. Because of (4), we can derive a real-time
causal version of R-RXD (RT-CR-RXD), δRT-CR-RXD(rn),
as follows: The innovation information can be obtained by
a causal innovation information update equation by
dictating the difference between the pixel rn being
processed and the processed information obtained by
previous n − 1 data sample vectors {ri}n−1

i=1 , which is
R−1(n − 1). This is the information contained in rn but
that cannot be obtained and predicted from previously
visited data sample vectors {ri}n−1

i=1 . Now we rewrite

R−1(n) = [
((n − 1)/n) R(n − 1) + (1/n) rnrT

n

]−1
and use

(4) by letting A = ((n − 1)/n) R(n − 1) and
u = v = (

1/
√

n
)

rn. Then, R−1(n) can be expressed as

R−1(n) = [(1 − 1/n) R(n − 1)]−1 −
{
[(1 − 1/n) R(n − 1)]−1

(
1/

√
n
)

rn

} {(
1/

√
n
)

rT
n [(1 − 1/n) R(n − 1)]−1

}
1 + (

1/
√

n
)

rT
n [(1 − 1/n) R(n − 1)]−1

(
1/

√
n
)

rn

(5)
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Using (2) in conjunction with (5), δRT-CR-RXD(rn) can be
derived as follows, where the first term is the result of
combining the information R−1(n − 1) obtained by
previous data samples {ri}n−1

i=1 and current data sample rn

and the second term is new information, considered
innovation information, obtained by correlating
R−1(n − 1) and rn, which cannot be predicted from
R−1(n − 1) or from rn alone:

δRT-CR-RXD (rn) = rT
n R−1(n)rn

= rT
n [(1 − 1/n) R(n − 1)]−1 rn − rT

n

{
[(1 − 1/n) R(n − 1)]−1

(
1/

√
n
)

rn

} {(
1/

√
n
)

rT
n [((1 − 1/n) R(n − 1)]−1

}
1 + (

1/
√

n
)

rT
n [(1 − 1/n) R(n − 1)]−1

(
1/

√
n
)

rn

rn

= (1 − 1/n)−1 rT
n [R(n − 1)]−1 rn −

(
(1 − 1/n)

√
n
)−2

rT
n

{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1

}
rn

1 + ((1 − 1/n)n)−1 rT
n [R(n − 1)]−1 rn

(6)

If we further let A = ((n − 1)/n) R(n − 1) ≡ R̃(n) and
u = v = (

1/
√

n
)

rn ≡ r̃n in (4), where R̃−1(n − 1)
= ((1 − 1/n) R(n − 1))−1 and r̃n = (

1/
√

n
)

rn, Fig. 1
depicts a flow chart of implementing (5), where
R̃−1(n − 1) = (1 − 1/n)−1 R−1(n − 1), r̃n = (

1/
√

n
)

rn,
and D is one time unit delay. In particular, it shows that
how R̃(n) can be updated recursively by previously
calculated R̃(n − 1) and the data sample vector r̃n being
processed via (5).

According to (6), there are three types of information
involved with calculation. One type is new information
provided by new incoming data sample vector rn. Another
type is processed information generated by processing all
previous data sample vectors to obtain R−1(n − 1). A third
type of information is called innovation information and is

obtained by the correlation information between the pixel
rn being processed and the processed information
R−1(n − 1), which is a part of the information of rn but
cannot be predicted from previous data samples {ri}n−1

i=1 .
This information is then used to generate required
information: rT

n [R(n − 1)]−1 rn and [R(n − 1)]−1 rn or
rT
n [R(n − 1)]−1. The innovation information is vital,

because it is the only piece of information that correlates

new and processed information and can be used to
calculate (6). Thus, (6) is called the causal innovation
information update equation. Also, in light of (6), we only
need to calculate the innovation information of
rT
n [R(n − 1)]−1 rn and [R(n − 1)]−1 rn to update R−1(n)

recursively—without reprocessing previously visited data
sample vectors {ri}n−1

i=1 . As a result, one immediate benefit
resulting from (6) is that data sample vectors can be

processed in real time. This recursive equation is similar to
two recursive equations implemented by a Kalman filter
[22].

B. Real-Time CK-RXD

Unlike CR-RXD, which uses the sample
autocorrelation matrix without calculating the sample
mean, finding a real-time causal version of K-RXD
(RT-CK-RXD) is not trivial. It requires the causal sample
mean before calculating the causal sample covariance
matrix. From the derivations given in the appendix for
causal processing of K-RXD, RT-CK-RXD derived in (15)
implements a causal innovation information update
equation similar to (6) for RT-CR-RXD. It can be carried
out sample by sample as follows:

rn − μ(n) = rn − ((n − 1)/n) (1/(n − 1))
∑n−1

i=1
ri − (1/n) rn = rn − (1 − 1/n) μ(n − 1) − (1/n) rn (7)

δRT−CK−RXD(rn) = (rn − μ(n))T K−1(n) (rn − μ(n))

= (1 − 1/n)−1 (rn − μ(n))T [K(n − 1)]−1 (rn − μ(n))T

− (1−1/n)−2
(√

n−1/n
)2

(rn−μ(n))T
[{K(n−1)}−1 (rn−μ(n−1))

] [
(rn−μ(n−1)T {K(n−1)}−1

]
(rn−μ(n))

1 + (1−1/n)−1
(√

n−1/n
)2 [

(rn−μ(n−1)T {K(n−1)}−1 (rn−μ(n−1)
] (8)

From (7) and (8), the K−1(n) used in RT-CK-RXD,
δRT-CR-RXD(rn), can be easily updated by
K−1(n − 1), μ(n − 1), as well as by the current input data
sample vector rn, with no inverse required to calculate
once the initial calculation of K−1(1) is done. In addition,
there are no similar derivations to (7) and (8) derived in
[19], because all classifiers in [19] used the sample
correlation matrix R, not the sample covariance matrix K.
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Fig. 1. Flow chart of implementing recursive equation specified by (6) to find R−1(n).

Even though Woodbury’s identity is not new and has
been widely used in the literature, the use of this identity
to drive a Kalman-like recursive equation is new.
According to [25, pp. 25–26], there are three ways to
acquire remotely sensed images: band sequential (BSQ),
band interleaved by line, and band interleaved by sample
(BIS), also called band interleaved by pixel (BIP). In this
paper, the use of Woodbury’s identity is suitable for
hyperspectral imagery acquired by the BIS (BIP) format.
Recently, another identity in [26, (12.25)] was used to
derive real-time progressive band processing of anomaly
detection for hyperspectral imagery that was acquired by
the BSQ format in [25].

IV. COMPUTATIONAL COMPLEXITY

This section provides a detailed analysis on the
computational complexity of calculating (6) or (8).
Because the computational complexity of (8) is the same
as that of (6), only (6) is discussed.

First, to avoid a singularity problem, the initial
condition of calculating R−1(n) in (6) should collect a
sufficient number of data sample vectors to ensure the
sample correlation and covariance matrix is of full rank. In
this case, the causal processing must begin with the Lth
data sample vector rL, where L is the total number of
spectral bands. Also, according to (6), the R−1(n) in
RT-CR-RXD, δRT-CR-RXD(rn), can be easily updated by the
previously processed information R−1(n − 1) and the
innovation information provided by rn, without
calculating the matrix inverse, once R−1(L) is initially
calculated. In other words, we only need to calculate a
matrix inverse once, which is R−1(L). However, in causal
processing, R−1(n) must be recalculated to include each
incoming data sample vector rn.

In causal processing, there are three major operations
involved for each data sample vector. One is to calculate
the outer product (OP) of the incoming data sample vector
rn, which is rnrT

n , to update R−1(n − 1) to R−1(n), which
requires L2 multiplications. Another is to calculate the
inverse of R−1(n) with size L by L. The third operation is
to calculate rT

n [R(n)]−1 rn which requires (L + 1) inner
products (IPs), each of which requires L multiplications.
As a result, the computational complexity of finding

R−1(n) is the same as that required for R−1(L) and is
constant for all n.

However, real-time causal processing using (6)
requires three operations of calculating xT Ay (i.e., two
calculations of rT

n [R(n − 1)]−1 rn and one calculation
of rT

n

{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1

}
rn), each of

which requires L + 1 IPs, which result in L(L+1)
multiplications, and one OP

{
[R(n−1)]−1rn

}{
[R(n−1)]−1rn

}T
, which requires L2 multiplications.

More specifically, at the nth data sample vector rn with
n ≥ L + 1, the calculation of R−1(n) requires calculations
of L-dimensional IPs, i.e., [R(n − 1)]−1 rn and
rT
n [R(n − 1)]−1 rn, which result in L2 multiplications, and

one OP O(n−1) = {
[R(n−1)]−1rn

}{
[R(n−1)]−1rn

}T
,

which carries out L2 multiplications, plus another
L-dimensional IPs to calculate rT

n O(n − 1)rn, which
amounts to L multiplications. As a result, a total number
of two L-dimensional scalar IPs and one matrix OP are
required and give rise to L2 + L multiplications, which is
the same as the one derived in [19]. But the entire
complexity to carry out a real-time causal anomaly
detector in (6) is actually 3(L2 + L) + L2 multiplications
plus the complexity of calculating the initial condition
R−1(L)/K−1(L).

According to the preceding analysis, the computational
complexity of causal and real-time anomaly detectors is
determined by the computer processing time (CPT)
required by calculating three elements: an inverse of an
L × L matrix, an IP of two L-dimensional vectors, and an
OP of two L-dimensional vectors. Most importantly, in
both causal processing and real causal processing, the
computational complexity is independent of the data
sample vectors to be processed and is linearly increased
with the number of data sample vectors. A detailed study
on computational complexity is provided in Table I, which
tabulates the computational complexity of CR-RXD and
CK-RXD and of RT-CR-RXD and RT-CK-RXD in terms
of required number of multiplications × used for the
calculation, where the constant c is included to account for
multiplications used to balance the normalization
constants n and n − 1 in calculating R(n)/K(n). For
example, for CR-RXD and CK-RXD, c = 2 to account for
two multiplications used to scale (1/n)rnrT

n and balance
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TABLE I
Comparative Analysis on Computational Complexity Between CR-RXD and CK-RXD and Between RT-CR-RXD and RT-CK-RXD

CR-RXD/CK-RXD RT-CR-RXD/RT-CK-RXD

Initial condition N/A R−1(L)/K−1(L)
Input rn R−1(n)/K−1(n) for each input sample rn N/A
No. IPs/sample L + 1 3(L + 1)

No. OPs/sample L (one for (rn(rn)T ) L (one for (
{
[R(n − 1)]−1 rn

} {
r [R(n − 1)]−1 rn

}T
)

No. ×/sample [(L + 1)L + L2 = 2L2 + L + c]/2 [3(L + 1)L + L2 = 4L2 + 3L + c]/2
No. ×/data set (N − L)(2L2 + L + c)/2 (N − L)(4L2 + 3L + c)/2
Complexity O(N ) O(N )

N/A = not applicable.

[(n − 1)/n]R−1(n)/K−1(n). In addition, in the second
column under a causal anomaly detector, an additional
number of L2 multiplications is required to calculate rnrT

n

and thus update the sample correlation and covariance
matrix R(n)/K(n) plus the processing time of inverting
R(n)/K(n) of a L × L matrix size as n varies. Neither is
needed if a real-time causal anomaly detector is used via
(6) or (8). Finally, the number of multiplications in Table I
can be reduced roughly by half because of the symmetry
of the matrices.

As noted in Table I, a real-time causal anomaly
detector using the causal innovation information update
equation specified by (6) or (8) only requires
L-dimensional scalar IPs and OPs plus the calculation of
the initial condition of matrix inverse R−1(L).

A similar form to (6) was independently derived for
the BIP format in [19]. Several significant differences
need to be mentioned. First, Woodbury’s identity in (4) to
calculate R−1(n) is different from that used in [19].
Second, (6) is specifically derived from a particular
anomaly detector, while the one in [19] was derived for
the sample correlation matrix R only as part of the
operation of implementing classifiers considered in
[19].The same derivation of (6) can be applied to their
classifiers. Third, there is a lack of computational
complexity analysis in [19]. In addition, the computations
in our analysis are based on the number of IPs of two
vectors and matrix OPs of a single vector instead of
multiplications, where each L-dimensional IP performs
L2 multiplications and each matrix output of an
L-dimensional vector also requires L2 multiplications.

V. SYNTHETIC IMAGE EXPERIMENTS

The goal of using synthetic images for experiments is
to conduct a detailed comparative analysis between causal
processing with or without real-time processing on
detection performance and the CPT, where the ground
truth can provide accurate assessment. These synthetic
images were previously designed in [27] and have been
widely used in many research efforts, such as [28, 29].
The image data used to design synthetic images is a real
Cuprite image scene shown in Fig. 2(a), which is available
at the U.S. Geological Survey website [30]. It is a
224-band image with a size of 350 × 350 pixels and was

Fig. 2. (a) Cuprite AVIRIS image scene and (b) spatial positions of five
pure pixels corresponding to minerals A, B, C, K, and M.

Fig. 3. Set of 25 panels simulated by A, B, C, K, and M.

collected over the Cuprite mining site, Nevada, in 1997. A
total of 189 bands were used for experiments, where bands
1–3, 105–115, and 150–170 were removed before the
analysis because of water absorption and a low
signal-to-noise ratio (SNR) in those bands. The ground
truth available for this region provides the pixel locations
of five minerals shown in Fig. 2(b): alunite (A),
buddingtonite (B), calcite (C), kaolinite (K), and
muscovite (M).

The synthetic image designed here is one of
the scenarios presented in [27–29], where the five mineral
spectral signatures—A, B, C, K, and M, marked by circles
in Fig. 2(b)—were used to simulate the 25 panels shown
in Fig. 3, with 5 panels in each row simulated by the same
mineral signature and 5 panels in each column having the
same size. The 25 panels consist of five 4 × 4 pure-pixel
panels for each row in the first column, five 2 × 2 pure-
pixel panels for each row in the second column, five 2 × 2
mixed-pixel panels for each row in the third column, and
five 1 × 1 subpixel panels for each row in both the fourth
column and the fifth column, where the mixed and subpanel
pixels were simulated according to the legends in Fig. 2.
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Fig. 4. Detection results for TI with detected abundance fractions in decibels: (a) fiftieth band of scenario TI, (b) K-RXD, (c) CK-RXD,
(d) RT-CK-RXD, (e) R-RXD, (f) CR-RXD, and (g) RT-CR-RXD.

Fig. 5. CK-RXD detection results for TI with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected, (c) row 2
panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 6. RT-CK-RXD detection results for TI with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

So, 100 pure pixels (80 in the first column and 20 in the
second column), called endmember pixels, were simulated
in the data by the five endmembers: A, B, C, K, and M.

These 25 panels were then inserted in a synthetic
image with a size of 200 × 200 pixels in a way that the
background pixels were removed to accommodate the
inserted target pixels. The background was simulated by
the sample mean of the real image scene in Fig. 3(a)
corrupted by a Gaussian noise to achieve the SNR of 20:1
defined in [31].

Once targets are simulated as explained earlier, an
additive Gaussian noise was added to achieve a certain
SNR. Once target pixels and background are simulated,
two types of target insertion, called target implantation
(TI) and target embeddedness (TE), can be designed to
simulate experiments for various applications. Two types
of six anomaly detectors—correlation matrix R–based
anomaly detectors, R-RXD, CR-RXD, and RT-CR-RXD,
and covariance matrix K–based anomaly detectors,
K-RXD, CK-RXD, and RT-CK-RXD—are evaluated for
detection performance and the CPT.

A. Target Implantation

The first type of target insertion is TI, which inserts the
preceding 130 panel pixels into the image by replacing
their corresponding background pixels. So, the resulting

synthetic image has clean panel pixels implanted in a
noisy background with an additive Gaussian noise of
SNR = 20:1 for this scenario, as shown in Fig. 4(a).
Figs. 4(b)–4(g) show results of traditional R-RXD and
K-RXD, along with CR-RXD and CK-RXD, as well as
with RT-CR-RXD and RT-CK-RXD, in terms of detected
abundance fractions, where the value of x is represented in
decibels (i.e., 20 log10 x) to enhance visual assessment. As
we can see, all versions of anomaly detectors performed
comparably except for different degrees of background
suppression resulting from the use of global and causal
correlation matrices.

Because CR-RXD and RT-CR-RXD use the same
updating autocorrelation matrix R(n), both produce the
same detection performance with only a difference in the
CPT resulting from whether the causal innovation
information update (5) is implemented. This is also true
for CK-RXD and RT-CK-RXD. Figs. 5–8 show detection
results of CK-RXD, RT-CK-RXD, CR-RXD, and
RT-CR-RXD, respectively.

B. Target Embeddedness

The second type of target insertion is TE, which is the
same as the TI described earlier except for the way the
panel pixels were inserted. The background pixels were
not removed to accommodate the inserted panel pixels, as
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Fig. 7. CR-RXD detection results for TI with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 8. RT-CR-RXD detection results for TI with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 9. Detection results for TE with detected abundance fractions in decibels: (a) fiftieth band of scenario TE, (b) K-RXD, (c) CK-RXD,
(d) RT-CK-RXD, (e) R-RXD, (f) CR-RXD, and (g) RT-CR-RXD.

Fig. 10. CK-RXD detection results for TE with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 11. RT-CK-RXD detection results for TE with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 12. CR-RXD detection results for TE with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.
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Fig. 13. RT-CR-RXD detection results for TE with detected abundance fractions in decibels: (a) no panels detected, (b) row 1 panels detected,
(c) row 2 panels detected, (d) row 3 panels detected, (e) row 4 panels detected, and (f) row 5 panels detected.

Fig. 14. CPT of CR-RXD, RT-CR-RXD, CK-RXD, and RT-CK-RXD
required for TI: (a) rnrT

n , (b) R−1(n), (c) rT
n [R(n − 1)]−1 rn, and

(d)
{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1}.

was done in TI; rather, they were superimposed with the
inserted panel pixels. In this case, the resulting synthetic
image, shown in Fig. 9(a), has clean panel pixels
embedded in a noisy background with the same additive
Gaussian noise as TI. The same experiments conducted
for TI in Section V.A were repeated for scenario TE.
Figs. 9(b)–9(g) show the detection results produced by
K-RXD and R-RXD, along with CR-RXD and CK-RXD
and with RT-CR-RXD and RT-CK-RXD, where their
performances are close but have various degrees of
background suppression because of the use of global and
causal correlation matrices. Figs. 10–13 show detection
results of CK-RXD, RT-CK-RXD, CR-RXD, and
RT-CR-RXD, respectively.

C. Computational Complexity

Although causal and real-time causal anomaly
detectors produce the same detection results, their
required CPTs are different. The computer environments

Fig. 15. CPT of CR-RXD, RT-CR-RXD, CK-RXD, and RT-CK-RXD
required for TE: (a) rnrT

n , (b) R−1(n), (c) rT
n [R(n − 1)]−1 rn, and

(d)
{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1}.

used for experiments were 64-bit operating systems
with Intel i5-2500, a central processing unit (CPU) of
3.3 GHz, and 8 GB of random access memory (RAM).
Figs. 14(a)–14(d) plot the CPT of calculating
R−1(n), rnrT

n , rT
n [R(n − 1)]−1 rn, and

{
[R(n−1)]−1rn

}{
rT
n [R(n − 1)]−1

}
required for per pixel vector by running

four anomaly detectors, CR-RXD, RT-CR-RXD, K-RXD,
and RT-CK-RXD, on scenario TI, and Figs. 15(a)–15(d)
plot the same results for scenario TE. In both cases, the
x-axis and y-axis represent the order of pixels being
processed, i.e., the nth pixel vector, with n varying from
189 to 4000, and the CPT required to process nth pixel
vector, respectively. Comparing Figs. 14(a), 14(c) and
15(a), 15(c) to Figs. 14(b), 14(d) and 15(b), 15(d),
respectively, the computational complexity requiring
computing a matrix inverse in 10−3 s is one order higher
than computing an IP in 10−4 s.

As shown in Figs. 14 and 15, the processing time of
running CR-RXD, CK-RXD, RT-CR-RXD, and
RT-CK-RXD on both the TI and the TE scenarios is nearly
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TABLE II
CPT for CR-RXD and CK-RXD and for RT-CR-RXD and RT-CK-RXD

CPT CR-RXD/CK-RXD RT-CR-RXD/RT-CK-RXD

Initial condition CPT(R(L)) = LCPT(OP(L)) CPT(R(L) = LCPT(OP(L)) + CPT(MI(L))(R−1(L)/K−1(L))

TI TE TI TE

0.01375 s 0.02111 s 0.0150 s 0.02882 s
CPT/pixel n > L CPT (rn(rn)T ) CPT(

{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1}) + 3CPT(xT Ay)

TI TE TI TE

0.0001075 0.00009723 0.0004898 s 0.0004650 s

CPT(R−1(n)/K−1(n))

TI TE

0.001222 s 0.001215 s

Total CPT
∑N

n=L CPT(OP(n)) + CPT(MI(n)) (N − L){[3(L + 1)CPT(IP(L))} + CPT(OP(L))]}

TI TE TI TE

54.0114 s 53.3096 s 20.8528 s 19.8661 s

constant for each pixel vector. So, if an anomaly detector
is run on the entire image data, the CPT must be calculated
by processing all image pixel vectors. In this case, the
CPT required for CR-RXD or CK-RXD is CPT(OP(L)) +∑40000

n=189 [CPT(MI(n)) + (n + 1)CPT(IP(L))], where
CPT(MI(n)) and CPT(IP(L)) are the CPTs required to
process finding matrix inverse R−1(n)/K−1(n) and IP of
two L-dimensional vectors, respectively, and CPT(OP(L))
is used to calculate the matrix OP rnrT

n of the new nth
L-dimensional input vector rn. However, the CPT required
for RT-CR-RXD or RT-CK-RXD is (40000 − 189)
{(L + 1)CPT(IP(L)) + CPT(OP(L)} plus the CPT of
processing the initial condition CPT(MI(L)), where
CPT(OP(L) is the CPT required to calculate the matrix OP
of two L-dimensional vectors. The results of various CPTs
in seconds required by running CR-RXD, CK-RXD,
RT-CR-RXD, and RT-CK-RXD on complete images of
scenarios TI and TE are tabulated in Table II.

One final comment on the performance in Figs. 4 and
9: If we plot the areas under their receiver operating
characteristic (ROC) curve [21], they are all nearly close
to 1. However, their detection maps are quite different in
terms of background suppression by visual inspection.
This is mainly because of the use of different sample
correlation and covariance matrices implemented by
various anomaly detectors. This phenomenon is
particularly visible in the hyperspectral digital imagery
collection experiments (HYDICEs) conducted in
Section VI.

VI. REAL IMAGE EXPERIMENTS

Two real hyperspectral image scenes were specifically
selected for experiments to conduct a performance
evaluation of anomaly detection.

Fig. 16. AVIRIS LCVF subscene.

A. Airborne Visible Infrared Imaging Spectrometer Data

An airborne visible infrared imaging spectrometer
(AVIRIS) image data set is used for the experiments
shown in Fig. 16, using the Lunar Crater Volcanic Field
(LCVF) located in Northern Nye County, Nevada.
Atmospheric water bands and low SNR bands have been
removed from the data, reducing the image cube from 224
to 158 bands. The image in Fig. 16 has a 10-nm spectral
resolution and a 20-m spatial resolution. There are five
target of interest: the radiance spectra of red oxidized
basaltic cinders, rhyolite, playa (dry lake), vegetation, and
shade. This scene is of particular interest because there is a
2-pixel-wide anomaly located at the left top edge of the
crater.

Fig. 17 shows the final detection maps in decibels
produced by six anomaly detectors: K-RXD, R-RXD,
CK-RXD, CR-RXD, RT-CK-RXD, and RT-CR-RXD. All
were able to detect the 2-pixel-wide anomaly. Figs. 18–21
show progressive real-time causal processing of CK-RXD,
CR-RXD, RT-CK-RXD, and RT-CR-RXD, respectively,
in six progressive stages; the detected abundance fraction
maps are displayed in decibels for better visual
assessment. Interestingly, as the detection process
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Fig. 17. Detection maps of LCVF with detected abundance fractions in decibels: (a) K-RXD, (b) CK-RXD, (c) RT-CK-RXD, (d) R-RXD,
(e) CR-RXD, and (f) RT-CR-RXD.

Fig. 18. CK-RXD detection results with detected abundance fractions in decibels: (a) vegetation, (b) cinders, (c) playa and anomaly detected,
(d) shade, (e) rhyolite, and (f).

Fig. 19. CR-RXD detection results with detected abundance fractions in decibels: (a) vegetation, (b) cinders, (c) playa and anomaly detected,
(d) shade, (e) rhyolite, and (f).

Fig. 20. RT-CK-RXD detection results with detected abundance fractions in decibels: (a) vegetation, (b) cinders, (c) playa and anomaly detected,
(d) shade, (e) rhyolite, and (f).

Fig. 21. RT-CR-RXD detection results with detected abundance fractions in decibels: (a) vegetation, (b) cinders, (c) playa and anomaly detected,
(d) shade, (e) rhyolite, and (f).

progresses, different levels of background suppression
could be also witnessed. This was particularly evident
when the background was significantly suppressed once
the process detected the anomaly. This was because the
detected abundance fraction of the anomaly was so strong
that the previously detected background information was

overwhelmed by the anomaly. This is a good example to
use in demonstrating the issue of background suppression
in anomaly detection, which is discussed further in
Section VI.C.

To further evaluate computational complexity, Fig. 22
plots the averaged CPT (10−4 s for Figs. 22(a), 22(c) and
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Fig. 22. CPT of CR-RXD, RT-CR-RXD, CK-RXD, and RT-CK-RXD
required for LCVF: (a) rnrT

n , (b) R−1(n), (c) rT
n [R(n − 1)]−1 rn, and

(d)
{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1}.

10−3 s for Figs. 22(b), 22(d)) of running CR-RXD,
RT-CR-RXD, CK-RXD, and RT-CK-RXD on LCVF five
times to compute various individual operations:
rnrT

n , R−1(n), rT
n [R(n − 1)]−1 rn, and{

[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1

}
. In Fig. 22, the

x-axis and y-axis represent the order of pixels being
processed, i.e., the nth pixel vector in the data and the CPT
required to process the nth pixel vector, respectively. The
figure clearly shows that the CPT resulting from using the
recursive update equations specified by (5) and (7) is
nearly constant for each image pixel vector. This implies
that the CPT increases linearly with the number of data
sample vectors processed. Similar to Figs. 14 and 15, it
also required one order higher to invert a matrix (in
10−3 s) than to compute IP (in 10−4 s).

B. HYDICE Data

The HYDICE image scene shown in Fig. 23(a) has
size of 200 × 74-pixel vectors, along with its ground truth
provided in Fig. 23(b), where the center and boundary
pixels of objects are highlighted by red and yellow,
respectively.

The upper part in Fig. 23(b) contains fabric panels
with sizes of 3, 2, and 1 m2 from the first column to the
third column. Because the spatial resolution of the data is
1.56 m2, the panels in the third column are considered
subpixel anomalies. The lower part in Fig. 23(c) contains
different vehicles with sizes of 4m × 8m (the first four
vehicles in the first column) and 6m × 3m (the bottom
vehicle in the first column) and three objects in the second
column (the first two have a size of 2 pixels and the
bottom one has a size of 3 pixels). In this particular scene,

Fig. 23. HYDICE panels + vehicles scene. (a) HYDICE scene with
ground truth map of spatial locations of 15 panels, five vehicles, and
three objects. (b) Scene that contains 15 panels, with detailed ground

truth map of spatial locations of 15 panels. (c) Vehicles + objects scene
with ground truth map of five vehicles and three objects.

there are three types of man-made targets with different
sizes: small targets (panels of 3, 2, and 1 m2), large targets
(vehicles of 4m × 8m and 6m × 3m), and three objects of
2 and 3 pixels to be used to validate and test anomaly
detection performance.

There are several advantages of using the HYDICE
image scene in Fig. 23(a). One is that the ground truth
provides precise spatial locations of all man-made target
pixels, which allows us to evaluate real-time processing
performance of anomaly detection pixel by pixel, a task
that has not been explored in the past. Second, the
provided ground truth enables us to perform ROC analysis
for anomaly detection via ROC curves of detection rate
versus false-alarm rate. Third, the scenes have various
sizes of objects that can be used to evaluate the ability of
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Fig. 24. CK-RXD with detected abundance fractions in decibels.

Fig. 25. CR-RXD with detected abundance fractions in decibels.

Fig. 26. RT-CK-RXD with detected abundance fractions in decibels.

Fig. 27. RT-CR-RXD with detected abundance fractions in decibels.

an anomaly detector in detecting anomalies with different
sizes, an issue that has not been addressed in many
reports. Fourth, this scene can be processed by operating
the same anomaly detector on the three image sizes shown
in Figs. 23(a)–23(c) (i.e., a 15-panel scene of
64 × 64-pixel vectors, marked by an upper rectangle; a
vehicles + objects scene of 100 × 64-pixel vectors,
marked by a lower rectangle; and the entire scene
containing 15 panels and vehicles + objects) to evaluate
the effectiveness of its performance. Finally, and most
importantly, the clean natural background and targets
make visual assessment easier, revealing various degrees
of background being suppressed by an anomaly detector.

1) Real-Time Causal Processing: To see how causal
and real-time causal anomaly detection perform, Figs.
24–27 show the real-time causal processing of CK-RXD,
CR-RXD, RT-CK-RXD, and RT-CR-RXD, respectively,
on Fig. 23(a). Their detected abundance fractions are in
decibels, and each pass shows a real-time detection map of
different targets.

Because Figs. 23(b) and 23(c) are part of the scene in
Fig. 23(a), the results of real-time processing of these two
subscenes are not included here. Nevertheless, their
detection results are discussed in detail in the following
two subsections. To avoid the singularity problem of
calculating the inverse of the sample correlation and
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covariance matrix used by anomaly detectors, an anomaly
detector does not begin to operate until it collects a
sufficient number of initial data sample vectors, which is
the total number of spectral bands of the image to be
processed. K-RXD and R-RXD are not included in the
experiments because they are neither causal nor real time.
By visually inspecting the results in Figs. 24–27, sample
CR-RXD and RT-CR-RXD seemed to perform slightly
better that than their counterparts CK-RXD and
RT-CK-RXD in terms of panel pixel detection.
Interestingly, the conclusion is reversed if detection of
vehicles is of major interest. This observation is confirmed
by the following ROC analysis. Because the CPT for this
scene is similar to Fig. 22, its plots are not included
here.

2) Detection Performance and Three-Dimensional
ROC Analysis: Using the ground truth provided by
Fig. 23, we can perform quantitative study via ROC
analysis. In doing so, an idea similar to that proposed in
[1, 29, 32] can be derived by converting real values to hard
decisions as follows.

Assume that δAD(r) is the detected abundance fraction
obtained by operating an anomaly detector on a data
sample vector r. We then define a normalized detected
abundance fraction δ̂AD

normalized(r) by

δ̂AD
normalized(r) = δ̂AD(r) − minr δ̂AD(r)

maxr δ̂AD(r) − minr δ̂AD(r)
. (9)

More specifically, δ̂AD
normalized(r) in (9) can be regarded as a

probability vector, which calculates the likelihood of the
data sample vector r being detected as an anomaly
according to its detected abundance fraction δAD(r).
Because of (9), we can develop an abundance percentage
anomaly converter (APAC) with a% as a threshold
criterion (a%APAC), χa%PAC(r), which is similar to one
proposed in [1, 29, 32], as follows:

χa%PAC(r) =
{

1; if δ̂AD
normalized(r) ≥ τ = a

100

0; otherwise
. (10)

If δ̂AD
normalized(r) in (10) exceeds τ = a%/100, then the r is

detected as an anomaly. So, a 1 produced by (10) indicates
that pixel r is detected as an anomaly; otherwise, it is
considered a background pixel.

In the context of (10), we consider the
Neyman-Pearson detection theory for a binary hypothesis
testing problem to perform signal detection [21], where
δ̂AD

normalized(r) in (9) can be used as a Neyman-Pearson
detector to perform the ROC analysis as a performance
evaluation tool. For example, for a particular threshold τ ,
a detection probability or power PD and a false-alarm
probability PF can be calculated. By varying the threshold
τ = a%/100 in (10), we can produce an ROC curve of PD

versus PF and further calculate the area under the ROC
curve for quantitative performance analysis. Interestingly,
the threshold τ is absent from the traditional ROC curve.
But according to (10), the values of PD and PF are
calculated through τ . To address this issue, a

three-dimensional (3D) ROC analysis was recently
developed in [29, 32], where 3D ROC curves can be
generated by considering PD, PF, and τ as three
parameters, each of which represents one dimension. In
other words, a 3D ROC curve is a 3D curve of (PD, PF, τ )
from which three two-dimensional (2D) ROC curves can
be also generated: the 2D ROC curve of (PD, PF), which is
the traditional ROC curve discussed in [21], and two new
2D ROC curves, the 2D ROC curve of (PD, τ ) and the 2D
ROC curve of (PF, τ ). Fig. 28 plots the 3D ROC curves,
along with their corresponding three 2D ROC curves
produced by the six anomaly detection algorithms
K-RXD, R-RXD, CK-RXD, CR-RXD, RT-CK-RXD, and
RT-CR-RXD, for three image scenes in Figs. 23(a)–23(c):
entire image scene, 15-panel scene, and vehicles +
objects scene.

To perform quantitative analysis, we further calculated
the area under the curve, denoted by Az, for each of 2D
ROC curves produced in Figs. 28(b)–28(d) by six anomaly
detection algorithms: K-RXD, R-RXD, CK-RXD,
CR-RXD, RT-CK-RXD, and RT-CR-RXD. Their results
are tabulated in Tables III–V, where the best results are
shaded. The results of two global anomaly detectors,
K-RXD and R-RXD, are included for comparison. For 2D
ROC curves of (PD, PF) and (PD, τ ), the higher the value
of Az, the better the detector. Conversely, for 2D ROC
curves of (PF, τ ), the lower the value of Az, the better the
detector.

Based on Tables III–V, the best performance of
anomaly detection varies with image size even if the
same targets are present in the three image scenes in
Figs. 23(a)–23(c). For example, the same 15 panels are
present in Figs. 23(a), 23(b), but the best anomaly
detectors differed in terms of Az calculated for 2D ROC
curves of (PD, PF) and (PD, τ ) in Tables III and IV, i.e.,
K-RXD for the entire image and R-RXD for the 15-panel
scene. However, for the same five vehicles and three
objects in Figs. 23(a), 23(c), the best anomaly detector
was RT-CK-RXD or CK-RXD for the vehicles scene in
Table III, according to the values of Az calculated for 2D
ROC curves of (PD, PF) and (PD, τ ). Interestingly, for all
three image scenes, the best anomaly detector to produce
the smallest Az of (PF, τ ) was RT-CK-RXD or
RT-CR-RXD. This indicates that a smaller Az of (PF, τ )
implies less background suppression. Furthermore, a
higher Az of (PD, PF) does not necessarily imply a higher
Az of (PF, τ ), as shown in Tables IV and V.
Unfortunately, such pieces of information are not provided
by traditional 2D ROC analysis, Az of (PD, PF). These
experiments demonstrate the utility of 3D ROC analysis
via three 2D ROC curves generated from a 3D ROC curve.
That is, anomaly detection performance can be analyzed
through interrelationships among PD, PF, and the threshold
τ via three 2D ROC curves plotted based on three pairs:
(PD, PF), (PD, τ ), and (PF, τ ).

3) Background Suppression: In general, the
performance of anomaly detection is evaluated based on
its detection rates or ROC analysis as demonstrated in
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Fig. 28. 3D ROC curves and three corresponding 2D ROC curves for 15-panel (left), vehicles (center), and entire (right) scenes. (a) 3D ROC curves
of (PD, PF, τ ). (b) 2D ROC curves of (PD, PF). (c) 2D ROC curves of (PD, τ ). (d) 2D ROC curves of (PF, τ ).

Section VI.B.2. However, because anomaly detection is
carried out without prior knowledge or ground truth, there
is no way of using ROC analysis to conduct performance
evaluation. It must rely on visual inspection, which
becomes the only means of evaluating anomaly detection
performance. In this case, background suppression has an

impact on visual inspection and is crucial for anomaly
detection. This was already demonstrated in Figs. 18–21
for the LCVF scene, where the 2-pixel-wide anomaly
dominated the entire detection process. In other words, if
we consider background as a null hypothesis H0 versus
targets as an alternative hypothesis H1 in a binary
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TABLE III
Values of Areas Under Three 2D ROC Curves (Az) Produced by Six Algorithms (Entire Panels + Vehicles Scene)

Algorithm K-RXD CK-RXD RT-CK-RXD R-RXD CR-RXD RT-CR-RXD

Az of (PD, PF) 0.9886 0.9818 0.9819 0.9840 0.9747 0.9747
Az of (PD, τ ) 0.2368 0.1372 0.1372 0.2349 0.1356 0.1356
Az of (PF, τ ) 0.0193 0.0144 0.0144 0.0199 0.0145 0.0145

Note: Best results are in bold.

TABLE IV
Values of Areas Under Three 2D ROC Curves (Az) Produced by Six Algorithms (15-Panel Scene)

Algorithm K-RXD CK-RXD RT-CK-RXD R-RXD CR-RXD RT-CR-RXD

Az of (PD, PF) 0.9898 0.9680 0.9683 0.99 0.9691 0.9691
Az of (PD, τ ) 0.3329 0.2590 0.2590 0.3342 0.2596 0.2596
Az of (PF, τ ) 0.0428 0.0372 0.0372 0.0433 0.0377 0.0377

Note: Best results are bold.

TABLE V
Values of Areas Under Three 2D ROC Curves (Az) Produced by Six Algorithms (Vehicles Scene)

Algorithm K-RXD CK-RXD RT-CK-RXD R-RXD CR-RXD RT-CR-RXD

Az of (PD, PF) 0.9751 0.9776 0.9776 0.9669 0.9662 0.9662
Az of (PD, τ ) 0.2172 0.1307 0.1307 0.2150 0.1294 0.1294
Az of (PF, τ ) 0.0332 0.0221 0.0221 0.0333 0.0222 0.0222

Note: Best results are bold.

hypothesis testing problem, 3D ROC analysis dictates the
behavior of a detector in terms of detection rate PD and
false-alarm rate PF versus threshold τ . That is, a better
target detection produces a higher Az of (PD, τ ), as well as
a higher Az of (PF, τ ) as false-alarm probability, and thus
results in better a background suppression, which
indicates poor background detection according to binary
hypothesis testing formulation. Unfortunately, to the best
of our knowledge, the issue in background suppression
has not been explored or investigated. This HYDICE
image data offers an excellent opportunity to look into this
issue and further demonstrates that an anomaly detector
with a high detection rate may generate a higher
false-alarm rate, which in turn may have more background
suppression. But does it imply that better background
suppression gives rise to better anomaly detection? To
illustrate this phenomenon, Figs. 29(c)–29(f) show
detected abundance fraction maps of three scenes
generated by completing the real-time processing of
CK-RXD, CR-RXD, RT-CK-RXD, and RT-CR-RXD. We
include the detected abundance fraction maps produced by
the global anomaly detectors, K-RXD and R-RXD, in
Figs. 29(a), 29(b), respectively, for comparison. By
examining the abundance fractions detected by the six
anomaly detectors, there is no appreciable visual
difference among all the results. However, the original
detected abundance fractional values in decibels (i.e.,
20(log10 x), with x being the original detected abundance
fraction), as shown in Fig. 30, provides better visual
inspection and assessment than does Fig. 29.

From Fig. 30, it seems that all six anomaly detectors
performed comparably in detection of targets but that the
global anomaly detectors, K-RXD and R-RXD, had better
background suppression than their real-time and causal
counterparts in terms of suppressing grass surrounding
panels, vehicles, and objects. This makes sense. Because a
global anomaly detector uses the global spectral
correlation provided by the sample correlation and
covariance matrix of the entire image data, it performs
better background suppression than any local anomaly
detector, as expected. However, on many occasions, when
there is no prior knowledge is available, background
information may help image analysts perform better data
analysis because background generally provides crucial
information surrounding anomalies. If background
suppression is overdone, we may not have clues about
anomalies. For example, in Fig. 29, anomalies were
detected with clean background suppression; we have no
idea what these anomalies are and simply know their
spatial locations. But if we look into Fig. 30, the
background has a tree line along the left edge, panels were
placed on grass, and vehicles were parked in a dirt field.
This is particularly true for medical imaging, where
background detection is interpreted as tissue anatomical
structures, which help doctors greatly in their diagnoses.

C. Computational Complexity

This section calculated the computing time in seconds
required by running CK-RXD, CR-RXD, RT-CK-RXD,
and RT-CR-RXD on LCVF and three HYDICE scenes by
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Fig. 29. Detection maps with detected abundance fractions: (a) K-RXD, (b) R-RXD, (c) CK-RXD, (d) CR-RXD, (e) RT-CK-RXD,
and (f) RT-CR-RXD.

Fig. 30. Detection maps with detected abundance fractions in decibels: (a) K-RXD, (b) R-RXD, (c) CK-RXD, (d) CR-RXD, (e) RT-CK-RXD, and
(f) RT-CR-RXD.
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TABLE VI
CPT in Seconds for CR-RXD/CK-RXD and RT-CR-RXD/RT-CK-RXD

CPT CR-RXD/CK-RXD RT-CR-RXD/RT-CK-RXD

Initial condition CPT(R(L)) = LCPT(OP(L)) CPT(R(L) = LCPT(OP(L)) + CPT(MI(L)) (R−1(L)/K−1(L))

LCVF Vehicles + panels Panels Vehicles LCVF Vehicles + panels Panels Vehicles

0.03075 0.009483 0.004943 0.01503 0.01965 0.003772 0.01040 0.002998

CPT/pixel n > L CPT (rn(rn)T ) CPT(
{
[R(n − 1)]−1 rn

} {
rT
n [R(n − 1)]−1}) + 3CPT(xT Ay)

LCVF Vehicles + panels Panels Vehicles LCVF Vehicles + panels Panels Vehicles

9.224e−05 6.227e−05 5.4498e−05 6.0257e−05 3.398e−04 3.1712e−04 3.1981e−04 3.2198e−04

CPT(R−1(n)/K−1(n))

LCVF Vehicles + panels Panels Vehicles

8.737e−04 9.9041e−04 9.6491e−04 9.9305e−04

Total CPT
∑N

n=L CPT(OP(n)) + CPT(MI(n)) (N − L){[3(L + 1)CPT(IP(L))} + CPT(OP(L))]}

LCVF Vehicles + panels Panels Vehicles LCVF Vehicles + panels Panels Vehicles

39.426 15.1476 4.2796 7.9846 14.754 4.4624 1.3203 2.3856
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TABLE VII
CPT in Seconds for K-RXD and R-RXD

K-RXD R-RXD
K−1 R−1

LCVF Vehicles + panels Panels Vehicles LCVF Vehicles + panels Panels Vehicles

0.108553 0.036878 0.015634 0.018485 0.115556 0.035656 0.013076 0.026824

(rn − μ)T K−1(rn − μ) (rn)T R−1(rn)

LCVF Vehicles + panels Panels Vehicles LCVF Vehicles + panels Panels Vehicles

0.190389 0.069578 0.024734 0.050299 0.120606 0.067772 0.020679 0.027323

averaging five runs, where the computer environments
used for experiments were a 64-bit operating system with
Intel i5-2500, a CPU of 3.3 GHz, and 8 GB of RAM. Their
results are tabulated in Table VI. In Table VI, the time
required by causal RXD to compute initial conditions for a
vehicles scene was greater than that for an entire scene,
which includes a vehicles scene as a subscene. This is also
true for real-time causal RXD, where the computing time
for a panels scene is greater than a panels + vehicles
scene. This is because all the causal and real-time casual
anomaly detectors do not start processing data until
sufficient data sample vectors are collected to compute
initial conditions, such as the total number of spectral
bands, to avoid an ill-rank issue arising in calculating a
sample correlation and covariance matrix. In this case, all
the algorithms use the same set of 169 image pixels to
calculate their initial conditions, and their algorithmic
structures determine the computational complexity.

As we can see from Table VI, a real-time causal
anomaly detector generally runs two or three times faster
than its causal counterpart while retaining the same
performance. Table VII tabulates the computing time
required by two global anomaly detectors, K-RXD and
R-RXD, to process the entire image data. Comparing
Table VII to Table VI may lead to a brief that the
computational complexity required by a real-time causal
anomaly detector is exceedingly high. It is not if we
consider that a real-time causal anomaly detector must
update and recalculate its sample correlation and
covariance matrix every time a new input data sample
vector comes in. In addition, its computational complexity
is linearly increased with the number of data sample
vectors required to be processed, as shown in Fig. 22,
where the processing time for each pixel is nearly
constant. So, because a global anomaly detector only
needs to calculate the sample correlation and covariance
matrix once for all data sample vectors, the computing
time of a real-time causal anomaly detector is supposed to
be the computing time required by a global anomaly
detector multiplied by its total number of data sample
vectors being processed to some extent. However, the
computing time documented in Table VI is significantly
less than that. This tremendous saving was mainly because
a real-time causal anomaly detector uses a recursive causal

update equation specified by either (6) or (8), which uses
only innovation information provided by the data sample
vector to update the equation without reprocessing
already-visited data sample vectors.

VII. CONCLUSIONS

One of most important applications in hyperspectral
data exploitation is anomaly detection. However, to see
how effectively an anomaly detector can perform,
real-time processing is more practical in real-world
applications, specifically detection of moving or
instantaneous targets. Most significantly, real-time
processing anomaly detection provides an unparalleled
advantage that commonly used anomaly detectors cannot
offer: progressive changes in different levels of
background suppression for visual assessment and
evaluation. Unfortunately, a true real-time causal
processing algorithm generally does not exist if real-time
processing is interpreted as having input and output data
simultaneously. However, from a practical point of view,
as long as an algorithm can process data in a negligible
amount of time, satisfying constraints imposed by specific
applications, it can be viewed as a real processing
algorithm. With this interpretation, many supposedly real
processing algorithms are actually fast computational
algorithms, as determined by exploring various data
organizations, parallel structures, field programmable gate
array architectures, etc. Nevertheless, there is a missing
element in such real-time processing algorithms, which is
causality, an important prerequisite to real-time
processing. In other words, a real-time processing
algorithm must be also a causal algorithm, because a
real-time processing algorithm does not have access to
future inputs during the course of data processing. This is
particularly applied to many window-based anomaly
detectors, which are not causal and thus are not real-time
processing detectors. This paper is believed to be the first
work devoted to exploring this concept in anomaly
detection. Specifically, it derives a causal innovation
information update equation for implementing real-time
causal anomaly detection. To investigate the computational
complexity issue, a comprehensive comparative analysis
on the CPT of running causal and real causal RXD-based
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anomaly detectors is conducted in theory and experiments.
Finally, the real image experiments conducted in Section
VI bring up an interesting and intriguing issue in
progressive background suppression, which has a large
impact on anomaly detection. In global anomaly detection,
little has been done in background suppression. However,
as demonstrated in anomaly detection of LCVF in Fig. 22,
real-time processing offers a significant advantage to see
time-varying changes in background information as time
moves along, where various levels of background
suppression produce different rates of false alarms and
thus have tremendous effect on visual assessment. This
issue is worth pursuing, although it is beyond the scope of
this paper. Here, we have made an effort to investigate the
impact of background suppression on anomaly detection.
We summarize several contributions made in this paper as
follows:

1) Causality has been introduced into real-time
processing. To the best of our knowledge, no real-time
processing algorithms investigate this issue in the remote
sensing community, which is crucial and a prerequisite to
real-time processing: No anomaly detector can be
implemented in real time because of its use of sample
correlation and windows, which require future data
samples before the data sample can be processed. Our
RT-CR-RXD and RT-CK-RXD are such real-time causal
anomaly detectors, which have never been developed in
the literature.

2) One of most important contributions resulting from
this paper is real-time progressive analysis of anomaly
detection, which allows users to see how an anomaly
detector performs various degrees of background
suppression. This paper is believed to be the first work to
investigate this issue, because background suppression
provides users with better understanding of what detected
anomalies are. Specifically, some weak anomalies
detected earlier may be overwhelmed by strong anomalies
detected later. This phenomenon is important in anomaly
detection but cannot be observed using commonly used
anomaly detectors that perform a one-shot operation to
show final detected anomalies.

3) We use 3D ROC analysis to analyze detection
performance, specifically, progressive performance of
background suppression. This is also believed to be the
first work in this area reported in anomaly detection
literature.

APPENDIX

This appendix provides detailed derivations for causal
innovation information update equations for RT-CK-RXD.
Following the same treatment derived for RT-CR-RXD in
Section III.A, we can derive RT-CK-RXD as
follows.

Let μ(n) = (1/n)
∑n

i=1 ri and K(n) = (1/n)
∑n

i=1
(ri − μ(n))(ri − μ(n))T . We can derive these as follows:

μ(n) = (1/n)
∑n

i=1
ri = (1/n)

∑n−1

i=1
ri + (1/n)rn = ((n − 1)/n) (1/(n − 1))

∑n−1

i=1
ri + (1/n)rn

= (1 − 1/n) μ(n − 1) + (1/n)rn. (11)

μ(n)μT (n) = ((n − 1)/n)2 [
μ(n − 1)μT (n − 1)

] + (
(n − 1)/n2) [

μ(n − 1)rT
n + rnμ

T (n − 1)
] + (1/n2)rnrT

n

(12)

K(n) = R(n)−μ(n)μT (n) = (1/n)
∑n

i=1
rirT

i −μ(n)μT (n) = (1/n)
∑n−1

i=1
rirT

i +(1/n)rnrT
n −μ(n)μT (n)

= ((n−1)/n)R(n−1)+(1/n)rnrT
n −((n−1)/n)2

[
μ(n−1)μT (n−1)

]−((n−1)/n2)
[
μ(n−1)rT

n +rnμ
T (n−1)

]−(1/n2)rnrT
n

= ((n−1)/n)
{
R(n−1)− ((n−1)/n)

[
μ(n−1)μT (n−1)

]} − (
(n−1)/n2

) [
μ(n−1)rT

n +rnμ
T (n−1)

] +((n−1)/n2)rnrT
n

= ((n−1)/n)
{
K(n−1)+(1/n)

[
μ(n−1)μT (n−1)

]} − (
(n−1)/n2

) [
μ(n−1)rT

n +rnμ
T (n−1)

]+((n−1)/n2)rnrT
n

= ((n−1)/n) K(n−1)+ (
(n−1)/n2

) [
μ(n−1)μ(n−1)T −μ(n−1)rT

n −rnμ
T (n−1)+rnrT

n

]
= (1−1/n) K(n−1)+ (

(n−1)/n2
) [

(rn−μ(n−1)) (rn−μ(n−1))T
]

(13)

So, the same derivation for R−1(n) in (6) can be applied to K(n) via Woodbury’s matrix identity in (4) by setting
A = (1 − 1/n) K(n − 1) and u = v = [(√

n − 1/n
)

(μ(n − 1) − rn)
]
:

rn−μ(n) = rn− ((n−1)/n) (1/(n−1))
∑n−1

i=1
ri−(1/n)rn = rn− (1−1/n) μ(n−1)−(1/n)rn (14)
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δRT-CK-RXD(rn) = (rn−μ(n))T K−1(n) (rn−μ(n))

= (rn−μ(n))T
{
(1−1/n) K(n−1)+ (

(n−1)/n2
) [

(rn−μ(n−1)) (rn−μ(n−1))T
]}−1

(rn−μ(n))

= (rn−μ(n))T [(1−1/n) K(n−1)]−1 (rn−μ(n))

−(rn−μ(n))T
[{(1−1/n)K(n−1)}−1

(√
n−1/n

)
(rn−μ(n−1))

][(√
n−1/n

)
(rn−μ(n−1))T {(1−1/n)K(n−1)}−1

]
1+[

(
√

n−1/n)(rn−μ(n−1))T {(1−1/n)K(n−1)}−1(
√

n−1/n)(rn−μ(n−1))
] (rn−μ(n))

= (1−1/n)−1 (rn−μ(n))T [K(n−1)]−1 (rn−μ(n))

− (1−1/n)−2
(√

n−1/n
)2

(rn−μ(n))T
[{K(n−1)}−1 (rn−μ(n−1))

] [
(rn−μ(n−1))T {K(n−1)}−1

]
(rn−μ(n))

1+ (1−1/n)−1
(√

n−1/n
)2 [

(rn−μ(n−1))T {K(n−1)}−1 (rn−μ(n−1))
] (15)
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