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Abstract— Hyperspectral unmixing could provide decomposi-
tion for small units in hyperspectral images (HSIs), allowing
accurate analysis of ground objects. Unfortunately, interference
such as noise and spectral variability prevalent in hyperspectral
data poses a serious challenge for it. Accordingly, this article
proposes a spectral–spatial anti-interference nonnegative matrix
factorization (NMF) algorithm (SSAINMF), which improves the
performance of spectral unmixing from both spectral and spatial
perspectives. Specifically, the original data are analyzed and
transformed into a statistical domain, where the information
of each dimension can be re-expressed, followed by a proof
of restricted isometric and restricted isospectral properties for
endmembers and abundances between the original domain and
the transformation domain. To obtain more reliable endmembers,
weighting is then applied to each dimension in the transformation
domain depending on the priority coefficients quantified by their
contribution to data representation, with the influence of anoma-
lous and noisy data weakened and the priorities of low-rank
information emphasized. Finally, superpixels are exploited to
induce local similarity and structural sparsity of abundances
within the neighborhood, which reduces the sensitivity to spa-
tial noise and spectral variability. From experimental results
on synthetic and real datasets, the proposed SSAINMF has
demonstrated effectiveness in decomposing mixed pixels, with
better robustness.

Index Terms— Hyperspectral unmixing, nonnegative matrix
factorization (NMF), spatial transformation, spectral variability,
structural sparsity.

I. INTRODUCTION

HYPERSPECTRAL imagery can capture hundreds or
thousands of continuous spectral bands, in which all

spectral data of each pixel point can be shaped into a smooth
spectral curve. This is widely used to characterize different
ground objects, contributing to the exploration of the Earth’s
surface [1], [2].

However, the high spectral resolution of the sensor sacrifices
the spatial resolution. As a result, the captured hyperspec-
tral images (HSIs) contain a large number of mixed pixels,
which adversely impacts the accurate recognition of ground
objects [3]. Hyperspectral unmixing technology has attracted
extensive interest.
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Usually, a scene is composed of several materials, and the
spatial position defined by a pixel may contain more than
one material, which is called a mixed pixel. Hyperspectral
unmixing technology treats each mixed pixel as a weighted
fusion of the pure spectra (endmembers) of all materials
in the scene according to their corresponding proportions
(abundances) [4], [5]. According to the mixing type, hyper-
spectral unmixing methods are divided into linear mixing
models (LMMs) and non-LMMs (NLMM), where LMM is
widely used because of its simple structure and generalization
ability. In general, the LMM spectral unmixing process can
be divided into two subproblems: endmember extraction (EE)
and abundance estimation. Convex geometry is a popular
technology for EE. It models all data points in a HSI as a
convex geometry surrounded by P endmembers as P vertices.
To locate these endmembers, one needs to find all P vertices
that define the convex geometry. For example, pixel purity
index (PPI) [6], [7], vertex component analysis (VCA) [8],
N-FINDR [9], automatic target generation process (ATGP)
[10], simplex growing algorithm (SGA) [11], and their
improved versions. Using the extracted endmember set, the
abundance estimation algorithms can count the abundance
fractions of each endmember in pixels from the observed
image. Typical abundance estimation algorithms include
unconstrained least square (UCLS) [12], nonnegativity-
constrained least square (NCLS) [13], sum-to-one constrained
least square (SCLS) [14], and fully constrained least square
(FCLS) [15]. But influenced by the imaging conditions, the
captured HSIs are typically disturbed by external factors,
meaning that the pure spectra of the materials cannot be
obtained.

The blind source separation algorithm (BSS) can separate
multiple blind source signals and obtain their fractions in
a mixed signal without exposing a pure assumption on the
source signals [16]. If the observed data, endmember set, and
abundance matrix are regarded as the mixed signals, source
signals, and separation matrix, respectively, then, hyperspectral
unmixing can also be viewed as a classic BSS problem. Con-
sequently, nonnegative matrix factorization (NMF) [17] with
the idea of BSS has become an active topic in hyperspectral
unmixing tasks. In [18], a convex geometry was embed-
ded into NMF to improve its convergence. Guo et al. [19]
extends sparse oblique-manifold to NMF, cleverly removing
the physical constraints of abundance. Qian et al. [20] develops
an L1/2 sparsity-constrained NMF (L1/2NMF) to promote
the sparsity of abundances. Rajabi and Ghassemian [21]
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implements a multilayer NMF (MLNMF), considering the
sparsity of endmembers and abundances in each layer.
To deal with the unstable solution space of NMF, a desirable
method is to mine the spatial information contained within
the observation data. Based on L1/2NMF, Lu et al. [22]
proposes a manifold regularized sparse NMF (MRSNMF),
which preserves the intrinsic spatial structure for abun-
dances. A region-based structure preserving NMF (RNMF)
is designed in [23] to ensure the similarity of abundances
within a subregion. Wang et al. [24] proposed a spatial
group sparsity-regulated NMF (SGSNMF), which guarantees
structural sparsity of abundances in a spatial group and reduces
abnormal interference. In [25], NMF cooperates with the total
variation to drive the smoothing of the abundance space.
Under the L1-NMF framework, Zhang et al. [26] imposes
spectral–spatial weight constraints on abundance information
to capture the smooth structure of the abundances.

Although NMF methods combined with spatial information
can improve unmixing stability, they mainly focus on the
influence of noise and variability from the spatial dimension,
without full consideration of interferences from the spectral
dimension. In the real HSIs, some low signal-to-noise ratio
bands that are heavily damaged by water vapor and atmo-
sphere are manually removed. It is clear that band noise and
interference are ubiquitous. Relying on prior knowledge to
manually remove or correct band variability is a challenging
task. To solve this issue, some band-wise NMF methods [27]
have been developed. For example, Wang et al. [28] devel-
oped a hyperspectral compressed sensing NMF algorithm
(HCSNMF), which performs compressed sensing on the spec-
tral dimension of the observation data and removes redundant
interference such as noise. Peng et al. [29] used the reconstruc-
tion loss of each band in the iterative process to suppress band
noise. In [30], an untied denoising autoencoder with sparsity
(uDAS) was proposed, which uses a linear transfer function
to re-represent spectral information of each band to effectively
reduce band noise. The above-mentioned works pay attention
to the band noise and have achieved better results. Most
of them, however, only set a weighting index based on the
noise contents of each band measured in the noise-corrupted
data space, or linearly re-represent each band to reduce the
negative impact of noise. In fact, this does not effectively
separate the noise and low-rank components in the data space.
As a result, it is still difficult to effectively avoid the confu-
sion of noise and low-rank components in each dimension,
which further affects the decomposition of endmembers and
abundances.

Based on the fact that the signal-to-noise ratio of HSIs
is relatively high, interference information contributes less
to the low-order statistics of the data, but are mainly dis-
tributed in the high-order statistics. For this reason, we conduct
statistics based on the correlation between the bands of the
observed data, so that the low-order and high-order statistics
in the observation data are distributed in different priority
bands. Then, the weights are assigned for each band based
on their priority coefficients to enhance the contribution of
low-order statistics while weakening the influence of high-
order statistics. In addition, SGSNMF constrains the structural

consistency of abundances within a spatial group and achieves
better results, but it ignores the high similarity of information
in the spatial group. In other words, SGSNMF can ensure
that the variation trends of abundance vectors within a spatial
group are consistent, but it cannot well provide a set of
highly similar abundances, resulting unimpressive robustness
to noise and spectral variability. To solve this issue, we not
only control the variation trends of abundances within a spatial
group but also limit their variation extent during optimiza-
tion. In the case of ensuring that the structural consistency
of the abundances in a spatial group, the similarity of the
pixels in the group is also guaranteed. Such a design can
effectively improve the robustness to spatial noise and spectral
variability. In short, our contributions can be summarized as
follows.

1) We develop a band-wise spectral unmixing model and
proof its metric-keeping property for endmembers and
abundances. The observed data domain is first trans-
formed into a new data domain with evaluable bands,
in which the statistics of the data are distributed in
an orderly manner in the band dimension, and then,
the weights of each dimension in the transformed
domain are calculated according to their contribution
to data representation. In this way, the interference of
high-order statistics is weakened, and the advantages
of low-order statistics are exerted to provide a more
effective anti-interference ability against band noise for
spectral unmixing. Furthermore, restricted isometric and
restricted isospectral properties for endmembers and
abundances are sequentially proved to promise consis-
tent unmixing results.

2) Importantly, the low-rank component and interference
component are separated in the transformed domain. The
bands ranked top contains major information and can
be regarded as the low-rank part of the data, and the
bands ranked behind contain relatively small amounts
of information, which can be regarded as the interfer-
ence part. Compared with the original domain which
mixes low-rank information and interference together
in each band, the transformed domain separates them
apart, which improves its resistance capability to spectral
noise.

3) On the basis of 1) and 2), we also design a homoge-
neous constraint for all pixels within a neighborhood to
develop the spectral–spatial anti-interference nonnega-
tive matrix factorization (NMF) algorithm (SSAINMF).
This idea constrains the pixel-to-pixel similarity in a
neighborhood through superpixels, where all abundances
in the neighborhood also satisfy structural sparsity
simultaneously under the guidance of a set of inductive
factors. This effectively enhances the robustness of spec-
tral unmixing to spatial noise and spectral variability.

The rest of this article is organized as follows. Section II
briefly introduces the basics of LMM and SGSNMF.
Section III discusses in detail the band and spatial optimization
model of the proposed work. In Section IV, the performance
of the proposed work is compared and analyzed on public
datasets. Section V summarizes the work of this article.
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II. RELATED WORK

A. LMM

A scene usually has low-rank properties and is a mixture
of a limited number of materials. To better understand the
scene, we need to find the material types and corresponding
proportions contained in each spatial position in the scene.
In this case, it is necessary to use a mixing model. As a
simple and effective mixing model, LMM is widely used in
the field of data processing with good physical meaning. Given
an observed HSI X ∈ RL×N , which contains N spatial pixels
and L continuous spectral bands, the model can be defined
by

X = EA + W (1)

where E ∈ RL×P is the endmember matrix with P endmember
labels in total. A = [a1, . . . , aN ] ∈ RP×N is the abundance
matrix, representing the proportions of E in each pixel. W ∈

RL×N represents the model reconstruction error. For A, to meet
the physical requirements, the following two properties need
to be guaranteed.

1) Abundance nonnegative constraint (ANC): ai ≥ 0, i =

1, . . . , N .
2) Abundance sum-to-one constraint (ASC): 1Tai = 1.

B. Spatial Group Sparsity Regularized NMF

NMF is a flexible LMM that can simultaneously decompose
an observation data X = [x1, . . . , xN ] into two nonnegative
matrices: basis matrix and mixture matrix. In the unmixing
task, abundance and endmember matrices have the same
nonnegative demand. Therefore, NMF is extended to the field
of spectral unmixing. The NMF objective function is defined
as follows:

min
E,A

∥ X − EA ∥
2
F , s.t. E ≥ 0, A ≥ 0, 1TA = 1. (2)

To improve the robustness of NMF, SGSNMF adopts the
simple linear iterative clustering (SLIC) image segmentation
method [34] to divide X into multiple spatial groups, and
ensures the structural sparsity of abundances within each
spatial group. The model of SGSNMF is as follows:

min
E,A

1
2

G∑
g=1

∥ Xg
− EAg

∥
2
F +λ

G∑
g=1

∑
ai ∈ϑg

di
∥∥Hgai

∥∥
2 (3)

where G represents the number of spatial groups. di =

(1/Sg
i ) represents the confidence index of the i th pixel in

the gth spatial group, and Sg
i represents the spectral–spatial

distance between the i th pixel and the central pixel in the
gth spatial group. Hg is a diagonal weighting matrix used
to promote the structural sparsity of abundances within the
spatial group. Its pth value hg

p = (1/|h̄g
p| + ε) on the diagonal,

where h̄g
p represents the pth abundance value of the gth

superpixel. ε is a fixed parameter to prevent the denominator
of hg

p from being 0. Then, E and A have the following
gradients:

grad E = EAAT
− XAT (4)

grad A =

G∑
g=1

(ẼT Ẽ A
g
− ETXg)

+ λ

G∑
g=1

∑
ai ∈ϑg

di
(
Hg)THgai

1
∥Hgai∥2

. (5)

In (6) and (7), the endmembers and abundances can be
continuously optimized until the convergence of (3) with the
step size ω of gradient descent

E = max(0, E − ω grad E) (6)
A = max(0, A − ω grad A). (7)

III. PROPOSED ALGORITHM: SSAINMF

A. Spectral Optimization Model

1) Priority-Driven Band Noise Suppression: In hyperspec-
tral imaging, due to the interference of external factors, the
captured images contain a lot of noise, which can be viewed
as band noise and spatial noise based on their performance in
spectral and spatial dimensions. To effectively eliminate the
interference of band noise, the data X needs to be linearly
transformed, separating high-order statistics that characterize
anomalies and noise from low-order statistics that character-
ize low-rank components in all spectral bands. Specifically,
as illustrated in Fig. 1, X can be analyzed by correlation
between bands, due to the fact that adjacent bands are con-
tinuous. First of all, the degrees of linear correlation between
the bands need to be measured by

6

=

 σ
(
x̃1 − µ, x̃1 − µ

)
· · · σ

(
x̃1 − µ, x̃L − µ

)
...

. . .
...

σ
(
x̃L − µ, x̃1 − µ

)
· · · σ

(
x̃L − µ, x̃L − µ

)
 ∈ RL×L

(8)

where σ(·) is the covariance statistical function, x̃l represents
the lth band vector, and µ is the mean band vector of X.
Then, decompose 6 to obtain a basis matrix M ∈ RL×L

containing L basis vectors for spatial transformation and
a priority coefficient matrix Z ∈ RL×L whose diagonal value
zll represents the contribution that the lth basis vector ml can
capture the effective information in X. That is,

6 = MZMT. (9)

Now, the basis matrix M satisfies: as the number l → L of
basis vectors reserved in M, MTM → I.

Based on M, data MX in the transform domain containing L
priority vectors is obtained. Among them, these priority bands
are arranged in order along the spectral dimension according
to the priority coefficients. This achieves the separation of
high-order and low-order statistics characterized by the priority
bands of the smaller and lager coefficients from X. In addition,
due to the differences in contributions of each priority band,
they can be weighted with priority coefficients. Such an idea
provides two advantages. For low-order statistics, the greater
the contributions of their effective information, the larger
weights are applied to them, and thus, their influence is
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Fig. 1. Flowchart of the spatial transformation.

enhanced. For high-order statistics, the more destructive they
are, the smaller weights are applied to them, thereby encourag-
ing adaptive recovery of their corresponding valid information
and suppressing their interference. However, it is worth noting
that the priority coefficients of each priority band in coefficient
matrix Z vary greatly. The setting of weights should not only
consider the influence on the spatial information but also
consider the spectral information. If the gaps between adjacent
weights of priority dimension are too large, the abundance will
be improved, but the great loss of spectral information will
result in poor endmembers. Unfortunately, the degradation of
endmembers will propagate further into abundance. To balance
their relationship, the weight of the lth priority band is set
to z(1/R)

ll . Let C be the weighting matrix, i.e., C = Z(1/R).
Then, (2) can be rewritten as follows:

min
E,A

∥ CM(X − EA) ∥
2
F , s.t. E ≥ 0, A ≥ 0, 1TA = 1.

(10)

However, a new problem arises at this time. As the data
are transformed from X to MX, could endmembers and
abundances remain consistent? Next, we will discuss it in
detail.

2) Proof of Restricted Isospectral and Restricted Isometry
Properties for Endmembers and Abundances:

a) Restricted isospectral property for endmembers: With
the transformation matrix M, (1) can be rewritten as follows:

MX = MEA + MW. (11)

Minimizing the model error MW, (11) can be converted to
the following optimization problem:

min
E,A

∥ M(X − EA) ∥
2
F , s.t. E ≥ 0, A ≥ 0, 1TA = 1.

(12)

The subproblem E can be optimized using the gradient descent
method, so we have

grad Ê = MTM(EAAT
− XAT). (13)

When l = L , MTM ≈ I, so MTM(EAAT
−XAT) ≈ (EAAT

−

XAT). This shows that the transformation has little effect on
the endmember spectrum.

b) Restricted isometry properties for abundances: Based
on the pure pixel assumption, hyperspectral pixel points
are all embedded in a simplex composed of P endmember
points [31]. Considering the fact that a simplex of P vertices
can be well expressed by at least a (P − 1)-dimensional
data space, to fully prove the restricted isometry property of
abundances, we describe its proof process in the (P − 1)- and
P-dimensional data spaces, respectively. But in fact, we do
not need to take any dimensionality reduction measures for
the observation data during the computation of SSAINMF.
Without loss of generality, we take P = 3 as an example to
illustrate it. First assume that the hyperspectral data X contains
three endmember points A, B, and C, and any pixel point D in
X is located in the simplex ABC with A, B, and C as vertices.

i) Proof based on simplex volume: From the simplex
ABC in Fig. 2(a), it can be known that the proportion of
endmember AVP−1 in pixel DVP−1 is fAVP−1

= (SVP−1
BCD /SVP−1

ABC ).
Considering that triangles BCD and ABC share the same side
BVP−1 CVP−1 , the ratio of their areas is equivalent to the ratio
of their heights with BVP−1 CVP−1 as a base, i.e., fAVP−1

=

(|DVP−1 EVP−1 |)/(|AVP−1 FVP−1 |). To obtain |DVP−1 EVP−1 | and
|AVP−1 FVP−1 |, we introduce the orthogonal subspace projection
(OSP) theory [32], [33] to generate the following OSP matrix
of UVP−1 =[BVP−1 , CVP−1 ]:

P⊥

UVP−1
= I − UVP−1

(
UT

VP−1
UVP−1

)−1UT
VP−1

. (14)
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Fig. 2. Simplex ABC embedded in (a) (P − 1)-dimensional data space and
(b) P-dimensional data space.

With (14), the projection vector P⊥

UVP−1
DVP−1 of DVP−1 on

P⊥

UVP−1
can be obtained, so∣∣DVP−1 EVP−1

∣∣
=

√(
P⊥

UVP−1
DVP−1

)T(
P⊥

UVP−1
DVP−1

)
=

√
DT

VP−1
DVP−1 − DT

VP−1
UVP−1

(
UT

VP−1
UVP−1

)−1UT
VP−1

DVP−1 .

(15)

Similarly, we have

∣∣AVP−1 FVP−1

∣∣ =√(P⊥

UVP−1
AVP−1

)T(
P⊥

UVP−1
AVP−1

)
. (16)

Then, the proportion of A in D is

fA =

∣∣DVP−1 EVP−1

∣∣∣∣AVP−1 FVP−1

∣∣ =

√(
P⊥

UVP−1
DVP−1

)T(
P⊥

UVP−1
DVP−1

)
√(

P⊥

UVP−1
AVP−1

)T(
P⊥

UVP−1
AVP−1

) .

(17)

When transforming the data space, ÛVP−1 = MUVP−1 =

[MBVP−1 , MCVP−1 ], the OSP matrix becomes

P⊥

ÛVP−1
= I − MUVP−1

(
UT

VP−1 MTMVP−1 UVP−1

)−1UT
VP−1 MT

(18)

and (19), as shown at the bottom of the next page.

In the case of the actual spectral dimension l = L ,

MTM ≈ I, so∣∣∣ ̂DVP−1 EVP−1

∣∣∣
≈

√
DT

VP−1 DVP−1 − DT
VP−1 UVP−1

(
UT

VP−1 UVP−1

)−1UT
VP−1 DVP−1

=
∣∣DVP−1 EVP−1

∣∣. (20)

Similarly, | ̂AVP−1 FVP−1 | ≈ |AVP−1 FVP−1 |. Therefore, we can
prove that [ f̂ AVP−1

, f̂ BVP−1
, f̂ CVP−1

] ≈ [ fAVP−1
, fBVP−1

, fCVP−1
]

before and after the data transformation.
ii) Proof based on residual vector: Fig. 2(b) shows the

simplex ABC embedded in the 3-D space, where the proportion
of A in D is fA = (SBCD/SABC) = (|DE|/|AF|). To obtain
the length of the residual vector |DE| and |AF|, first generate
the OSP matrix of U = BC = C−B using the Gram–Schmidt
orthogonalization process:

P⊥

U = I − U
(
UTU

)−1UT. (21)

Let G = HD = D−(1/2)(B+C), the projection vector ED =

P⊥

UG of G on P⊥

U can be obtained. Therefore,

|DE| =

√(
P⊥

UG
)T(P⊥

UG
)

=

√
GTG − GTU

(
UTU

)−1UTG)).

(22)

Similarly, let O = HA = A − (1/2)(B + C), we have

|AF| =

√(
P⊥

UO
)T(P⊥

UO
)
. (23)

Then, the proportion of A in D is

fA =
|DE|

|AF|
=

√(
P⊥

UG
)T(P⊥

UG
)√(

P⊥

UO
)T(P⊥

UO
) . (24)

When transforming the data space, Û = MU = M(C − B).
The OSP matrix becomes

P⊥

Û = I − MU
(
UTMTMU

)−1UTMT. (25)

Now, Ĝ = MG = M(D − (1/2)(B + C)), thereby∣∣∣D̂E
∣∣∣ =

√(
P⊥

ÛMG
)T(P⊥

ÛMG
)

=

√
GTMT

(
P⊥

Û

)TP⊥

ÛMG

=

√
GTMTP⊥

ÛMG

=

√
GTMT

(
I − MU(UTMTMU)−1UTMT

)
)MG

=

√
GTMTMG−GTMTMU

(
UTMTMU

)−1UTMTMG)).

(26)

Because of l = L , MTM ≈ I. Thus,∣∣∣D̂E
∣∣∣ ≈√GTG − GTU

(
UTU

)−1UTG)) = |DE|. (27)

Similarly, |ÂF| ≈ |AF|. Based on this, we can prove that
[ f̂ A, f̂ B, f̂ C] ≈ [ fA, fB, fC] before and after the spatial
transformation.
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B. Spatial Optimization Model

In most cases, adjacent pixels are usually composed of
similar materials, so the effective exploration of local spatial
information can better improve the unmixing performance
and eliminate interference such as spatial noise and spectral
variability. Using SLIC image segmentation [24], a scene
can be divided into S local neighborhoods. Considering the
homogeneity of pixels in a neighborhood, we first constrain
the similarity between pixels within the sth neighborhood �s

using the abundance a∗
s of the sth superpixel by

min
A

g(A) = λ

S∑
s=1

∑
a j ∈�s

∥∥a j − a∗

s

∥∥2
2 (28)

where λ is a regular term that controls the influence of g(A),
and a j is the j th abundance in �s . Since the pixels in the
subregion are not exactly the same, the pixels near the center
of the subregion are more similar to the superpixel of the
subregion, while the edge pixels are less similar. Therefore,
we need to adjust the similarity strength between pixels in �s

according to their spectral–spatial distance v j [24] from their
superpixel, and (28) becomes

min
A

g(A) = λ

S∑
s=1

∑
a j ∈�s

d j
∥∥a j − a∗

s

∥∥2
2 (29)

where d j = (1/v j ) = (1/(d2
a + (d2

e /ω)2ω2
s )

1/2
) represents the

similarity index of the j th pixel in �s , da and de are the
spectral angle distance (SAD) and Euclidean distance between
the j th pixel in �s and superpixel of �s , respectively, ωs is
used to balance the influence of spectrum and spatial distance
on d j , and the superpixel size ω is used to calculate the total
number of superpixels in the data.

Furthermore, the abundances in the local neighborhood
should have structural sparsity. To promote this structural
sparsity by endmember, we focus on the endmember ep with
the highest content in the neighborhood. Its any abundance
apj in the neighborhood should be given a small weight ws

p .
Based on the minimization criterion, apj will get larger to
get close to the abundance a∗

sp of ep in a∗
s . Conversely, the

endmember with the lowest content within the neighborhood
is given a large weight to all its abundances, making them
smaller. Therefore, we extend (29) to

min
A

g(A) = λ

S∑
s=1

∑
a j ∈�s

d j
∥∥Wsa j − a∗

s

∥∥2
2 (30)

Fig. 3. Performance analysis of the proposed SSAINMF with different λ .
(a) mSAD. (b) RMSE.

where Ws
= diag([ws

1 , . . . , w
s
p , . . . , ws

P ]) = diag(1./(a∗
s +

P − 3 + ε)) is the inducing matrix for controlling the
structural sparsity of the abundances in �s . A scene with
more endmembers is relatively more complicated. This makes
the abundances within its subregions tend to have weaker
structural sparsity. Therefore, the number P of endmembers
is used to control the structural sparsity.

C. Final Proposed Model (SSAINMF)

In this way, a spectral–spatial anti-interference NMF for
hyperspectral unmixing (SSAINMF) is proposed by extend-
ing (30) into (10), which can effectively resist interferences
such as noise and spectral variability from the 3-D of spec-
trum and space. Consequently, the final objective function of
SSAINMF is

min
E,A

f (E, A) =∥ CM(X − EA) ∥
2
F

+ λ

S∑
s=1

∑
a j ∈�s

d j
∥∥Wsa j − a∗

s

∥∥2
2

s.t. E ≥ 0, A ≥ 0, 1TA = 1. (31)

D. Solution of SSAINMF

Since (31) contains two joint variables E and A, the
subproblems E and A can be solved alternately by NMF

E = arg min
E,A

f (E, A) = max(0, E − α grad E) (32)

A = arg min
E,A

f (E, A) = max(0, A − α grad A) (33)

where α represents the step size of gradient descent, and the
gradients of E and A in (31) are as follows:

grad A = ETMTCTCMEA − ETMTCTCMX (34)

∣∣∣ ̂DVP−1 EVP−1

∣∣∣ =

√(
P⊥

ÛVP−1
MDVP−1

)T(
P⊥

ÛVP−1
MDVP−1

)
=

√
DT

VP−1 MT
(

P⊥

ÛVP−1

)T
P⊥

ÛVP−1
MDVP−1 =

√
DT

VP−1 MT P⊥

ÛVP−1
MDVP−1

=

√
DT

VP−1 MT
(

I − MUVP−1

(
UT

VP−1 MTMUVP−1

)−1UT
VP−1 MT

))
MDVP−1

=

√
DT

VP−1 MTMDVP−1 − DT
VP−1 MTMUVP−1

(
UT

VP−1 MTMUVP−1

)−1UT
VP−1 MTMDVP−1 (19)
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Fig. 4. False-color images of (a) synthetic data, (b) Samson, (c) Jasper Ridge, (d) urban, and (e) cuprite.

Fig. 5. Estimated endmember spectra by all tested algorithms with Synthetic
data. (a) True. (b) Estimate.

+ λ

S∑
s=1

∑
a j ∈�s

d j WsT(Wsa j − a∗

s

)
grad E = MTCTCMEAAT

− MTCTCMXAT. (35)

Furthermore, to guarantee the ASC of A, the matrices X and
E need to be expanded as follows:

X̄ =

[
X

β1T
N

]
, Ē =

[
E

β1T
P

]
(36)

where β is a positive value used to enhance the ASC for A.
In our experiments, it is set to 15. Therefore, (34) becomes

grad A = ĒTMTCTCMĒA − ĒTMTCTCMX̄

+ λ

S∑
s=1

∑
a j ∈�s

d j WsT(Wsa j − a∗

s

)
. (37)

Alternately update (32) and (33) until (31) converges to a local
minimum, then the optimal set of endmembers and abundances
can be obtained. Please refer to Algorithm 1 for details.

IV. EXPERIMENTAL ANALYSIS

To fully verify the performance of SSAINMF, the state-
of-the-art correlation algorithms ATGP–FCLS [10], [15],
HCSNMF [28], SGSNMF [24], uDAS [30], L1/2NMF [20],
MRSNMF [22], RNMF [23], MLNMF [21], matrix-vector

Algorithm 1 Summary of SSAINMF
Input: X, P , λ , ω, ωs, ϵ

Pre-processing:
Generate C and M by (9) and C = Z 1

R .
Initialize E and A based on ATGP and FCLS.
Generate S local neighborhood based on SLIC.
Calculate the similarity index d j .

Repeat until convergence:
Update the inducing matrix Ws

= diag( 1.
a∗

s +P−3+ε
)

Update the augmented matrices X̄ and Ē by (36).
Update the abundance matrix A by (33) and (37).
Update the endmember matrix E by (32) and (35).

Output: E, A.

nonnegative tensor factorization (MVNTF) [35], and learning
a deep alternating neural network for hyperspectral unmixing
(SNMF-Net) [36] are selected for comparative experiments
on synthetic and real datasets, where HCSNMF includes five
cases with sampling rates of 0.1, 0.2, 0.3, 0.4, and 0.5.
From HCSNMF, the best two cases with sampling rates
of 0.3 and 0.5, named as HCSNMF-0.3 and HCSNMF-0.5,
respectively, are selected for comparison. To ensure that all
tested algorithms have the same initial settings, their initial
endmembers and abundances are generated by ATGP and
FCLS, and their maximum number of iterations is set to 100.
Furthermore, the performance of each algorithm is objectively
evaluated using three evaluation criteria: normalized mean
square error (NMSE), root mean square error (RMSE), and
spectral angle distance (SAD). They can be expressed as
follows:

NMSE =
∥ X − X̂ ∥

2
F

∥ X ∥
2
F

(38)

RMSE =

(
1
N

∥∥A − Â
∥∥2

F

) 1
2

(39)

SAD = arccos

(
eT

p êp∥∥ep
∥∥∥∥êp

∥∥
)

(40)

where X represents the original image, and X̂ represents the
reconstructed image. A denotes the reference abundances, and
Â denotes the estimated abundances, ep represents the pth
reference endmember, and êp represents the pth estimated
endmember. To emphasize the comparison effects between
all tested algorithms, we will bold the first-ranked score, and
underline the second-ranked score.
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Fig. 6. Abundance maps evaluated by all tested algorithms from synthetic data. (a) True. (b) ATGP–FCLS. (c) HCSNMF-0.3. (d) HCSNMF-0.5. (e) SGSNMF.
(f) uDAS. (g) L1/2NMF. (h) MRSNMF. (i) RNMF. (j) MLNMF. (k) MVNTF. (l) SNMF-Net. (m) Ours.

TABLE I
COMPARISON RESULTS OF ALL TESTED ALGORITHMS WITH SYNTHETIC DATA

A. Parameter Analysis

A first confirmation is required for parameter λ , which is
used to balance the effect of spatial constraint in SSAINMF.
Fig. 3(a) and (b) shows the change trends of endmember
and abundance performance obtained by SSAINMF with the
increase of λ on Samson, respectively. It can be observed
that when λ is in the range [0.3, 0.75], the unmixing results
of SSAINMF are relatively stable, and the effects are better.
When it is beyond this range, the unmixing results become

significantly worse. Therefore, in our experiment, we set λ

uniformly to 0.3.

B. Experiments on Synthetic Data

In Fig. 4(a), a 95 × 95 synthetic data with 156 bands is
generated using the ground truth endmembers and abundances
in Samson to evaluate the performance of the proposed
SSAINMF. A Gaussian filter is used to smooth the synthetic
data. Moreover, to approach the real situation, a certain amount
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TABLE II
COMPARISON RESULTS OF ALL TESTED ALGORITHMS WITH SAMSON DATA

Fig. 7. Convergence curve of our SSAINMF on synthetic data.

of band noise, pixel noise, and Gaussian white noise are
added to it. Then, the performance of all tested algorithms
is evaluated on the synthetic data.

From Fig. 5, all algorithms have achieved better Soil end-
members. For Water endmember, MVNTF, SGSNMF, uDAS,
L1/2NMF, MRSNMF, RNMF, MLNMF, SNMF-Net, and Ours
with sparse constraints have better performance, which proves
that sparse constraint of abundances can further improve
endmembers. However, most algorithms fail to obtain the
tree endmembers, only our algorithm is close to the refer-
ence value. In Fig. 6, SGSNMF, L1/2NMF, MVNTF, and
Ours obtain better Water abundances, but poor soil and tree
abundances.

Table I measures the unmixing performance of each
algorithm. It can be observed that most algorithms have
obtained poor endmembers and abundances. Although the
abundance error of our SSAINMF is 22% higher than that
of MVNTF, its reconstruction and endmember errors are 42%
and 47% lower than MVNTF, respectively, providing better
performance.

Fig. 7 shows the convergence curve of the proposed
SSAINMF on the Synthetic data. The gradient decreases
quickly at the beginning and becomes stable after 20 iterations.

C. Experiments on Real Data

All tested algorithms are then tested on four public data
shown in Fig. 4(b)–(e), Samson, Jasper Ridge, urban, and
cuprite. First, a brief introduction to each data is given:

Fig. 8. Estimated endmember spectra by all tested algorithms from Samson
data. (a) True. (b) Estimate.

Fig. 9. Enlarged spectral curves of estimated water endmembers on Samson
data. (a) True. (b) Estimate.

Samson: Samson originally has 952 × 952 pixels that con-
tained 156 bands spanning 401–889-nm wavelengths with a
3.13-nm spectral resolution. From its (252, 332)th pixel, a
95 × 95 subregion, as shown in Fig. 4(b), is cropped. All
bands in the image are reserved since there are no severely
damaged bands. Moreover, it contains three materials in total:
soil, tree, and water.
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Fig. 10. Abundance maps evaluated by all tested algorithms from Samson data. (a) True. (b) ATGP–FCLS. (c) HCSNMF-0.3. (d) HCSNMF-0.5. (e) SGSNMF.
(f) uDAS. (g) L1/2NMF. (h) MRSNMF. (i) RNMF. (j) MLNMF. (k) MVNTF. (l) SNMF-Net. (m) Ours.

Fig. 11. Convergence curve of our SSAINMF on Samson data.

Jasper Ridge: Jasper ridge contains 512 × 614 pixels with
a wavelength range of 380–2500 nm, divided into 224 bands at
a spectral resolution of 9.46 nm. Considering the ground truth
of Jasper Ridge is difficult to label. Starting from its (105,
269)th pixel, a 100 × 100 subimage, as shown in Fig. 4(c),
is obtained. Due to water vapor and atmospheric interference,
the abnormal bands 1–3, 108–112, 154–166, and 220–224 are
removed, leaving 198 bands. The data mainly consists of four
materials: road, soil, water, and tree.

Urban: Urban data in Fig. 4(d) contains 307 × 307 pixels
with a wavelength range of 400–2500 nm. Based on 10-nm
spectral resolution, it is divided into 210 bands. After removing
the heavily noisy bands 1–4, 76, 87, 101–111, 136–153, and
198–210, the 162 channels with higher SNR are retained.
In the scene, there are four materials: asphalt, grass, tree, and
roof.

Fig. 12. Endmember curves evaluated by each algorithm on the Jasper Ridge
data. (a) True. (b) Estimate.
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Fig. 13. Abundance maps evaluated by all tested algorithms with Jasper Ridge data. (a) True. (b) ATGP–FCLS. (c) HCSNMF-0.3. (d) HCSNMF-0.5.
(e) SGSNMF. (f) uDAS. (g) L1/2NMF. (h) MRSNMF. (i) RNMF. (j) MLNMF. (k) MVNTF. (l) SNMF-Net. (m) Ours.

Cuprite: Cuprite data shown in Fig. 4(e) has a total
of 250 × 190 pixels with 224 bands ranging from 370
to 2480 nm.

Since the damaged bands 1–2, 221–224, 104–113, and
148–167 are removed, 188 bands are reserved. This scene
mainly contains a total of 12 materials which are Alunite,
Andradite, Buddingtonite, Dumortierite, Kaolinite1, Kaolin-
ite2, Muscovite, Montmorillonite, Nontronite, Pyrope, Sphene,
and Chalcedony.

1) Samson: Fig. 8 shows a comparison between endmem-
bers obtained by all tested algorithms from Samson data,
where the soil endmembers obtained by SGSNMF, uDAS, and
SNMF-Net have poorer effects, and those obtained by other
algorithms have better effects. For tree endmember, all tested
algorithms have achieved better results. However, ATGP–
FCLS, HCSNMF-0.3, and HCSNMF-0.5 have achieved poor
results on the water endmember, and other algorithms are

close to the reference (true) value. In particular, all three
endmembers estimated by our SSAINMF perform well in
Figs. 8 and 9.

Fig. 10 shows the abundance maps obtained by each
algorithm on Samson. According to the reference abundance
maps, there are few material types in Samson. With higher
intraclass compactness, the distribution of each material type
in Samson is concentrated. Such a feature is very suitable for
the design of our SSAINMF. From the obtained abundances
maps, ATGP–FCLS, HCSNMF-0.3, HCSNMF-0.5, uDAS,
L1/2NMF, MRSNMF, RNMF, MLNMF, MVNTF, and
SNMF-Net all obtained poor abundance maps. However,
SGSNMF and SSAINMF have better results. Especially
since SSAINMF considers local similarity and removes the
influence of band noise, it still obtains cleaner abundance
maps and achieves the best results even when the initial
values are not ideal.
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TABLE III
COMPARISON RESULTS OF EACH ALGORITHM ON JASPER RIDGE DATA

Fig. 14. Convergence curve of our SSAINMF on Jasper ridge data.

Fig. 15. Endmember curves evaluated by each algorithm on urban data.
(a) True. (b) Estimate.

Table II shows the quantitative results of each tested
algorithm on Samson data. In Table II, although

Fig. 16. Enlarged spectral curves of estimated water endmembers on urban
data. (a) True. (b) Estimate.

HCSNMF-0.3, HCSNMF-0.5, and SGSNMF have better
reconstruction effects, their abundance and endmember
effects are poorer. The overall effects of ATGP–FCLS,
MRSNMF, RNMF, and MLNMF are relatively poor. uDAS
and MVNTF have better endmember effects, but they provide
poorer abundance and reconstruction effects. SNMF-Net
without better consideration of spectral information obtains
poorer endmembers and abundances. L1/2NMF with a sparse
constraint obtains better endmembers, but its abundances are
slightly poor. As a whole, although the reconstruction effect
of our SSAINMF is not outstanding, it can be seen that
SSAINMF provides not bad performance in all evaluation
criteria. So, it achieves the better performance, with the best
results for both abundance and endmembers.

Fig. 11 shows that the gradient of SSAINMF declines
rapidly in the first five iterations, and then stabilizes, proving
its good convergence.

2) Jasper Ridge: Fig. 12 shows a comparison of esti-
mated endmembers from each tested algorithm with Jasper
Ridge data. Among them, ATGP–FCLS, HCSNMF-0.3, and
HCSNMF-0.5 obtain an incorrect Water spectral curve,
indicating that HCSNMF-0.3 and HCSNMF-0.5 are more
dependent on the setting of the initial value. The endmembers
estimated by uDAS and MVNTF are better than those of
ATGP–FCLS, HCSNMF-0.3, and HCSNMF-0.5, but are still
inconsistent with the reference values. The endmembers eval-
uated by other algorithms are relatively close to the reference
values and have achieved good results.
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Fig. 17. Abundance maps evaluated by all tested algorithms with Urban data. (a) True. (b) ATGP–FCLS. (c) HCSNMF-0.3. (d) HCSNMF-0.5. (e) SGSNMF.
(f) uDAS. (g) L1/2NMF. (h) MRSNMF. (i) RNMF. (j) MLNMF. (k) MVNTF. (l) SNMF-Net. (m) Ours.

TABLE IV
COMPARISON RESULTS OF EACH ALGORITHM ON URBAN DATA
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TABLE V
COMPARISON RESULTS OF EACH ALGORITHM ON CUPRITE DATA

Fig. 18. Convergence curve of our SSAINMF on urban data.

Fig. 13 shows the abundance maps evaluated by each
algorithm on Jasper Ridge. From the obtained abundance

results, ATGP–FCLS, HCSNMF-0.3, and HCSNMF-
0.5 misidentify the water endmembers as the road endmem-
bers, so that the road abundances are wrongly distributed in
the water abundance maps. However, this situation is improved
in SGSNMF, L1/2NMF, SNMF-Net, and SSAINMF, proving
that they perform better.

Table III gives the quantitative results of each algorithm
on Jasper Ridge data, in which ATGP–FCLS, HCSNMF-0.3,
and HCSNMF-0.5 perform the worst. The abundance effect
of uDAS is better, but its reconstruction and endmembers
effects are poor. The reconstruction and abundance errors of
MVNTF and SNMF-Net are larger. In contrast, SGSNMF,
MRSNMF, RNMF, and our SSAINMF perform better. How-
ever, SGSNMF, MRSNMF, and RNMF ignore the influence of
band noise, so their results are slightly worse than SSAINMF.

Since the 16th iteration, the gradient of SSAINMF has been
stable in Fig. 14.

3) Urban: A comparison of endmembers obtained by each
algorithm on urban data is shown in Fig. 15. It can be
found that the asphalt, tree, and roof spectral curves esti-
mated by most algorithms are relatively close to the reference
values. However, the estimation of grass endmembers is
challenging, and most algorithms achieve a poor spectral

curve. On the contrary, the grass endmembers evaluated by
SSAINMF and SNMF-Net are very close to the reference
value in Figs. 15 and 16, and the effects are better, but
SNMF-Net obtains a poor Roof endmember. Fig. 17 shows
the abundance maps evaluated by each algorithm on urban.
The abundances obtained by each algorithm are poor, but
in SGSNMF, L1/2NMF, SNMF-Net, and SSAINMF, the roof
abundances are improved.

Table IV summarizes the quantitative results of each
algorithm for urban data. It can be found that the overall
performance of ATGP–FCLS is poor, and the reconstruction
error is larger. The estimated abundances and endmembers of
MRSNMF, RNMF, MLNMF, and SNMF-Net are unreliable.
The endmembers extracted by HCSNMF-0.3, HCSNMF-0.5,
SGSNMF, uDAS, L1/2NMF, and MVNTF are less effective.
Although the abundances estimated by SSAINMF are slightly
worse, its reconstruction and endmember effects are very good.
In particular, the endmembers it extracts have achieved the first
good result.

From Fig. 18, the gradient of SSAINMF on urban soon
declines and then stabilizes.

4) Cuprite: Fig. 19 shows the comparison of the end-
member spectra obtained by each algorithm on Cuprite data.
Among them, the Andradite, Buddingtonite, Kaolinite1, Non-
tronite, and Pyrope endmember curves estimated by SGSNMF
are less effective, and those estimated by other algorithms are
more effective. L1/2NMF and SSAINMF provides advantages
in estimating Pyrope endmembers. In the optimization process,
they better compensate for the deviations of the initial values.
Moreover, since cuprite has no abundance ground truth, only
the abundance maps of SSAINMF are shown in Fig. 20. It can
be found that the sparsity of its abundances is better.

Table V shows the quantitative results of each algorithm on
cuprite data, and the endmember and reconstruction effects
of SGSNMF are both poor. The endmember effects of
ATGP–FCLS are better, but its reconstruction performance is
poor. The reconstruction performance of HCSNMF-0.3 and
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Fig. 19. Endmember curves evaluated by each algorithm on the Cuprite data. (a) True. (b) Estimate.

Fig. 20. Abundance maps evaluated by our SSAINMF with cuprite data.
(a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite1.
(f) Kaolinite2. (g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope.
(k) Sphene. (l) Chalcedony.

Fig. 21. Convergence curve of our SSAINMF on Cuprite data.

HCSNMF-0.5 is the best, but their endmember effects are
slightly worse. In contrast, the estimated endmembers of
SSAINMF achieve the best results in the case of smaller
reconstruction errors, and its performance is better. Fig. 21

Fig. 22. Reconstruction performance of each algorithm on five datasets.
(a) ATGP–FCLS. (b) HCSNMF-0.3. (c) HCSNMF-0.5. (d) SGSNMF.
(e) uDAS. (f) L1/2NMF. (g) MRSNMF. (h) RNMF. (i) MLNMF. (j) MVNTF.
(k) SNMF-Net. (l) Ours.

Fig. 23. Abundance performance of each algorithm on four datasets. (a) ATG-
P–FCLS. (b) HCSNMF-0.3. (c) HCSNMF-0.5. (d) SGSNMF. (e) uDAS.
(f) L1/2NMF. (g) MRSNMF. (h) RNMF. (i) MLNMF. (j) MVNTF. (k) SNM-
F-Net. (l) Ours.

illustrates that the gradient of SSAINMF declines rapidly in
the first five iterations, and then becomes stable.
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Fig. 24. Endmember performance of each algorithm on five datasets.
(a) ATGP–FCLS. (b) HCSNMF-0.3. (c) HCSNMF-0.5. (d) SGSNMF.
(e) uDAS. (f) L1/2NMF. (g) MRSNMF. (h) RNMF. (i) MLNMF. (j) MVNTF.
(k) SNMF-Net. (l) Ours.

On the whole, Figs. 22–24 show the comparison histograms
of the reconstruction, abundance, and endmember effects of
12 tested algorithms on different data, respectively. It can
be seen that the proposed SSAINMF can achieve better
endmembers and abundances from the transformed spaces of
synthetic and real data without high reconstruction error.

V. CONCLUSION

As is well known, external interference brings serious
challenges to spectral unmixing. To effectively improve the
unmixing robustness, this article develops a spectral-spatial
anti-interference NMF for hyperspectral unmixing, named
SSAINMF. On the one hand, we focus on the effectiveness of
the band information. Because endmember estimation involves
all bands, the damaged bands directly affect the spectral
information of the estimated endmembers. To this end, the
priority bands of statistical components within the data are first
defined by transforming the original data space. According
to the contribution of each priority band, their weights are
quantified, so as to effectively repair damaged information in
original space during optimization. Most importantly, we also
demonstrate the restricted isometric and restricted isospectral
properties for abundances and endmembers between the origi-
nal domain and the transformation domain, which provides the
basis for spectral unmixing based on spatial transformations
in the future. On the other hand, we also consider the high
homogeneity within a neighborhood. A set of inductive indices
are first introduced to control the structural sparsity of the
abundances in the neighborhood. A pixel similarity constraint
is also designed to further guarantee the spatial smoothness of
pixels in the neighborhood. At the same time, the similarity
degree between these pixels is also controlled by using the
spatial–spectral distance indices. This not only enhances the
resistance to interference, such as spatial noise and spectral
variability but also effectively promotes the idealization of
estimated endmember spectra.

In short, combining with the better performance on synthetic
and real data, it can be observed that SSAINMF can, indeed,
reduce the interference such as noise and spectral variability by
considering the effects of both band and spatial information.

In particular, in large homogeneous regions, the advantages of
band priorities and spatial similarity can be fully exploited.
Under effectively resisting the false guidance of the initial
values, SSAINMF can deeply mine the clean components in
a homogeneous region, and characterize the endmember and
abundance information adaptively and effectively.
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