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Abstract— Wealthy spectral information provided by hyper-
spectral image (HSI) offers great benefits for many applications in
hyperspectral data exploitation. However, processing such high-
dimensional data volumes that may result in redundant bands
due to its high interband correlation will be a challenge. For
target detection and classification, this is particularly true since
there may only need a relatively small number of bands that
respond one particular target of interest well, while most of
other bands do not. Band selection (BS) is a major dimensionality
reduction technique to remove the redundant bands and selects
a few bands to represent the entire image. However, how to
eliminate the effect of uninteresting targets with similar spectra
on detection of interesting targets is a severe issue arising in target
detection for BS. This article develops a new approach called
target-constrained interference-minimized BS (TCIMBS) which
can be used to select band subset for specific target detection,
while annihilating targets of no interest and suppressing interfer-
ers and background. Its idea is derived from target-constrained
interference-minimized filter (TCIMF). By taking advantage of
TCIMF, two band prioritization (BP) criteria called forward
minimum variance BP (FMinV-BP) and backward maximum
variance BP (BMaxV-BP) along with their three band search-
based BS counterparts called sequential forward TCIMBS (SF-
TCIMBS), sequential backward TCIMBS (SB-TCIMBS), and
improved SB-TCIMBS (SB-TCIMBS∗) are derived. The experi-
mental results suggest that TCIMBS can improve the detection
accuracy and also achieve better performance in comparison with
several state-of-the-art methods.

Index Terms— Band prioritization (BP), band selection (BS),
hyperspectral image (HSI), target detection, target-
constrained interference-minimum filter (TCIMF), virtual
dimensionality (VD).
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NOMENCLATURE

HSI Hyperspectral image.
BKG Background.
DR Dimensionality reduction.
BS Band selection.
BP Band prioritization.
TCIMF Target-constrained interference-minimized

filter.
TCIMBS Target-constrained interference-minimized

BS.
FMinV-BP Forward minimum variance BP.
BMaxV-BP Backward maximum variance BP.
SF-TCIMBS Sequential forward TCIMBS.
SB-TCIMBS Sequential backward TCIMBS.
SB-TCIMBS∗ Improved SB-TCIMBS.
CTBS Constrained target BS.
SF-CTBS Sequential forward CTBS.
SB-CTBS Sequential backward CTBS.
SCBS Sparse constrained BS.
CSCBS Class signature-constrained BKG

suppression.
CSCBS-SFBS CSCBS search forward BS.
CSCBS-SBBS CSCBS search backward BS.
SDIA Signal-decomposed and interference-

annihilated.
SNR Signal-to-noise ratio.
SBR Signal-to-BKG ratio.
UBS Uniform BS.
VD Virtual dimensionality.

I. INTRODUCTION

HYPERSPECTRAL remote sensing takes advantage of
the nanoscale spectral resolution provided by an imaging

spectrometer to acquire a large volume of image data with very
narrow and contiguous spectra so as to achieve synchronous
acquisition of ground object space, radiation, and spectral
information [1]–[6]. Accordingly, hyperspectral imaging has
recently developed as an emerging remote sensing technique,
which greatly expands conventional remote sensing’s capabil-
ity in revealing subtle material substances which cannot be
known or by visual inspection a priori [7], [8]. Therefore,
it has been widely used in many applications [7]–[19], which
generally cannot be resolved by multispectral imaging [20].
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Specifically, this article will place its main focus on a partic-
ular application in target detection via BS.

DR can retain crucial and vital information for follow-up
data processing [7, Ch. 6], so that it has been widely used
to reduce the high dimensional data volumes of HSI with
hundreds of spectral channels. BS is one of the major DR
techniques used for this purpose by removing unnecessary
redundant bands or unwanted bands such as noisy bands.
A major advantage of BS over other DR approaches such
as component analysis-based methods and feature extraction-
based techniques is that the selected bands not only contain
more useful detailed data information but also keep integrity
of their spectral characteristics.

Generally, BS can be performed by several different
patterns. The first one is BP-based BS which prioritizes
all the spectral bands in accordance with their priority
scores ranked by a BP criterion such as variance [21],
mutual information [22], [38], entropy [23], information diver-
gence [24], maximum variance principal component analy-
sis (MVPCA) [25], constrained band selection (CBS) [26],
and minimum estimated abundance covariance (MEAC) [27].
This type of BS is easy to implement and widely used.
Unfortunately, the prioritization of each band is based on
the data information or statistics contained in the image data
and has nothing to do with specific applications. The second
one is band clustering/grouping-based BS [28]–[30], [34].
Such cluster-based BS approaches first divide the bands into
disjoint clusters and then select the center of each cluster to
form a selected band subset. The band subsets selected by
the cluster-based BS approaches are strongly influenced by
initial centers and parameters. The third one is greedy-based
BS [31], [32] which decouples an NP-hard combination prob-
lem through greedy mountain climbing and iteratively obtains
a candidate band subset. Band subset is generally found by
a band search strategy such as sequential forward selection
(SFS) [33] and sequential backward selection (SBS) where
SFS starts with an empty set of candidates and then increments
the current candidate band subset by one band at a time,
while SBS starts with the full band set and then deletes one
band at a time to form the current candidate band subset.
The fourth one is evolution-based BS [23], which includes
a variety of evolutionary computing strategies such as particle
swarm optimization (PSO) [34], [35], firefly [36], and colony
algorithm [37], [38].

Regarding BS developed for target detection,
Yuan et al. [39] developed an approach, called multigraph
determinantal point process (MDPP) to capture the full
structure among different bands from a graph where each
band is considered as a node and the edge is specified by
similarity between bands. Accordingly, a path represents a
possible band subset. On the other hand, Wang et al. [40]
proposed a multiple-band selection (MBS) method, which
does not require prioritizing the bands but rather selects
a desired band subset for anomaly detection. Based on
constrained energy minimization (CEM) developed in [41],
Geng et al. [42] also developed an SCBS, which is
convenient for solving the global optimal solution and

avoids the complicated process for searching subset from
total bands. Wang et al. [43] proposed a new BS method
called minimum variance band prioritization (MinV-BP)
for multiple-target detection, which minimizes the variance
generated by the desired target signal to calculate the priority
of each band. Despite that the above-mentioned methods can
effectively select a set of bands that are sensitive to targets
of interest, they do not fully consider the interference and
impact of targets of no interest which have similar spectra
to that of targets of interest on BS for target detection. As a
matter of fact, in many real-world applications, this type of
uninteresting targets and complex BKG may greatly influence
detection, result in false target identification, and also create
many false alarms.

This article presents a TCIMBS approach where two BP
criteria and three corresponding band search-based BS meth-
ods as their counterparts are developed to select optimal band
subsets for target detection. Its idea is originated from target
constrained interference-minimized filter (TCIMF) [44] but
its motivation is actually inspired by three different pieces
of work, the signal-decomposed and interference-annihilated
(SDIA) model developed in [45], CEM [41], and orthogonal
subspace projection (OSP) [12], all of which are designed for
target detection. In TCIMF, two types of targets are specified,
the desired target matrix D and the undesired target matrix
U where D is used for multiple target detection and U is
used to remove the effects of undesired targets. Moreover,
the SDIA model further decomposes the target matrix D
into two target submatrices, one consisting of targets of
interest, Dinterest and the other comprised targets of no interest,
Dno-interest. Therefore, TCIMBS expands the two-component
(D, U) target matrix used in TCIMF to a three-component
(Dinterest, Dno-interest, U) target matrix as the SDIA does.
Accordingly, TCIMBS can be expected to select more effective
and appropriate bands for detection of specific targets of
interest in Dinterest, while suppressing the effect of similar
targets in Uunwanted = [Dno-interest U] on target detection at the
same time.

As a summary, four main contributions of this article can
be described as follows.

1) This article develops a new BS approach, TCIMBS
for target detection. It extends a two-component
(D, U)-based TCIMF to a three-compomnet
(Dinterest, Dno-interest, U)-based TCIMBS by considering
Uunwanted = [Dno-interest U] as an unwanted target matrix
to replace the original U used in TCIMF as undesired
target matrix. As a result, TCIMBS selects a band
subset with strong ability in responding to targets
of interest via further partitioning the desired target
matrix D into targets of interest Dinterest and targets
of no interest, Dno-interest. In this case, the targets of
no interest in Dno-interest similar to targets of interest
in Dinterest can be considered as unwanted targets in
Uunwanted to be eliminated for further improving target
detectability.

2) To implement TCIMBS, two types of TCIMF-BP crite-
ria, FMinV-BP and BMaxV-BP, are derived.
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3) In correspondence to TCIMF-BP criteria, three
search strategy-based BS algorithms, SF-TCIMBS,
SB-TCIMBS, and the SB-TCIMBS∗, are also developed
as their counterparts.

4) A comprehensive study and analysis via extensive exper-
iments is conducted to demonstrate the advantages of
TCIMBS over CTBS, CSCBS, and several state-of-the-
art methods.

The remainder of this article is organized as follows.
Section II briefly describes original motivations and delineates
significance of this article in detail. Section III introduces
the basic principles of TCIMF. Section IV derives TCIMBS.
Section V designs two types of criteria for prioritizing
bands. Section VI provides details of the implementation
process of three search strategies based on TCIMBS.
Sections VII and VIII perform experiments based on the
simulated data and real data, respectively, and conduct com-
parative analysis on the experimental results. Section IX pro-
vides some discussions of the experimental results. Finally,
Section X draws some conclusions.

II. MOTIVATIONS AND SIGNIFICANCE

A. Motivations

The motivation of TCIMBS was originated from combining
the ideas of CEM [41], OSP [12], and TCIMF [44], all
of which are available at https://www.harrisgeospatial.com/
docs/tdselectmethods.html from the popular software Environ-
ment for Visualizing Images (ENVI) which is developed by
L3Harris Geospatial and has been widely used for remote
sensing image analysis. TCIMF combines the strengths of
both CEM and OSP to enhance the target detectability. Also,
according to the SDIA model in [45], the targets in D used in
TCIMF may be made up of two types of targets: interesting
targets Dinterest and uninteresting targets Dno-interest. In this case,
a direct use of TCIMF to detect the targets of interest in
Dinterest may not effectively work if it does not take care
of the effect resulting from uninteresting targets in Dno-interest

whose signatures are similar to those of targets in Dinterest. This
issue was investigated previously in the SDIA model [45],
but unfortunately, it was designed using full band spectral
information in which case all targets in D to be detected are
assumed to have equal responses to all spectral bands. In many
practical applications, this is generally not true. TCIMBS is
derived by combining all the four models, CEM, OSP, TCIMF,
and SDIA, to take advantages of their benefits.

On the other hand, the BS issue for target detection has
been investigated in the past. Recently, an approach called
CTBS was developed in [43] to select bands according to
target characteristics specified by CEM. Then CTBS was later
extended to HSI classification by CSCBS-based BS [46] where
the concept of multiple target detection proposed in [47]
was extended to multiple-class classification via linearly con-
strained minimum variance (LCMV) in [49]. Despite all these
efforts, CTBS and CSCBS-based BS did not take advantage
of U in TCIMF to eliminate the effect of undesired targets on
target detection which inspires the work of TCIMBS.

B. Significance of TCIMBS

The significance of TCIMBS can be summarized in four
aspects.

1) The first and foremost significance is exploration of
interaction between the desired target matrix denoted by
D and undesired target matrix denoted by U. In CTBS,
only a single target is considered for BS with D = d and
no undesired targets are involved, i.e., U = ∅. On the
other hand, CSCBS-based BS considered D as a multiple
target matrix for BS simultaneously but also no U is
used, i.e., U = ∅. Neither CTBS nor CSCBS-based BS
includes U as a part of BS. As a matter of fact, the
similarity between target signatures in D and U plays
a key factor in BS. If one desired target d in D has
its signature too similar to that of an undesired target
u in U, eliminating u could have impact on reducing
the detectability of d and vice versa. In this case, the
detection of d may also detect u which may further
confuse the detection of d. Despite that the detectability
of d can be reduced by eliminating u, the great benefit
resulting from the use of u is the complete elimination of
its interfering effect on detection of d. In contrast, if the
signature of a desired target d in D is dissimilar to the
signature of an undesired target u in U, eliminating u
could even further enhance the detectability of d and
vice versa.
This article conducts a detailed analysis of TCIMBS by
manipulating the desired targets in D and the undesired
targets in U via extensive experiments performed in
Sections VII and VIII where three scenarios for BS
are particularly designed, namely, single-target detection
with D = d and U = ∅ for CTBS, full multiple-target
detection with D and U = ∅ for CSCBS-based BS,
and partial multiple target detection with a partial
set of multiple targets in D, denoted by Dinterest with
Dinterest ⊂ D and Dinterest �= D for TCIMBS. The 3rd
scenario is of particular interest. With this scenario,
D is broken up into two target submatrices, called
targets of interest, Dinterest and targets of no interest,
Dno-interest as D = [Dinterest Dno-interest]. In this case,
we can move the uninteresting targets in Dno-interest to
the original U to form a new augmented undesired target
matrix, considered as unwanted target matrix specified
by Uunwanted = [Dno-interest U]. As a result, the original
formulation of [D U] used in TCIMF can be further
partitioned as a three-component (Dinterest, Dno-interest, U)-
target matrix as [D U] = [Dinterest Dno-interest U] =
[Dinterest Uunwanted] where the original D and U used
in TCIMF are now replaced with D ← Dinterest and
U ← Uunwanted = [Dno-interest U]. It is this 3rd sce-
nario that manifests the interaction between Dinterest

and Uunwanted = [Dno-interest U]. Moreover, if we let
Dinterest = d, Dno-interest = ∅, and U = ∅, which
gives rise to Uunwanted = ∅, then the 3rd scenario is
reduced to the 1st scenario. On the other hand, if we let
Dinterest = D, Dno-interest = ∅, and U = ∅ which results in
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Uunwanted = ∅, then the 3rd scenario is further reduced
to the 2nd scenario.

2) It is well known that BKG has a tremendous impact on
target detection. The commonly used SNR is generally
not applicable to hyperspectral target detection due to
the fact that an HSI usually has high SNR but a
severe BKG issue caused by unknown subtle material
substances which can be uncovered by its very fine
spectral resolution. TCIMBS is developed to particu-
larly deal with such an issue. It takes the least-squares
error (LSE) resulting from TCIMF in [44] as a BP
criterion designed for TCIMBS. Most interestingly, such
TCIMF-derived criteria turn out to be so-called SBR
which can be actually considered as an extension to SNR
where the definition and derivations of SBR are provided
in Section IV. SBR is a new concept introduced into BS.

3) According to [43, Th. 1], CTBS was derived by impos-
ing a constraint on a single target with D specified
by a single desired target as d. As an extension to
CTBS, [46, Th. 1] was used to derive CSCBS-based
BS by imposing multiple constraints on D consisting
of desired multiple targets corresponding to multiple
class means without specifying U. This article presents
a general theorem which indeed includes these theorems
as special cases by imposing constraints on both D and
U simultaneously. In fact, it is this theorem that provides
a basis for the fundamental design criteria for TCIMBS.
Specifically, all the BS criteria derived in [43] and [46]
can be readily interpreted as special cases of TCIMBS
criteria.

4) Last but not the least, since CEM, TCIMF, and OSP have
been used by the ENVI software, it may be very likely
that TCIMBS will have potential to be also included in
its future software updates. With this benefit, TCIMBS
can advance further development in many applications.

III. TCIMF

Suppose that {ri}Ni=1 is the set of data sample vectors
in an HSI, where ri = (ri1, ri2, . . . , ri L )T , 1 ≤ i ≤ N ,
represents an L-dimensional sample vector, and N and L are
the total number of pixels and spectral bands, respectively.
In addition, let D = [d1 d2 . . . dp] be an (L × p)-dimensional
signature matrix of interest and denote U = [u1 u2 . . . uq ]
as an (L × q)-dimensional undesired target signature matrix
in detection. It should be noted that D and U can be either
provided by a priori knowledge or obtained by a posteriori
knowledge. TCIMF aims to find a target detector which can
detect signal specified by the desired target signature matrix D
and undesired target signature matrix U via designing a finite
impulse response (FIR) filter denoted by an L-dimensional
vector w = (w1, w2, . . . , wL )T . The filter output energy can
be minimized according to the following constraint:

[D U]T w =
�

1p×1

0q×1

�
(1)

where [D U] is defined as [D U] = [d1 d2 . . . dp u1 u2 . . . uq ]
and 1p×1 is a p × 1 vector with ones in all components and
0q×1 is a q × 1 vector with zero in its components. Using (1)

as a constraint, the TCIMF problem considered in [44] can be
formulated as a target constrained optimization problem

min
w

�
wT Rw

�
s.t. [D U]T w =

�
1p×1

0q×1

�
(2)

with the optimal weight vector wTCIMF given by

wTCIMF = R−1[D U]�[D U]T R−1[D U]�−1
�

1p×1

0q×1

�
(3)

The detector TCIMF using wTCIMF specified by (3) can be
implemented as

δTCIMF(r) =
�

R−1[D U]�[D U]T R−1[D U]�−1
�

1p×1

0q×1

�	T

r

(4)

where R = (1/N)

N

i=1 ri rT
i is the sample correlation matrix.

In particular, there are p targets needed to be detected by
p desired target signatures, d1, d2, . . . , dp and q undesired
targets needed to be annihilated using q undesired target
signatures, u1, u2, . . . , uq . The size of the target signature
matrix, [D U] = [d1 d2 . . . dp u1 u2 . . . uq], and the weight
matrix w = (w1, w2, . . . , wL)T are L × (p + q) and L × 1,
respectively. In order to constrain desired target and unde-
sired target signatures, the (p × q)-dimensional vector c =
(c1, c2, . . . , cp, . . . , cq)

T can be specified by

c =
�

1p×1

0q×1

�
=
⎛
⎝1, . . . , 1
 �� �

p

, 0, . . . , 0
 �� �
q

⎞
⎠T

(5)

Compared with the CEM [41] and OSP [12], TCIMF com-
bines the strengths of both of them, by suppressing BKG as
CEM does and annihilating the impact of undesired target sig-
nal as OSP does. Unlike CEM and OSP, which can only detect
a single target at one time, TCIMF can also simultaneously
detect multiple targets in the image like LCMV. Moreover,
compared to LCMV, TCIMF expands constraint vector 1 to
[1p×1 0q×1]T , where the component “1” is used to constrain the
particular desired target signatures, while the component “0” is
added to annihilate the undesired target signatures. Because of
these two joint constraints imposed on the desired targets and
undesired targets, TCIMF can improve the detection ability
of the detector on the targets of interest as desired targets by
imposing the constraint vector “1” and the constraint vector
“0” on undesired targets to eliminate the influence of undesired
targets on the desired targets. In the meantime, TCIMF can
also minimize the interfering effects resulting from BKG and
noise by inverting the sample correlation matrix R.

IV. TCIMBS

The key feature of TCIMBS is minw{wT Rw} in (2), referred
to as minimum variance (MV) in [44]. Accordingly, replace
the original D and U used in TCIMF with D← Dinterest and
U ← Uunwanted = [Dno-interest U] mentioned in Section II, and
then substitute (3) into (2) to yield the following MV, denoted
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by V(�) given by:
V(�) = �

wTCIMF
�T

RwTCIMF

=
�

R−1[D U]�[D U]T R−1[D U]�−1
c
�T

R

×
�

R−1[D U]�[D U]T R−1[D U]�−1
c
�

=
�

cT
�[D U]T R−1[D U]�−1[D U]T

��
R−1RR−1

�
×
�
[D U]�[D U]T R−1[D U]�−1

c
�

= cT
�[D U]T R−1[D U]�−1[D U]T R−1[D U]
×�[D U]T R−1[D U]�−1

c

= cT
�[D U]T R−1[D U]�−1

c

= cT
��

R−1/2[D U]�T �
R−1/2[D U]��−1

c (6)

It is interesting to note the role of

R−1/2[D U] = �
R1/2

�−1[D U] (7)

playing in (6). If we assume that R1/2 = 
1/2 is a noise
covariance matrix and [D U] is only the signal of interest,
we can further extend a single target to a signal matrix
[D U] = S, then (7) can be reformulated as signal-to-BKG
ratio matrix (SBRM)�

R−1/2[D U]�T �
R−1/2[D U]�

=
⎛
⎝�

1/2��−1

S

⎞
⎠T⎛⎝�

1/2��−1

S

⎞
⎠

= ST
−1�

S = SBRM (8)

which is a (p+q)×(p+q) matrix containing p desired signals
and q undesired signals. As a special case of (8), if [D U] = S
is reduced to a single s and � is reduced to σ 2I where I is an
identity matrix, then (8) is reduced to σ−2sT s which is exactly
SNR.

By virtue of (8), the MV, V(�) can be expressed in terms
of SBRM as

V(�) = cT

�
ST

−1�
S

�−1

c = cT (SBRM)−1c (9)

Accordingly, minimizing (2) is equivalent to finding (6)
and (9), which is also equivalent to maximizing SBRM in (8).
In other words, (6) and (9) indeed the solution to (2) which
maximizes SBRM as a criterion. Since V(�) in (9) is derived
by using the full band set �, we can make it adaptive to band
subset �l which contains l bands by replacing � in (9) with
�l to derive V(�l) for BS. As a matter of fact, in the following
theorem, Theorem 1, we will prove that V(�) with � in (9)
replaced with �l is monotonically decreasing as more bands
are used, l is increased.

Assume that the HSI is consisted of a set of band images,
{bl}Ll=1. bl is the lth band image represented by a column
vector. �l = {b1, b2, . . . , bl} is any band subset containing l
bands, 1 ≤ l ≤ L. Using the subset �l instead of the full band

set �, we can define a new criterion according to the TCIMF
error derived from (6), as follows:

V(�l) = cT
�
[D U]T�l

R−1
�l
[D U]�l

�−1
c (10)

It can be used for TCIMBS, which is the MV only using
bands in the band set �l . More significantly, we can prove
the following theorem, which is vital to the development of
TCIMBS:

{V(�l)}Ll=1 (11)

is a monotonically decreasing sequence.
Theorem 1:

cT
�
[D U]T�l+1

R−1
�l+1
[D U]�l+1

�−1
c

< cT
�
[D U]T�l

R−1
�l
[D U]�l

�−1
c (12)

Proof: Proof of Theorem 1 is given in the Appendix.
Where c is a (p + q) × 1-dimensional constrained vec-

tor which is independent of the subset �l . The target
matrices [D U]�l = [d1

�l
d2

�l
. . . dp

�l
u1

�l
. . . uq

�l
] with

d j
�l
= (d j

1 , d j
2 , . . . , d j

l )T and u j
�l
= (u j

1, u j
2, . . . , u j

l )
T , and

[D U]�l+1 =
�

D�l U�l

dl+1 ul+1

�
with dl+1 = (d1

l+1, d2
l+1, . . . , d p

l+1)
T

and ul+1 = (u1
l+1, u2

l+1, . . . , uq
l+1)

T . Let {ri
�l
}Ni=1 be the matrix

composed of all data samples in the first l bands. The sample
correlation matrix R is reformulated with the first l bands as
follows:

R�l = (1/N)

N�
i=1

ri
�l

�
ri

�l

�T
(13)

V. BP BY TCIMBS

One of the simplest and most direct methods for BS is
to design a criterion for prioritizing each band based on
the information and data characteristics of the band. Most
importantly, the sequence {V(�l)}Ll=1 has been proved to be
monotonically decreasing. Therefore, we design two criteria
for band prioritizing, called FMinV-BP and BMaxV-BP.

A. Forward Minimum Variance Band Prioritization

According to (6) obtained by full band set �, the variance
resulting from TCIMF can be considered as the interfering
effect caused by signal sources including undesired target
signals and BKG signals which do not pass through the
TCIMF (3). Therefore, for any band bl , we can define a
forward BP criterion called FMinV-BP by letting �l in (10)
be a single-band subset {bl} as follows:

V (bl) = cT
�[D U]Tbl

R−1
bl
[D U]bl

�−1
c (14)

where the band set �l in (10) is replaced with a single-band
image bl in (14), and the constrained vector c can be denoted
by (5). Equation (14) measures the minimal variance of all
the samples in band image bl which are specified by target
and undesired target signature in [D U]bl . Specifically, the
smaller the V(bl) is, the higher the priority of the lth band.
Algorithm 1 shows the implementation process of FMinV-BP.
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Algorithm 1 FMinV-BP
1. Initial condition:

According to (14), calculate the priority score for each
band of hyperspectral image, {V(bl)}Ll=1.

2. Prioritize bands by {V(bl )}L
l=1 to get the final sequence

of all the bands. Furthermore, the following equivalence is
obtained.

bl j � blk ⇔ V(bl j ) < V(blk ) (15)

where the notation “�” represents “superior to.” The follow-
ing is the final sequence of all the bands:

bl1 � bl2 � · · · � blL (16)

3. The final band subset of selected bands is obtained by the
first nBS bands, �B S = {bl1 , bl2 , . . . , bln BS

} where nBS is the
number of bands to be selected.

B. Backward Maximum Variance Band Prioritization

In addition to using (14) to prioritize all bands, there is
another idea, called BMaxV-BP, to prioritize the total bands.
BMaxV-BP believes that if one band’s removal from the full
band set � results in the largest variance of the remaining
band subset �̃l = � − {bl}, it should be most important for
the target. Accordingly, BMaxV-BP removes the lth band bl

from the full-band set �, calculates the maximum variance of
the remaining bands, �̃l by (17) and then prioritizes the total
bands in the descending order according to V(�̃l). A detailed
implementation of BMaxV-BP is given as Algorithm 2.

V
�
�̃l

�
= cT

�
[D U]T

�̃l
R−1

�̃l
[D U]�̃l

�−1
c. (17)

VI. BS BY TCIMBS

Many BS methods only consider the information character-
istics or statistical information of HSI such as entropy, vari-
ance, and SNR and select a band subset to be used for different
targets. Unfortunately, as shown in [43], different targets may

Algorithm 2 BMaxV-BP
1. Initial condition:

According to (17), calculate the priority score for each
band of hyperspectral image, {V(�̃l)}Ll=1.

2. Prioritize bands by {V(�̃l)}Ll=1 to get the final sequence
of all the bands. Furthermore, the following equivalence is
obtained.

bl j � blk ⇔ V(�̃ll j
) > V(�̃llk

) (18)

where the notation “�” represents “superior to.” The follow-
ing is the final sequence of all the bands:

bl1 � bl2 � · · · � blL (19)

3. The final band subset of selected bands is obtained by the
first nBS bands, �B S = {bl1 , bl2 , . . . , bln BS

} where nBS is the
number of bands to be selected.

Algorithm 3 SF-TCIMBS
1. Initial condition:

Let nBS be the number of bands needed to be selected,
which are determined by VD and T = [D U].
Find

b∗l1 = arg
�

min
bl∈�

	
cT
�

TT
bl

R−1
bl

Tbl

�−1
c

�

(20)

2. Band augmentation:

b∗l j
=arg

�
min

bl∈�c
j−1

	
cT
�

TT
� j−1∪{bl }R

−1
� j−1∪{bl }T� j−1∪{bl }

�−1
c



(21)

where � j−1 = {bl1 , bl2 , . . . , bl j−1 } and �c
j−1 = �−� j−1 .

3. If j < nBS,

� j = {bl1 , bl2 , . . . , bl j } = � j−1 ∪ {bl j } (22)

and go step 2. Otherwise, BS is terminated. The final set of
selected bands is given by �B S = {bl1 , bl2 , . . . , bln BS

}.

respond to various bands quite differently. To address this
issue, the two new TCIMBS-based BP criteria designed in
Section V, FMinV-BP and BMaxV-BP, are used to evaluate
how much information does a specific target contain in a
band so as to select a band that has the strongest responsive
ability and contains the most information to respond to the
specific targets of interest. In this section, three various search
strategies are developed to find an optimal band subset, which
are SF-TCIMBS, SB-TCIMBS, and the SB-TCIMBS∗.

A. Sequential Forward TCIMBS

SF-TCIMBS is an SFS-based method to argument one sin-
gle band at a time sequentially by (14) instead of prioritizing
all bands as FMinV-BP does. It can be implemented as shown
in Algorithm 3.

It should be noted that there are two key differences in
SF-TCIMBS and FMinV-BP. The first one is that SF-TCIMBS
will take the selected band set � j into consideration, while
FMinV-BP only focuses on the band b j selected to be eval-
uated for prioritizing. The second one is that compared to
FMinV-BP which has to prioritize all bands, SF-TCIMBS will
terminate as long as it reaches the required number of bands
to be selected, nBS.

B. Sequential Backward TCIMBS

Contrary to SF-TCIMBS, an SBS-based BS method can also
be developed according to BMaxV-BP, called SB-TCIMBS,
which selects the bands by (17). Starting from the full band
set �, SB-TCIMBS removes one band at a time from the
remaining band set which is not selected as described in
Algorithm 4.

C. Improved Sequential Backward TCIMBS

The band to be removed by SB-TCIMBS will be the one
which maximizes the variance of the remaining band set every
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Algorithm 4 SB-TCIMBS
1. Initial condition:

Let nBS be the number of bands needed to be selected,
which are determined by VD, and T = [D U].

Find

b∗l1 = arg
�

max
bl∈�

	
cT
�

TT
�−{bl }R

−1
�−{bl }T�−{bl }

�−1
c

�

(23)

2. Band Reduction:
b∗l j
= arg

�
max

bl∈�c
j−1

�
cT
	

TT
�c

j−1−{bl }R
−1
�c

j−1−{bl }T�c
j−1−{bl }


−1
c
�

(24)

where � j−1 = {bl1 , bl2 , . . . , bl j−1} and �c
j−1 = �−� j−1

3. If j < nBS,

� j = {bl1 , bl2 , . . . , bl j } = � j−1 ∪ {bl j } (25)

and go step 2. Otherwise, BS is terminated. The final set of
selected bands is given by �B S = {bl1 , bl2 , . . . , bln BS

}.

time. In this case, the removed band is considered to be the
one that can best characterize the targets of interest. This is
reasonable, but this method does not guarantee that the set of
bands made up of all the removed bands can meet the con-
dition of MV according to TCIMF. Therefore, in this section,
the SB-TCIMBS has been improved from another perspective
based on the definition of TCIMF, called SB-TCIMBS∗. Like
SB-TCIMBS, SB-TCIMBS∗ also uses BMaxV-BP to select
an appropriate band for each search process. SB-TCIMBS∗
deletes only one band at a time to make the remaining band
set meet MV criterion. The process stops when the number
of remaining bands reaches nBS, and the remaining band set
with nBS bands is the optimal band subset to be selected.
But the difference between SB-TCIMBS∗ and SB-TCIMBS
is theoretically using the band selected by SB-TCIMBS∗ for
target detection can minimize the output energy of overall
target detection. Its detailed implementation is described in
Algorithm 5.

VII. SYNTHETIC IMAGE EXPERIMENTS

To evaluate the effectiveness of TCIMBS, this section per-
forms experiments on a synthetic image which was used in [7,
Ch. 4]. It is target embeddedness (TE), which was particularly
designed for signal detection. It was simulated from a real
Cuprite image data shown in Fig. 1(a) available at the US
GS website http://aviris.jpl.nasa.gov/. This scene is a 224-band
image with size of 350 × 350 pixels and was collected over
the Cuprite mining site, Nevada, in 1997. It is well understood
mineralogically. As a result, a total of 189 bands were used
for experiments where bands 1–3, 105–115, and 150–170 have
been removed prior to the analysis due to water absorption and
low SNR in those bands. In this particular scene, five minerals,
alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and

Algorithm 5 SB-TCIMBS∗

1. Initial condition:
Let nBS be the number of bands needed to be selected,

which are determined by VD.

2. Band augmentation:
Let T = [D U],

b∗l j
= arg

�
min

bl∈�c
j−1

�
cT
	

TT
�c

j−1−{bl }R
−1
�c

j−1−{bl }T�c
j−1−{bl }


−1
c
�


(26)

where � j−1 = {bl1 , bl2 , . . . , bl j−1 } and �c
j−1 = �−� j−1 .

3. If j < (L − nBS),

� j = {bl1 , bl2 , . . . , bl j } = � j−1 ∪ {bl j } (27)

and go step 2. Otherwise, BS is terminated. The final set of
selected bands is given by �B S = �c

j−1 = � − � j−1 =
{bl1 , bl2 , . . . , blnBS

}.

Fig. 1. (a) Cuprite AVIRIS image scene. (b) Spatial positions of five pure
pixels corresponding to minerals: A, B, C, K, and M. (c) Five mineral
reflectance spectra and BKG signature (b) which is the sample mean of the
image in (a).

muscovite (M) were identified by ground truth along with their
spatial locations in Fig. 1(b).

Fig. 2 shows the TE simulated by 25 panels using these five
mineral signatures with their appropriate abundance fractions
specified the legends in Fig. 1(c). Among these 25 panels
are five 4 × 4 pure-pixel panels for each row in the 1st
column, five 2× 2 pure-pixel panels for each row in the 2nd
column, five 2 × 2-mixed pixel panels for each row in the
3rd column, and both the five 1× 1 subpixel panels for each
row in the 4th column and the 5th column where the mixed
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Fig. 2. Set of 25 panels simulated by A, B, C, K, and M.

and panel subpixels were simulated according to legends in
Fig. 2. So, a total of 100 pure pixels (80 in the 1st column
and 20 in the 2nd column), referred to as endmember pixels
were simulated in the data by the five endmembers, A, B, C, K
and M. An area marked by “BKG” at the upper right corner
of Fig. 1(a) was selected to find its sample mean, i.e., the
average of all pixel vectors within the area “BKG,” denoted
by b and plotted in Fig. 1(c), to be used to simulate the BKG
for image scene in Fig. 2. The reason for this BKG selection
is empirical since the selected area “BKG” seemed more
homogeneous than other regions. Nevertheless, other areas can
be also selected for the same purpose. This b-simulated image
BKG was further corrupted by an additive noise to achieve a
certain SNR of 20:1, which was defined as 50% signature (i.e.,
reflectance/radiance) divided by the standard deviation of the
noise in [12].

Several state-of-the-art methods, SCBS [42], UBS,
CTBS [43], and CSCBS [46], were used to conduct a
comparative analysis and study. The required number of
bands to be selected for TE was determined by VD [48],
which was 14.

Since there are various scenarios to specify D and U, the
experiments were performed from three aspects; 1) single-
target detection; 2) full multiple-target detection; and 3) par-
tial multiple-target detection to evaluate the effectiveness of
TCIMBS in target detection. It should be noted that, for
full multiple-target detection, D used by TCIMBS consists
of all five targets and U is made up of BKG signatures
extracted from the data set. In partial multiple-target detection,
D contains more than one target of interest, and U consists
of the remaining targets. Moreover, single-target detection is
simply a special case of partial multiple-target detection. More
specifically, the original desired matrix D used by TCIMBS is
reduced to a single-target signature, D = d, and the remaining
four target signatures are considered as targets of no interest
to form an undesired target matrix U.

Qualitative and quantitative analyses were also conducted to
compare the performance among various tested BS methods.
Specifically, the 3-D receiver operating characteristic (ROC)
developed in [7, Ch. 3] and [50]–[52] was used to calculate the
area under the curve (AUC) for the three 2-D ROC curves of
(PD, PF), (PD, τ ), and (PF, τ ) to measure the overall detection
performance, target detection capability, and BKG suppression
ability of a detector, respectively. That is, the higher the AUC

values of (PD, PF) and (PD, τ ) are, the better the detection
performance of the detector is. Conversely, the smaller the
AUC value of (PF, τ ) is, the better the BKG suppression ability
of the detector is.

A. Single-Target Detection

Four methods, UBS, SCBS, CTBS, and TCIMBS, were
compared due to the fact that SCBS and CTBS are CEM-based
BS methods for single-target detection. UBS was included
for comparison because it is a commonly used BS method
without prior knowledge and any specific application. Table I
tabulates bands selected by UBS, SCBS, CTBS, and TCIMBS
using each of five target signatures, A, B, C, K, and M as
the desired target signature d. Fig. 3 shows the detection
results of UBS, SCBS, SF-CTBS, SF-TCIMBS, SB-CTBS,
SB-TCIMBS, and SB-TCIMBS∗ which used bands in Table I
along with Table II which calculated the AUC values of three
2-D ROC curves produced by the seven methods and recorded
the running times.

By visual inspection from Fig. 3, SCBS, SF-CTBS, and
SB-CTBS not only detected the target of interest but also
detected similar target pixels whose spectral signatures are
close to the desired target signature d. In contrast, TCIMBS
could effectively reduce the interfering effect resulting from
similar targets and in the meantime, it could also improve the
accuracy rate of detection. Furthermore, according to the AUC
values of (PD, PF) in Table II, except target signatures B and
K, both UBS and TCIMBS reached the same highest values,
and the AUC value of SB-TCIMBS∗ yielded the highest values
for the remaining three targets. It should be emphasized that
unlike SCBS and CTBS which used CEM as the detector, the
detector used by UBS and TCIMBS was TCIMF. Nevertheless,
TCIMBS selected better bands for a specific target detec-
tion than UBS did. In addition, the TCIMF-detected results
using SF-TCIMBS-selected bands were generally better than
those using SF-CTBS-selected bands. On the other hand, the
TCIMF-detected results using SB-TCIMBS∗-selected bands
were the best. This indicated that compared to CTBS using
the same search strategies, the bands selected by TCIMBS had
better characterization ability for a single target d and could
reduce the influence of similar targets on detection of desired
targets. Finally, although SCBS and UBS have advantages in
time, their selected bands were not as good as those selected
by TCIMBS in terms of target detection.

B. Full Multiple-Target Detection

The experiments performed in this section assumed that a
full set of targets of interest was considered altogether as a
whole to make up the target signature matrix D. In this case,
the undesired target signature matrix U for target annihilation
must be extracted from BKG where the 4 × 4 region at four
corners of the image was extracted and their means were
calculated to be used as undesired target signature to form
U. Also, since CTBS and SCBS are designed for single-target
detection, they are not applicable to multiple-target detection.
So, in the experiments, only UBS, CSCBS, and TCIMBS
were compared for multiple-target detection. Table III lists the
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TABLE I

BAND SET SELECTED BY UBS, SCBS, CTBS, AND TCIMBS ON DETECTION OF EACH SINGLE TARGET A, B, C, K, AND M (nBS = 14)

optimal band subsets selected by UBS, CSCBS, and TCIMBS
with D consisting of five target signatures A, B, C, K, and M.

Fig. 4 shows the detection results of UBS, CSCBS-SFBS,
SF-TCIMBS, CSCBS-SBBS, SB-TCIMBS, and
SB-TCIMBS∗. Table IV tabulates the AUC values of
three 2-D ROC curves obtained from Fig. 4. From Fig. 4, the
detection results of TCIMF using the band subset obtained by
UBS showed that the targets were nearly embedded in BKG,
especially the subpixel targets in the third column, which are
barely invisible. In contrast, the detection results obtained
by TCIMF using the TCIMBS-selected bands detected the
targets very well and the difference between the detected
targets and BKG was visibly clear. This was due to the fact
that the bands selected by TCIMBS could better suppress
BKG while reducing the BKG’s impact on target detection.
This can be also verified by the AUC value of (PF, τ ) in
Table IV where the smaller the AUC value of (PF, τ ) is, the
better the suppression of BKG by the detector and vice versa.
In Table IV, the AUC value of (PF, τ ) produced by TCIMF
using TCIMBS-selected bands was smaller than that using
UBS-selected bands, which further confirms the advantage of
using TCIMBS-selected bands in BKG suppression.

Furthermore, the performance of CSCBS and TCIMBS was
also compared when they both used the same BS search
strategies. According to the AUC values of (PD, PF) in
Table IV, it was found that using the forward BS search
method CSCBS-SFBS achieved one which was higher than
SF-TCIMBS, whereas using the backward BS search method,

SB-TCIMBS∗ also achieved the AUC value = 1, which
is the same as that produced by CSCBS-SFBS. The reason is
that the function of U in TCIMBS is to suppress the response
of the similar undesired targets, while the suppression of the
large BKG uses R−1. However, in the full multiple-target
detection, especially in the analog image TE, U is selected
from the simple BKG, and the spectral in U is very similar
to that of all BKG pixels, which leads to the function of U
being close to R−1, and the effect of U being minimal, making
the mechanism of TCIMBS almost consistent with CSCBS.
Obviously, the AUC value of (PD, PF) has been unable to
evaluate which of the band subsets selected by these two
methods is better for detection. Then, by comparing the AUC
value of (PF, τ ), it can be concluded that the BKG suppression
effect of SB-TCIMBS∗ was better than that of CSCBS-SFBS.
This indicated that although U did not have an advantage in
removing similar undesired targets, it could still reduce the
influence of certain BKG pixels that R−1 cannot suppress.
In conclusion, SB-TCIMBS∗ was the best and slightly better
than CSCBS-SFBS in full multiple-target detection.

C. Partial Multiple-Target Detection

As shown in full multiple-target detection, TCIMBS had
less advantages in the simulated images than in the real images
to be shown in Section VIII. The reason for this is that the goal
of U is to remove the influence of undesired targets, especially
similar interfering targets in D, rather than to suppress the
BKG. When U is formed by a simple signature extracted
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Fig. 3. CEM detection of a single target using bands selected by SCBS and CTBS as well as TCIMF detection of a single target using bands selected by
UBS and TCIMBS where each single target is chosen from one of the five target signatures, A, B, C, K, and M in TE data.

Fig. 4. LCMV detection of full multiple-target using bands selected by CSCBS and TCIMF detection of full multiple-target using bands selected by UBS
and TCIMBS where full multiple-target is D = [A, B, C, K, M] in TE data.

from BKG, its effect is very little. Therefore, partial multiple-
target detection using band subsets selected by UBS, CSCBS,
and TCIMBS was particularly designed to explore the removal
ability of U in target detection.

In order to better discuss the ability of U to remove the
similar interfering targets in D, the setting of the desired
target matrix D and the undesired target matrix U was specif-
ically designed and carefully selected based on the following
guidelines. One is that the less the spectral similarity in
the targets of interest, the better the partial-multiple target
detection. The other is that the higher the spectral similarity
between targets of interest and targets of no interest, the
better the partial-multiple target detection. In other words,
if the spectral difference between the targets of interest and

targets of no interest is small, CSCBS-selected bands used
for detecting interesting targets may not be effective since
such similar uninteresting targets will be still considered by
CSCBS as desired targets to be detected which results in
false alarms. On the contrary, TCIMBS can effectively select
a band subset with strong characterization ability for each
target by suppressing these similar but uninteresting targets as
unwanted targets so as to find better and more effective bands
for each target of interest. In order to evaluate the similarity
between targets, the spectral angle mapper (SAM) was used
to calculate the similarity among all desired targets tabulated
in Table V.

It can be seen that in the TE image, the spectral angles
of targets A and B, A and M, and C and K are the
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TABLE II

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 3 AND RUNNING TIME OF EACH BS METHOD

TABLE III

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF FULL TARGETS D = [A, B, C, K, M]

TABLE IV

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF , τ ) CALCULATED FROM THE RESULTS IN FIG. 4 AND RUNNING TIME OF EACH BS METHOD

smallest. Therefore, D and U are set to two combinations,
{A, C} and {B, K, M} for BS and target detection of partial
targets, respectively. Tables VI–IX and Figs. 5 and 6 are
the results of their BS, detection, and quantitative analy-
sis including AUC values and running time of each BS
method.

Regardless of D = [A, C] or D = [B, K, M], TCIMBS’ con-
straints on the target matrix D and the undesired target matrix
U in partial multiple-target detection ensure that the undesired
targets can be suppressed well while the targets can be also
detected. This fact was demonstrated in Tables VII and IX
where the AUC values calculated by partial multiple-target
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Fig. 5. LCMV detection of partial multiple-target using bands selected by CSCBS and TCIMF detection of partial multiple-target using bands selected by
UBS and TCIMBS where partial multiple-target is D = [A, C] in TE data.

Fig. 6. LCMV detection of partial multiple-target using bands selected by CSCBS and TCIMF detection of partial multiple-target using bands selected by
UBS and TCIMBS where partial multiple-target is D = [B, K, M] in TE data.

TABLE V

SAM OF EACH TARGET SIGNATURE FOR TE DATA

detection using the bands selected SB-TCIMBS∗ had the best
detection performance, and its suppression effect on BKG
was also relatively excellent. In addition, except the detection
results of the two backward BS methods, CSCBS-SBBS and
SB-TCIMBS in Table IX which were slightly worse than
UBS, the results of other BS methods designed for specific
targets were all better than UBS, which justified the use of
the target-constrained BS method.

VIII. REAL-IMAGE EXPERIMENTS

A real-world image, hyperspectral digital imagery collection
experiment (HYDICE) which is widely used in target detection
has a spatial resolution of 1.56 m and contains 169 spec-
tral bands with a size of 64 × 64. There are 15 panels
divided into five types of targets, p1, p2, p3, p4, and p5,
which are distributed on each row with three different sizes,
3 × 3, 2 × 2, and 1 × 1, respectively, shown in Fig. 7(a).
Fig. 7(b) shows their precise spatial locations with the pixels in
yellow (Y pixels) indicating panel pixels mixed with the BKG.
In addition, there are a total of 19 panel pixels highlighted by
red, which are the target pixels to focus on.

Similar to synthetic image experiments, the effectiveness
of TCIMBS was also verified by single-target detection, full
multiple-target detection, and partial multiple-target detection
with nBS = 18 determined by VD.

Fig. 7. (a) HYDICE panel scene. (b) Ground truth map of the 15 panels.

A. Single-Target Detection

As the same as the TE experiments, for single-target detec-
tion, each of the five target panel pixels p1, p2, p3, p4,
and p5 was used as the desired single-target signature d.
The bands selected by UBS, SCBS, SF-CTBS, SF-TCIMBS,
SB-CTBS, SB-TCIMBS, and SB-TCIMBS∗ are listed in
Table X. The detection results using the bands in Table X
along with their corresponding AUC values are also shown in
Fig. 8 and Table XI.

According to the AUC values of (PD, PF) in Table XI, it was
found that UBS had a poor detection of the panel pixels in
rows 2 and 3 using target signatures p2 and p3. This is because
the UBS method selected the same bands for different targets,
so the selected subset of bands cannot effectively identify
panel pixels in rows 2 and 3 using targets p2 and p3. Similarly,
SB-TCIMBS was not effective in detecting panel pixels in
rows 2, 4, and 5 using targets p2, p4, and p5. The reason
for analysis is that SB-TCIMBS removed one band from the
current band set at a time, so as to meet the maximum variance
of the remaining band set. As a result, the selected band set
may not be able to guarantee the MV and, thus, the best
matching degree between the selected band and the desired
target. In other words, the set of selected bands may not be
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TABLE VI

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF PARTIAL TARGETS D = [A, C]

TABLE VII

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 5 AND RUNNING TIME OF EACH BS METHOD

TABLE VIII

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF PARTIAL TARGETS D = [B, K, M]

TABLE IX

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 6 AND RUNNING TIME OF EACH BS METHOD

the most representative for the targets to be detected. This
was why its improved method SB-TCIMBS∗ was proposed.
SB-TCIMBS∗ guaranteed the MV of the remaining bands
while removing redundant bands, so it could retain enough
information to characterize the targets of interest. It turned
out that the target detection results using the band set selected
by SB-TCIMBS∗ was the best.

In general, when a similar target has a certain degree
of similarity to the interesting target to be detected, SCBS
and CTBS can hardly remove the information of such a
similar target, leading to obvious false alarms. By taking
advantage of U, TCIMBS performed better than SCBS and
CTBS in suppressing these similar targets. From the AUC
value of (PD, PF) for each target, most of the AUC values
of using UBS-selected bands were relatively low, while using
TCIMBS-selected bands always yielded higher values. In par-
ticular, TCIMF using SB-TCIMBS∗-selected bands always
produced the maximum AUC values. These demonstrated that
TCIMBS was a very effective BS for specific single-target
detection.

B. Full Multiple-Target Detection
According to the HYDICE scene, in addition to the five

types of target panel pixels, there are also four types of sub-
stances in BKG, namely, grass, road, forest, and interferences
in a large area. Therefore, for each BKG signature, the spectra
of 9 pixels were extracted to calculate the average spectra as
its signature, and then these average spectra of the four BKG
signatures were used to form the undesired target matrix U.

Following the same experiments conducted for TE, the
bands selected by UBS, CSCBS, and TCIMBS are listed in
Table XII. The detection results using the bands in Table XII
along with their corresponding AUC values are also shown in
Fig. 9 and Table XIII, respectively. The detection results in
Fig. 9 show that all the BS methods could detect the target
pixels well, but the bands selected by UBS, CSCBS-SBBS,
and SB-TCIMBS were not effective in suppressing BKG as the
other three BS methods. Three conclusions can be drawn from
the quantitative analysis of the AUC values of (PD, PF). First,
CSCBS-SFBS had the lowest value. Second, TCIMBS had
higher values than that produced by CSCBS in both forward
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Fig. 8. CEM detection of a single target using bands selected by SCBS and CTBS as well as TCIMF detection of a single target using bands selected by
UBS and TCIMBS where each single target is chosen from one of the five target signatures, p1, p2, p3, p4, and p5 in HYDICE data.

Fig. 9. LCMV detection of full multiple-target using bands selected by CSCBS and TCIMF detection of full multiple-target using bands selected by UBS
and TCIMBS where full multiple-target is D = [p1, p2, p3, p4, p5] in HYDICE data.

and backward search manners. Third, the SB-TCIMBS∗ had
the highest AUC value. Since the BKG of the HYDICE image
is more complicated than that of the simulated TE image with
a simple Gaussian noise BKG, R−1 could not suppress as it
did for TE image data. In summary, using bands selected by
TCIMBS for full target detection of real images could improve
the detection performance.

C. Partial Multiple-Target Detection

In analogy with Table V, Table XIV calculated SAM
values among five target signatures, p1, p2, p3, p4, and
p5. As can be seen from Table XIV, the SAM values of
target signatures p1 and p2, p2 and p3, p4 and p5 were
the smallest. This implies that {p1, p2} were very similar,

so are {p2, p3} and {p4, p5}. Therefore, {p1, p3, p4} and
{p2, p5} were used as D and U for BS. Table XV lists
the bands selected by UBS, CSCBS, and TCIMBS. Fig. 10
shows the target detection results of various methods. Their
AUC values and running time are tabulated in Table XVI
where the TCIMF-detected results using the bands selected by
SB-TCIMBS were the worst and the TCIMF-detected results
using bands selected by UBS were also poor. In compar-
ison with CSCBS and TCIMBS, the forward BS method
SF-TCIMBS selected better bands than CSCBS-SFBS did
and the backward BS method SB-TCIMBS∗ was significantly
better than CSCBS-SBBS in terms of selecting effective bands.
On the whole, SB-TCIMBS∗ selected the best band subset for
TCIMF detection.
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TABLE X

BAND SET SELECTED BY UBS, SCBS, CTBS, AND TCIMBS ON DETECTION OF EACH SINGLE TARGET p1, p2 , p3, p4, AND p5 (nBS = 18)

Similarly, we swapped D and U as D = [p2, p5] and U
= [p1, p3, p4]. Table XVII lists the bands selected by UBS,
CSCBS, and TCIMBS. Fig. 11 shows the detection results of
various BS methods along with their AUC values and running
time tabulated in Table XVIII. The TCIMF-detected results of
UBS were obviously worse than those using bands selected
by CSCBS and TCIMBS which are specifically designed for
desired targets to be detected. However, running time of UBS
is least. In general, SB-TCIMBS∗ was the best BS method
since band set selected by SB-TCIMBS∗ can perform well in
target detection and has excellent ability in suppressing BKG.

IX. DISCUSSION

Five concluding remarks are noteworthy.
1) Since UBS has been widely used in BS and also has

its advantage of no prior knowledge required, UBS
was compared to our proposed TCIMBS. The experi-
mental results demonstrated that with the same detec-
tor used to perform target detection, SF-TCIMBS and
SB-TCIMBS∗ performed better than UBS in terms of
the AUC value of (PD, PF) regardless of single-target
detection, full multiple-target detection, and partial
multiple-target detection. This evidence shows that dif-
ferent targets require different sets of bands to be
detected well and the same set of bands selected by
UBS could only work well to some extent.

2) TCIMBS combines the advantages of both CTBS and
CSCBS to select better band subsets to perform target

detection well. This is because TCIMBS moves the
similar targets of no interest Dno-interest in D to form an
unwanted target matrix Uunwanted for eliminating their
interfering effects on targets to be detected. The exper-
imental results demonstrated that TCIMBS had good
consistency and robustness compared with other BS
methods, especially in partial multiple-target detection.

3) The selection of U in TCIMBS is crucial since it
has direct impact on detection performance. Through
the results of single-target detection and partial
multiple-target detection, TCIMBS could select more
effective bands when U is composed of similar targets
of no interest in D which have significant impact on
target detection. When the full targets are detected,
there are no similar targets to be used to construct U
in which case U must be formed by BKG signatures.
However, BKG is so complicated that finding appropri-
ate BKG signatures used for BKG suppression will be
very challenging as demonstrated in TE and HYDICE
experiments.

4) The running time(s) of various BS methods were
documented for the time complexity. The used com-
puter environment was Intel i7-6700 3.4-HZ base
frequency CPU and 16-GB 2133-MHz memory. All
experiments were implemented using MATLAB with
version 2015b. As shown in the Tables II and XI for
single-target detection, UBS required the least time,
followed by SCBS and CTBS, and finally TCIMBS,
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TABLE XI

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 8 AND RUNNING TIME OF EACH BS METHOD

TABLE XII

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF FULL TARGETS D = [p1, p2, p3, p4, p5]

TABLE XIII

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 9 AND RUNNING TIME OF EACH BS METHOD

TABLE XIV

SAM OF EACH TARGET SIGNATURE FOR HYDICE DATA

especially SB-TCIMBS∗, which required the longest
time. Similarly, for full multiple-target detection and
partial multiple-target detection, Tables IV, VII, IX,
XIII, XVI, and XVIII showed that the forward selection
method consumed less time than the backward selection
method. In particular, since SB-TCIMBS∗ needed to be
implemented L-nBS times to obtain the final band subset,
the running time of SB-TCIMBS∗ was the longest.
However, as computing power keeps being improved,
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TABLE XV

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF PARTIAL TARGETS D = [p1, p3, p4]

Fig. 10. LCMV detection of partial multiple-target using bands selected by CSCBS and TCIMF detection of partial multiple-target using bands selected by
UBS and TCIMBS where partial multiple-target is D = [p1, p3, p4] in HYDICE data.

Fig. 11. LCMV detection of partial multiple-target using bands selected by CSCBS and TCIMF detection of partial multiple-target using bands selected by
UBS and TCIMBS where partial multiple-target is D = [p2, p5] in HYDICE data.

TABLE XVI

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 10 AND RUNNING TIME OF EACH BS METHOD

TABLE XVII

BAND SET SELECTED BY UBS, CSCBS, AND TCIMBS ON DETECTION OF PARTIAL TARGETS D = [p2, p5]

TABLE XVIII

AUC VALUES OF (PD, PF), (PD, τ ), AND (PF, τ ) CALCULATED FROM THE RESULTS IN FIG. 11 AND RUNNING TIME OF EACH BS METHOD

the time consumption will become less a problem.
In this case, the detection performance will be the main
concern.

5) Although this article only investigated the application
in target detection, the concepts and ideas derived
from TCIMBS can also be applied to other application

areas, hyperspectral classification, spectral unmixing,
etc., which will be our future work.

X. CONCLUSION

This article develops a new BS method for target detection,
TCIMBS. By constraining a target matrix D of interest and an
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undesired target matrix U, TCIMBS minimizes the variance
of the desired target signals passing through an FIR filter so
as to obtain an optimal band subset that can be used to detect
the desired targets in D. Two BP criteria based on TCIMF
are designed. In addition, using these two BP criteria, two
BS search methods, SF-TCIMBS and SB-TCIMBS along with
an improved backward search method, SB-TCIMBS∗ is also
derived as their corresponding counterparts. The experimental
results demonstrate the effectiveness of TCIMBS from three
aspects. First, unlike UBS, TCIMBS searches for different
optimal subsets of bands for different targets. For desired
targets, when TCIMF is used to detect the targets on the
band subset selected by UBS and TCIMBS, the detection
results based on TCIMBS-selected bands perform better than
that on UBS-selected bands. Moreover, the band subsets
obtained by SF-TCIMBS and SB-TCIMBS∗ are more capable
of suppressing the BKG than UBS. Second, under the same
selection mechanism, comparing the single-target-based BS
method CTBS, experiments have shown that the bands selected
by TCIMBS can effectively reduce the detection of similar
undesired targets and also improve the detection performance.
Third, since the BKG is complex, the band subset obtained
by TCIMBS can effectively reduce the influence of BKG on
the detection and optimize the detection results. In general,
TCIMBS can effectively select a band subset with strong
responsive ability to specific targets in D and weak response to
similar undesired targets in U while suppressing BKG, which
can be successfully applied to the detection of multiple targets
of different types. It should be pointed out that this article only
investigates target detection as an application to demonstrate
the utility of TCIMBS. Its potential can be further explored
for other applications such as classification and spectral
unmixing.

APPENDIX

Proof of Theorem 1: For simplicity, let [D U] = T,
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Now, in order to take care of the scalar 1/N in (A3) to
simplify the following mathematical derivations, we define
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Substituting (A13) and (A12) into (A11) yields (A14) as
follows:
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−1c is monotonically decreasing.
Theorem is proved.
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