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Tucker Decomposition-Based Network Compression
for Anomaly Detection With Large-Scale
Hyperspectral Images

Yulei Wang

Abstract—Deep learning methodologies have demonstrated con-
siderable effectiveness in hyperspectral anomaly detection (HAD).
However, the practicality of deep learning-based HAD in real-world
applications is impeded by challenges arising from limited labeled
data, large-scale hyperspectral images (HSIs), and constrained
computational resources. In light of these challenges, this article in-
troduces a convolutional neural network (CNN)-based HAD model
through the incorporation of Tucker decomposition, named TD-
CNND. Drawing inspiration from transfer learning, the proposed
model initially constructs pixel sample pairs from known labeled
HSIs in the source domain, feeding them into the designed CNN to
train the network learning spectral feature differences to obtain a
CNN containing knowledge from the source domain. Subsequently,
to prevent the need for network retraining caused by structural
changes and to reduce model parameters for improving detecting
timeliness, a general network compression scheme based on Tucker
decomposition is applied to the CNN, where the convolutional
layers of the above CNN undergo Tucker tensor decomposition to
compress the network and alleviate parameter redundancy. Finally,
spectral features realignment is used to recover the detection ac-
curacy loss caused by Tucker tensor decomposition. In addition,
a dual-windows structure is implemented during the detection
phase, incorporating spatial information to the aforementioned
spectral-level learning model, facilitating spectral-spatial collabo-
rative HAD. Experimental evaluations using three real hyperspec-
tral datasets and artificially expanded datasets demonstrate that, in
comparison with state-of-the-art methods, the proposed TD-CNND
method exhibits effectiveness and superiority in terms of both time
cost and detection accuracy, where the notable advantages in terms
of time cost become more pronounced with an increasing number
of pixels.

Index Terms—Anomaly detection, convolutional neural network
(CNN), hyperspectral images (HSIs), transfer learning, tucker
decomposition.
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1. INTRODUCTION

YPERSPECTRAL imaging sensors have the capability
H to capture surface information across hundreds of con-
tinuous bands, facilitating its precise spectral identification in
many applications, yielding an increasingly important role in
the military and civilian fields [1], [2], [3]. Hyperspectral images
(HSIs) are typically conceptualized as a three-dimensional (3-D)
data cube, integrating two spatial dimensions with a spectral
dimension. The rich spectral information embedded within the
HSI is pivotal in identifying subtle differences among different
objects, making HSIs widely used across various applications,
such as target detection [4], [5], anomaly detection [6], [7], [8],
classification [9], band selection [10], [11], etc. Hyperspectral
target detection, in particular, is often approached as a binary
classification problem, determining the probability of each pixel
as either background or target by the prior target spectrum of
interest. However, the intricate imaging environments coupled
with low spatial resolution [12] often make it difficult or even
impossible to acquire desired spectral information for the target
of interest. As a result, hyperspectral anomaly detection (HAD)
without any prior information has received significant research
attention in real applications.

HAD primarily focuses on separating anomalous targets from
the observed background data, based on the spectral difference
between anomalous targets and other pixels. Until now, the
definition of anomalous targets remains ambiguous and is char-
acterized as pixels significantly distinct from the surrounding
background spectrum, along with a low probability of occur-
rence. Anomaly detection is used to locate unusual objects
with particularly small proportions and great differences from
their neighbors in spectral characteristics. Depending on the
application scenario, anomalous targets may appear as different
entities, such as infected trees in woods, rare minerals in geo-
logical applications, and man-made objects (vehicles, aircraft,
and tanks) in defense applications.

Initial HAD methodologies predominantly relied on tradi-
tional statistical approaches, with the assumption that the back-
ground distribution of HSI could be adequately modeled using
standard statistical distributions, with the Gaussian distribution
being particularly prevalent. Anomalies were thus identified as
those pixels exhibiting significant statistical divergence from the
established Gaussian model of the background. The most repre-
sentative method is the Reed-Xiaoli (RX) method [13] proposed
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in 1990, assuming that the background obeys a multivariate
normal distribution and the Mahalanobis distance is used to
estimate the anomalous level of each pixel. Extensive experi-
ments have shown that RX performs satisfactorily in HSIs with
simple backgrounds, but not in complex scenes. In view of this,
various improved methods emerged, such as the kernel-RX [14],
[15], regularized RX [16], and local-RX [17]. These approaches,
while effective in certain contexts, often face limitations in more
complex real-world hyperspectral scenes where the background
distribution might not conform neatly to simple Gaussian or
similar statistical models [18].

In response to the limitations inherent in the background
distribution hypothesis, representation-based approaches have
been gradually proposed. These methods seek to reconstruct
background distribution accurately by considering HSI as a
combination of background and anomalies. To avoid making
any inaccurate assumptions about the HSIs, the collaborative
representation-based detector (CRD) [19] detects anomalies
based on the concept that the background pixel can be linearly
represented by its adjacent pixels, whereas the anomalous pixel
cannot. The CRD has garnered significant attention due to its
simplicity and high efficiency. However, the anomaly detection
results of CRD may be significantly influenced by the size of
the dual window in different datasets. The concept of low-rank
representation (LRR) [20] involves computing the lowest rank
representation of all pixels in the dataset, which is then employed
to detect anomalies by subtracting the reconstructed background
from the original image. While effective in capturing global
pixel relationships, it overlooks the local structure of the pixel
coefficient, which is crucial for accurate representation, poten-
tially affecting the accuracy of anomaly detection results. Given
the fact that the background in HSI is widely distributed while
the target rarely appears, further refinement is achieved through
the low-rank [21] and sparse constraints. Representative ap-
proaches have been proposed such as low-rank and sparse
representation (LRASR) [22] based HAD, low-rank matrix de-
composition based on Mahalanobis distance for anomaly de-
tector (LSMAD) [23], and so on [24]. Numerous studies have
demonstrated that the low-rank constraint is essential for HAD,
allowing the model to effectively distinguish background and
anomaly under a delicately designed dictionary.

The advancement of deep learning methodologies in image
processing has facilitated their integration into HSI processing,
[25], [26], [27]. In terms of HAD, convolutional neural net-
works (CNNGs), auto-encoders (AEs), and generative adversarial
networks (GANs) have been extensively studied. CNNs have
demonstrated proficiency in extracting intricate hierarchical
features from HSIs, where the subsequent convolution layer
can extract data features from the preceding convolution layer
through convolution kernel operation, thereby completing the
extracting of high-level feature information from the under-
lying features [28], [29]. CNN-based anomaly detectors are
usually designed using the differences between pixel spectra,
such as the transferred CNN anomaly detector [30], which
detects anomalous targets by learning the spectral differences
of a known labeled classification dataset. For the unsupervised
HAD methods, the dominant behavior is to achieve anomaly
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detection by reconstructing backgrounds without anomalies.
So, the latest CNN-based method provides a new solution for
HAD, which designs a blind spot strategy to train a background
reconstruction network to detect anomalies [31]. The AE-based
anomaly detectors consider that the main background distribu-
tion in HSI can be more easily reconstructed by a well-designed
AE network than that of anomalies. Therefore, the key goal is
to design an AE network that almost exclusively reconstructs
the background. On this basis, the RGAE [32] imposes the
graph regularization on the latent layer of AE to consider the
relationship between pixels. Besides, to avoid manual parameter
setting during training, an automatic HAD (Auto-AD) method
[33], based on a fully convolved AE with an adaptive adjustment
loss function, is proposed. Xie et al. [34] adopt the Markov chain
Monte Carlo and Gaussian mixture model so that the network
adapts to complex scenes. To learn intrinsic low-dimensional
attributes of HSIs, Wang et al. [35] build a dense residual
self-attention module and a low-rank loss function to constrain
the generation of the latent features. In terms of avoiding to
extract features mixed with anomalous information, a guided
map is generated to restrain the participation of anomalies in
GAED [36].

The deep neural networks, leveraging backpropagation algo-
rithms, exhibit the ability to extract intricate features, yielding
promising results in addressing HAD challenges. Despite the
advancements in deep learning methodologies for HAD com-
pared with tradition methods, these methodologies are still in
the preliminary exploration stage, and the following challenging
issues still need to be further explored.

1) To converge to a good local minimum of the loss function,
the over-parameterization of the networks used in training,
brings a certain degree of network parameter redundancy,
resulting in increased time costs of detection. The resource
consumption and the timeliness of detection of the model
are critical for the performance of HAD. Therefore, when
designing the depth model for optimal performance, it is
important to consider its complexity, including the number
of model parameters and computational requirements.

2) The capability of deep learning-based HAD to handle
large spatial domain images remains a challenge. The
current approaches are primarily designed for smaller
spatial sizes, whereas practical applications often involve
large-scale images. Within the constraints of limited com-
putational resources, the images with large spatial do-
mains may cause a dramatic increase in the number of
parameters and computation for these methods, which
does not meet the anomaly detection requirements for
detection timeliness.

3) Both the AE and GAN-based methods detect anomalies by
reconstructing the background, but experiments show that
most of them inevitably reconstruct anomalies at the same
time, which is especially obvious in the scenarios with the
large target. Furthermore, these methods still lack the use
of spatial information, which is an important component
of HSIs.

In response to the aforementioned challenges, this article

presents a general network compression scheme for the CNNs.
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For large-scale images, this scheme can significantly reduce the
number of parameters and improve the computational efficiency,
resulting in improving detection timeliness. To assess the effec-
tiveness of this scheme, a novel HAD method with Tucker de-
composition is proposed, named TD-CNND, which builds upon
the existing CNN-based method. This method avoids the issue
of reconstructing anomalies during background reconstruction,
which is a common problem with existing methods. HAD is
regarded as a binary classification problem by the TD-CNND
method, with learning the differences between pixel spectra to
detect anomalies. Specifically, inspired by transfer learning, the
proposed TD-CNND extends pixel pairs by leveraging label
information from HSI in the source domain, thereby construct-
ing sufficient training data. These pixel pairs are then fed into
the CNN to learn spectral feature differences. After training, a
CNN containing knowledge of spectral feature differences in the
source domain is obtained. Subsequently, to prevent the need for
network retraining caused by structural changes and to reduce
model parameters for improving detecting timeliness, a general
network compression scheme based on Tucker decomposition
is applied to the CNN obtained from transfer learning. Tucker
tensor decomposition is employed to decompose the convo-
lutional layer into two 1 x 1 convolutional layers and a core
convolutional layer, where achieving the network compression
and reducing the parameter redundancy in the network. After
that, spectral features re-alignment (SFRA) is used to recover
the detection accuracy loss caused by decomposition. Finally,
anomaly detection in the target domain is performed by combin-
ing spectral and spatial information in a dual-window structure.
The main contributions of this article are outlined as follows.

1) Innovative Network Compression Scheme: A general net-
work compression scheme that applies Tucker tensor de-
composition to CNNs. This strategy significantly reduces
the network parameters and prevents the need for retrain-
ing due to structural changes. A novel component, SFRA,
is specifically designed to counteract the loss in detection
accuracy that might accompany the compression process.
This ensures that the model maintains high performance in
anomaly detection tasks even after substantial parameter
reduction.

2) Enhanced Model Scalability for Large-Scale Applica-
tions: Unlike existing deep learning-based methods that
struggle with scalability for large field views, the pro-
posed model can render the CNN-based methods more
suitable for anomaly detection tasks across large field of
view in real-world scenarios, without a dramatic increase
in parameters and computation cost. This is particularly
critical in real-world scenarios where a timely and efficient
process is essential. This approach not only enhances the
efficiency and scalability of CNNs but also preserves their
performance, addressing a significant challenge in the
practical deployment of HAD systems.

3) Broad Applicability of the Compression Scheme: The
proposed network compression scheme has potential ap-
plications beyond HAD. It is suitable for any applica-
tion involving 1-D CNNs, particularly those dealing with
large datasets that include extensive spectral and spatial
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information. This versatility extends to various tasks in
hyperspectral imaging, such as target detection and clas-
sification, thereby demonstrating the wide-ranging impact
of our approach within and potentially outside the field of
hyperspectral imaging.

The rest of this article is organized as follows. Section II pro-
vides a comprehensive description of the proposed TD-CNND,
and Section III presents experimental studies and analysis to
validate the proposed approach, finally, conclusions are drawn
in Section IV.

II. PROPOSED METHOD

This section shows the details of the proposed HAD method
using Tucker decomposition (TD-CNND). The method com-
prises three stages: source domain transfer learning, Tucker de-
composition, and SFRA, and spectral-spatial anomaly detection
in the target domain, as illustrated in Fig. 1.

A. Source Domain Transfer Learning

Inrecent years, the field of remote sensing processing has wit-
nessed the ascendancy of deep learning, culminating in the ad-
vent of methodologies predicated on deep learning-based HAD.
Given the inherent absence of a priori information amenable to
direct utilization for anomalies, training deep neural networks
in a supervised learning paradigm for anomaly detection may
become unfeasible. However, transfer learning, which has the
ability in applying labeled knowledge from a source domain
dataset to the unlabeled task within the target domain, is able to
handle this problem. A transfer learning-based method named
CNND for hyperspectral detection was proposed at the begin-
ning, wherein knowledge from a source domain dataset with
known labels is effectively transferred to the task of anomaly
detection in the target domain. The TD-CNND proposed in
this section represents a notable advancement over the CNND,
particularly in the context of time efficiency for HAD within a
large field of view. This section mainly describes the process of
source domain transfer learning for the TD-CNND method in
detail.

1) Training Data Preparation: The preparation of the train-
ing data involves expanding the training dataset through the label
information from a source domain hyperspectral classification
image. This process involves categorizing the difference be-
tween spectral pixel pairs of the same category as the “similarity”
class (labeled as 0), and that between spectral pixel pairs of
different categories as the “dissimilarity” class (labeled as 1).
Consequently, a sufficient number of sample pairs from both
similarity and dissimilarity classes are obtained to form the
training dataset for the 1-D-CNN. This strategy facilitates the
network in discerning differences between spectra.

2) One-Dimensional CNN: Following the acquisition of the
training dataset for transfer learning, a 1-D-CNN is employed
to learn the spectral feature differences. The network is a feed-
forward network, which encompasses 1-D convolutional layers,
fully connected layers, and activation function layers. This de-
sign enables the incorporation of locally relevant information
through inter-neuronal connections across adjacent layers. As
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Fig. 1.  Flowchart of the proposed TD-CNND method.

shown in Fig. 2, the main network configuration includes 17
learnable 1-D convolutional layers. In the designed framework,
the 1-D-convolutional layers, namely C1, C2, C3, C5, C6, C8,
C9, Cl11, C12, Cl14, and C15, are configured with a stride of
1, while the 1-D-convolutional layers C4, C7, C10, C13, and
C16 employ a stride of 2. The convolution kernel size for the
aforementioned 16 convolutional layers is set to 1 x 3. The final
learnable 1-D-convolutional layer is the Pool layer, distinguish-
ing itself from the average pooling layer employed in the original
paper by incorporating a 1 x 1 1-D-convolutional layer, thereby
contributing to the preservation of spectral information within
the HSIs. Noteworthy optimizations to various components of
the CNN, such as augmenting the number of convolutional
kernels to increase the difficulty of convolution, and modifying
the pooling layer to prevent the loss of detailed information, have
been implemented rigorously to substantiate the efficacy of the
proposed TD-CNND method.

Differing from both the AE and GAN-based methods indi-
rectly detecting anomalies by reconstructing background, the
HAD is regarded as a binary classification problem by the
TD-CNND method, with learning the differences between pixel
spectra to detect anomalies. This effectively avoids that most of

the above-mentioned methods inevitably reconstruct anomalies
at the same time, which is especially obvious in the scenarios
with large targets. Consequently, using the sigmoid activation
function serves as the final layer to produce an output represen-
tation in terms of scores (or labels), deriving the probability that
a given pixel belongs to an anomaly. The optimization function
employed for the training of the 1-D-CNN in transfer learning
is the binary cross entropy, expressed as follows:

1 B
Losspce = — 3 D lyi-log fi+ (1 =) -log (1 = fi)]. (1)
=1

B. Tucker Decomposition and Spectral Feature Realignment

The integration of deep learning-based methods has indeed
substantially advanced the extraction of intricate features for
HAD, resulting in notable improvements in detection perfor-
mance. However, this advancement has come at the expense of
increased hardware requirements and heightened computational
complexity. In contrast to traditional anomaly detection meth-
ods, deep learning-based HAD methods leverage a multitude
of network parameters to guide the trained network toward a
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Fig. 2. One-dimensional CNN for TD-CNND.

favorable local minimum of the optimization function. How-
ever, these methods would introduce redundancy in network
parameters, consequently increasing computational complexity.
Though efficacious for HAD in scenarios characterized by HSIs
with smaller field of views and relatively diminutive spatial
dimensions, these methods may prove less apt for practical
applications that entail a substantial volume of large-scale HSIs.
Consequently, the imperative arises to design efficient deep
learning-based HAD methods that mitigate time costs while
concurrently enhancing or sustaining detection accuracy.

1) Network Compression Scheme: To prevent the need for
network retraining caused by dramatic structural changes and
to reduce model parameters for improving detecting timeli-
ness, this article addresses this challenge by introducing a
general network compression scheme for CNNs, incorporating
Tucker tensor decomposition, aiming to alleviate the network
parameter redundancy inherent in 1-D-CNN due to the over-
parameterization. Subsequently, SFRA is specifically designed
in the scheme to ensure the alignment of the network parameter
distribution after decomposition with the source-domain migra-
tion knowledge, thereby reinstating anomaly detection accuracy.
It is worth noting that this general network compression scheme
has well transferability, which can be applied directly to any 1-D
convolutional layers-based CNNs. This compression scheme
proposed is primarily based on the technology of Tucker tensor
decomposition/Tucker decomposition [37], [38], [39].

Tucker Decomposition is a mathematical technology within
multilinear algebra applied to decompose higher order tensors,
which represent multidimensional arrays of data, into a set of
core tensors and factor matrices. This process is instrumental
in extracting latent information and mitigating the complexity
of high-dimensional data representations. Tucker decomposi-
tion serves as a higher-order extension of the singular value
decomposition commonly applied to matrices. In this technique,

mode-n matrices within the original tensor are analyzed and
combined with a core tensor, as shown in Fig. 3. The core tensors
capture the essential information, while the factor matrices pre-
serve the relationships between mode-n matrices. Consequently,
Tucker decomposition is valuable for effectively mitigating the
over-parameterization and reducing the computational demands
associated with CNNGs.

The genera network compression scheme proposed is shown
in Fig. 4. Distinct from 2-D convolutional operations on the spa-
tial dimensions of images and 1-D-convolution extracts hidden
features along the spectral dimension of HSIs. Distinct from
2-D-convolutional operations on the spatial dimensions of im-
ages, 1-D-convolution extracts hidden features along the spectral
dimension of HSIs. Consequently, Tucker decomposition is
applied to the convolution kernel tensor of the 1-D-convolution
layer, and the 1-D-convolution operation can be described as
follows: it maps an input tensor y of size NV x S into an output
tensor v of size N’ x T by using the following linear mapping:

@)

D S
Inlt = E E Ri s,tXn;,s

i=1 s=1

where « is a convolution kernel tensor of size D x S x T'. And
Fig. 4 shows the flowchart of the network compression scheme
proposed. It utilizes the technology of Tucker decomposition to
decompose each 1-D-convolutional layer into a novel structure,
consisting of two 1 x 1 convolutional layers and a core con-
volutional layer. This process aims to construct the lightweight
spectral feature extraction network to eliminate redundant pa-
rameter information within the network. The process can be
described mathematically as follows.

With Tucker model, the kernel tensor ~ is decomposed
according to the rank (R;, Rz, R3) into the following
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form:

(2) U(3) 3)

s,72 7 t,r3

Ri R»
Riysit = Z Z Z CT1J’2,T3U(1

ri=1lro=1rzg=1

where C” is a core tensor of size Ry X Ry X R3, UV, U® and
U® are factor matrices of sizes D X Ry, S X Ry and T X Rs,
respectively.

In fact, it is crucial to underscore that not every dimension
necessitates the application of Tucker decomposition. Within
the network compression scheme delineated in this article, a
deliberate decision has been made to abstain from decompos-
ing the dimension associated with the size of the convolution
kernel tensor k, primarily due to its typically diminutive scale
(commonly denoted as D, and typically equal to 3 or 5). Within
this specific variant of Tucker decomposition, referred to as
Tucker-2 decomposition [40], the convolution kernel tensor
is decomposed as

Ry  Rs
Ki,s,t = Z Z Cﬁ ,T2,7'3 Us(27"2 Ut(?")?, (4)

7‘2—1 7‘4—

where C is a core tensor of size DX Ro X R3.

Tucker Decomposition

|Conv1 l»lConv2|»m» ‘m» »| Convl5 l‘

[convic |mp| Pool |mp| FC |

VBMF

|Conv16|»| Pool |»| FC |

Through substituting the factorization (4) of the kernel tensor
k into the mathematical expression (2) for 1-D-convolution
and summating the rearranged groups, three continuous expres-
sions for the approximate evaluation of 1-D-convolution are
derived

Zn.rs Z U2) Xns ©)
D Rj

Zﬂ’ﬂ’s = Z Z Ci77‘2;T3ZniJ'3 (6)
1=1 Ts:l

Yt = Z Uz . %)

7‘3—

where Z and Z’ are intermediate tensors of sizes NxR3 and
N’ X Rj3, respectively.

Based on the aforementioned formula, it can be observed that
the computing of Z’ involves a 1-D-convolution with the core
tensor « as the convolution kernel. And the computing of Z and
v correspond to 1 x 1 convolution that essentially performs
pixel-wise linear recombination of input maps. Note that there
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is no nonlinear ReLU function in the computations of (5), (6)
and (6), (7). The computational process entails the generation
of a smaller intermediate output tensor in (6), subsequently
restored to its original size in (7). The integration of Tucker de-
composition inherently combines two compression techniques,
seamlessly incorporating both forms of network compression
within the process of Tucker-2 decomposition.

2) Rank Selection With Global Analytic VBMF: The deter-
mination of the rank (R2, R3) for the convolution kernel ten-
sor k serves as a crucial hyperparameter within the network
compression scheme proposed, controlling the delicate balance
between performance improvement and accuracy preservation.
Instead of engaging in a continuous debugging approach through
traditional parameter tuning to ascertain the optimal rank (Rs,
R3), this article adopts a data-driven, one-shot decision-making
process, facilitated by empirical Bayes with automatic rele-
vance determination prior. Variable Bayesian matrix factoriza-
tion (VBMF) [41] proves advantageous due to its capacity to
automatically finding the noise variance and rank while offering
theoretical conditions for perfect rank recovery [42]. Conse-
quently, this paper determines the rank R, and R3 by applying
global analytic VBMF on mode-2 matrices (size of Sx7D) and
mode-3 matrices (size of < SD) of kernel tensor k, respectively.
This strategic approach contributes to the robust and principled
selection of the rank, thereby enhancing the efficiency of the
network compression scheme.

3) Spectral Features Realignment: While the parameters of
the network post-Tucker decomposition undergo a substantial
reduction in comparison to those of the 1-D CNN without Tucker
decomposition, it is inevitable that the parameter distribution of
the new network may not align well with the transfer knowledge
from the source domain, leading to the degradation of the
detection accuracy in the target domain. To address this issue,
the process of SFRA is specifically designed in this scheme.
Random data, which is also from the source domain dataset,
is utilized to realign drift features to establish the lightweight
spectral feature extraction network, thus restoring the detection
accuracy degraded by the network decomposition.

An important detail should be but not explicitly mentioned
in previous sections is that the network compression scheme
presented in this article does not decompose all convolutional
kernel tensors within the learnable 1-D convolutional layers.
Instead, Tucker-2 decomposition is selectively applied solely to
specific internal convolutional layers, namely C3 to C15, within
the 1-D-CNN architecture. This deliberate selection avoids the
risk of over-compression across the entire network, a circum-
stance that could lead to a substantial decline in detection
accuracy due to the loss of numerous network parameters,
potentially causing irrecoverable during the process of SFRA.
The determination of the quantity and specific convolutional
layers subjected to Tucker decomposition necessitates a nuanced
consideration tailored to different HSI datasets and tasks. In the
proposed TD-CNND model, the choice of convolutional layers
for Tucker decomposition is based on empirical insights and
validation experiments, reflecting a context-specific approach
that may not be universally representative across datasets and
tasks.
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C. Spectral-Spatial Anomaly Detection

In contrast to hyperspectral target detection tasks benefiting
from prior information of known target spectra, HAD faces the
challenge of lacking such informative priors. The goal of HAD is
to identify pixels within HSIs that exhibit significant differences
from their surroundings, commonly referred to as anomalies.
To effectively detect these anomalies, the method employed in
this article involves comparing spectral differences between the
under-tested pixel and its neighboring pixels acquired through
a dual-window, where the utilization of dual-window leverages
spatial information for accurate detection. As depicted in Fig. 1,
the under-tested pixel, denoted as 7, is the central pixel of the
dual window. The dual window employed in this article consists
of an inner window of size W;, x W;, and an outer window
of size Wyt X Woyue. For each central pixel to be detected,
surrounding pixels are extracted, forming pairs to be assessed
for anomaly detection. These pairs are then fed into the spectral
feature extraction network, generating corresponding feature
vectors. These vectors are then averaged to obtain the detection
result.

Finally, the detection result is compared against a predefined
threshold 7. Pixels larger than the threshold 7 are considered
anomalies, while those smaller than 7 are considered normal
pixels. This spectral-spatial anomaly detection methodology
effectively integrates both spectral and spatial information to
enhance the precision of anomaly detection in HSIs.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, a comprehensive set of experiments is con-
ducted on three real hyperspectral datasets to validate the effec-
tiveness of the proposed TD-CNND method in terms of both
time cost and detection accuracy.

In Section III-A, we briefly describe the real hyperspectral
datasets used. Section III-B shows the evaluation criteria for
HAD. Section III-C gives the relevant experimental setups
for the proposed method and the comparison methods. It
also introduces the corresponding hardware environments. In
Section III-D, the detection results and analysis of TD-CNND
and the comparison methods on the real datasets are given. It
proves the effectiveness and superiority of TD-CNND method.
Section III-E briefly analyses the effect of hyperparameter-the
dual windows size (Wi,, W,,t) on detection accuracy.
Section III-F provides a more definite complexity analysis of
the proposed method and the deep learning-based comparison
methods. In Section III-G, we perform ablation experiments by
manually extending the real datasets to validate the time-cost
advantage of TD-CNND on large spatial domain datasets.

A. Hyperspectral Datasets

This section provides the detailed information about the real
hyperspectral datasets used for detection in the target domain,
along with a labeled hyperspectral dataset of the same sensor
used for transfer learning in the source domain.

Salinas Dataset: The Salinas dataset, acquired by AVIRIS
sensors over the Salinas Valley in California, USA, has 224
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Fig. 5.
Auto-AD. (i) CNND. (j) TD-CNND.

Fig. 6.
(i) CNND. (j) TD-CNND.

bands with a spatial resolution of 3.7 m. The original image size
is 512 x 217, featuring 16 categories of label samples, including
vegetables, bare soil, vineyards, etc., each containing hundreds
of label samples. Since labeled information is provided, this
dataset is used the source domain transfer learning.

SanDiego Dataset: The San Diego dataset, collected by
AVIRIS at the San Diego Airport area, California, USA, exhibits
a spatial resolution of 3.5 m and image of size 120 x 120, with a
total of 224 bands, spectral resolution of 10 nm and a wavelength
range of 370-2510 nm. After removing low SNR and water
absorption bands, a total of 189 bands are retained for detection.
The pseudo-color image and the corresponding ground truth are

Anomaly detection maps for beach dataset. (a) Pseudo-color image. (b) Ground truth. (¢c) RX. (d) LRASR. (e) CRD. (f) RGAE. (g) GNLTR. (h) Auto-AD.
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Anomaly detection maps for SanDiego dataset. (a) Pseudo-color image. (b) Ground truth. (c) RX. (d) LRASR. (e) CRD. (f) RGAE. (g) GNLTR. (h)

(e)

(O]

shown in Fig. 5(a) and (b). The aircraft (58 in total) in a scene
is treated as an anomaly.

Beach Dataset: The Beach dataset is captured by the AVIRIS
sensor on Cat Island, with a spatial resolution of 17.2 m. After
preprocessing such as removing the noise bands, an image with
the size of 90 x 90 x 188 is obtained in this experiment.
The pseudo-color image and the corresponding ground truth are
shown in Fig. 6(a) and (b), including 19 anomaly points.

Urban Dataset: The Urban dataset is captured by AVIRIS
sensors off the coast of Texas in the United States. The whole
image has a total of 100 x 100 pixels, leaving 204 bands after
removing the low signal-to-noise ratio bands. The pseudo-color
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Fig.7.
(i) CNND. (j) TD-CNND.
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Anomaly detection maps for Urban dataset. (a) Pseudo-color image. (b) Ground truth. (¢c) RX. (d) LRASR. (e) CRD. (f) RGAE. (g) GNLTR. (h) Auto-AD.

(

(2)

Fig. 8.
(i) CNND. (j) TD-CNND.

image and corresponding ground truth are shown in Fig. 7(a)
and (b), including 64 anomaly points.

Cuprite Dataset: The Cuprite dataset was obtained by the
AVIRIS sensor, in the Cuprite mining district of Nevada
in 1997 There are about 14 kinds of minerals in this im-
age, including buddingtonite, Na-Montmorillonite, Nontronite

(h)

() O]

Anomaly detection maps for Cuprite dataset. (a) Pseudo-color image. (b) Ground truth. (c) RX. (d) LRASR. (e) CRD. (f) RGAE. (g) GNLTR. (h) Auto-AD.

(Fe clay), Kaolinite, etc. We use a 250 x 191 pixel sub-
set of this image to conduct our experiment. After remov-
ing the low SNR and water absorption bands, 188 bands
are left to conduct our experiment. The pseudo-color im-

age and corresponding ground truth are shown in Fig. 8(a)
and (b).
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B. Evaluation Criteria

To evaluate the performance of the proposed method in com-
parison with the state-of-the-art methods, quantitative analysis
is performed using the receiver operating characteristic curve
(ROC) and its area under the curve (AUC) [43], [44]. The ROC
curve has been widely used as an evaluation tool for the target
detection in HSIs. The ROC curve obtains different detection
probability Pp and false alarm probability P by changing the
threshold value 7. Detection probability Pp and false alarm
probability P can be calculated by the following equation:

np,r
P, = 8
b (7) np,r +NEN,+ ®
ner
Pp () = 9

ner + nrN,r

wherenp ;,npn -, nF -, and ny - represent the number of cor-
rectly detected target pixels, the number of pixels that are targets
but not detected as targets, the number of background pixels that
are detected as target pixels, and the number of correctly detected
background pixels below the threshold, respectively.

Due to the interaction between the detection probability Pp
and the false alarm probability Pr, the ROC curve (Pp, Pr)
with a higher AUC value does not necessarily mean that the
detector has a good background suppression ability. Therefore,
in order to evaluate the detector performance more accurately,
this article uses 3-D ROC curve [43] as the evaluation standard,
and three 2-D ROC curves (Pp, Pr), (Pp, 7), and (Pg, T) are
used to evaluate the detector’s effectiveness, detection ability,
and background suppression ability, respectively.

The AUC is the value of area under the ROC curve, used
to quantitatively evaluate the performance of the detector. For
the 2-D ROC curve (Pp, Pr), AUC (Pp, Pr) value between
0.5 and 1 indicates that the detector is effective, with closer
values to 1 signifying better performance. AUC (Pp, 7) is the
AUC of the 2-D ROC curve (Pp, T), quantitatively representing
the target detection capability of the detector, with the larger
values indicating stronger detection ability. While AUC (Pp, 7)
value is the AUC of the 2-D ROC curve (Pp, T), measuring
the ability of the background suppression, with smaller values
indicating better suppression of the background. Besides, a new
quantitative detection index designed in [43] takes the three
AUC values as a whole to measure the total performance, named
AUC pp, with a range of [-1, 2], which is defined as

AUCpp = AUC(pD,PF) + AUC(pD).,-) — AUC(pFﬂ.). (10)

C. Experimental Setup

This section mainly introduces the parameter setting and the
experimental platform used by TD-CNND and the comparison
methods.

The experimental environment of both the proposed TD-
CNND method and the CNND method includes an AMD Ryzen
Threadripper 3990X 64-core CPU and Quadro RTX 8000 48GB
GPU. The implementation is carried out using Python 3.8.0,
PyTorch 1.12, and MATLAB R2023a. Traditional methods and
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the machine learning-based methods use an Intel Core 15-9300h
8-core CPU, and are implemented with MATLAB R2023a.

The proposed TD-CNND method involves three phases: train-
ing data preparation and CNN training, Tucker decomposition
and SFRA, and spectral-spatial anomaly detection. For training
data preparation, TD-CNND utilizes source domain hyperspec-
tral data (Salinas) with labeled information to expand pixel
pairs for learning spectral similarities and differences. In the
phase of training, Adam optimizer is employed to optimize the
CNN, with a learning rate of 0.001. The network is trained
50 epochs for both San Diego and Cuprite datasets, and 30
epochs for both Beach and Urban datasets, with a batch size
of 256 for all datasets. During Tucker decomposition, all the
1 x 3 1-D convolution layers (except C1, C2, and C16) in the
CNN are decomposed, with the ranks of Tucker decomposition
determined by VBMF. The decomposed model is restored with
the same optimizer and learning rate. To align spectral transfer
features deflected by the decomposition process, SFRA module
is employed with a small amount of data from the same dataset
as the source domain, where “a small amount” is specifically
defined as approximately 15% of the whole training set. For
spectral-spatial anomaly detection, the inner and outer dual
windows with sizes of (3, 15), (3, 5), (3, 5), and (5, 9) are used
for the San Diego, Beach, Urban, and Cuprite dataset.

To evaluate the performance of the proposed TD-CNND,
seven state-of-the-art methods are used for comparison, includ-
ing traditional methods of RX, representation-based methods
such as LRR, LRASR, CRD, GNLTR [45], as well as deep-
learning-based methods such as RGAE, Auto-AD, and CNND.
Among these methods, RX and CRD are regarded as the most
classical methods for the HAD task, while the other methods
have also gained widespread attention in recent literature and
have shown competitive performance. And we empirically tune
the parameters of all compared methods. Specifically, RX does
not require any human-set parameters. According to the original
paper of LRASR, the number of clusters and selection pixels of
these datasets are set to 15 and 20, respectively, and the regu-
larization parameters (3 and A are set to 0.1 and 1, respectively.
For CRD, the regularization parameter A is set to le-6, then
varies wqy¢ and wy, from 5 to 25 and from 3 to 15, respectively.
Finally, the optimal detection performance is achieved using
specific window sizes (Woyut, Win). For the GNLTR model, four
variables are supposed to be optimized to gain satisfactory
detection results. The first two hyper-parameters 6 and « are
selected in {0.0005, 0.001, 0.01, 0.03, 0.05, 0.07,0.1}. The other
two are in connection with the nonconvex surrogate selection,
which is chosen as capped L. According to the original paper
of RGAE and sizes of anomalies of datasets used, the tradeoff
parameter A, the number of super-pixels S, and the hidden layers
dimension n_hid are set to 0.01, 150, and 100, respectively. In
Auto-AD, the training process stops when the average variation
of the loss falls below a certain threshold o, which is varied
from 1.0 x 107> to 1.5 x 107> to achieve the optimal detection
performance. For the transfer learning-based CNND method, in
order to ensure consistency of experiments, the settings of the
training phase are the same as those of the proposed TD-CNND
method.
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© (d)

Fig. 10.

ROC curves for Beach dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (Pp, Pr). (¢) 2-D ROC curve of (Pp, 7). (d) 2-D ROC curve of (Pg, 7).

Fig. 11.

D. Results and Analysis by Different Detectors

This section presents a comprehensive evaluation of the pro-
posed TD-CNND method through a series of experiments, com-
paring it with several state-of-the-art methods. As mentioned
before, the comparison methods include traditional methods of
RX, representation-based methods such as LRASR, CRD, and
GNLTR, as well as deep-learning-based methods such as RGAE,
Auto-AD, and CNND. The assessment includes both visual
analysis and quantitative metrics. The visual comparisons are
shown in Figs. 5-8 by four HSIs, with pseudo-color images in
(a), ground-truth in (b), and detection maps by different detectors
in (c)—(j), respectively.

To overcome the subjectivity inherent in visual analysis,
3-D ROC curves and three corresponding 2-D ROC curves are
employed for quantitative evaluation. The areas under the curve
(AUC) for each 2-D ROC curve are provided, offering a nuanced
understanding of method performance. The 3-D ROC curves,
illustrating comprehensive method performance, consistently
position the TD-CNND method’s lines above other methods [see

1

09
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05

04

03

02

o1

ROC curves for Urban dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (Pp, Pr). (¢) 2-D ROC curve of (Pp, 7). (d) 2-D ROC curve of (Pg, 7).

Figs. 9 —12(a)]. In addition, the AUCqp values of the proposed
TD-CNND surpass those of other methods across all datasets
[see Tables I —IV], affirming its robust and effective detection
capabilities. The 2-D ROC curve (Pp, Pr) focusing on anomaly
detection ability [see Figs. 9—12(b)] showcases the proposed
TD-CNND’s superiority for all datasets. These results align with
the AUC (Pp, Pr) values presented in Tables I-IV. Furthermore,
the preservation ability of anomalies is evaluated through 2-D
ROC curves of (Pp, 7) [see Figs. 9-12(c)], demonstrating that
TD-CNND consistently outperforms other methods across three
datasets, corroborated by AUC (Pp, 7) values in Tables I-IIL
For Cuprite dataset, it performs close to the optimal result.
The background suppression ability, as assessed by 2-D ROC
curves of (Pr, 7) [see Figs. 9-12(d)], reveals relative short-
comings in the TD-CNND method, reflected in higher values
of AUC (Pp, 7) compared to other methods. However, the
detection maps show that while the other methods have excellent
background suppression ability, they also significantly suppress
some anomalous pixels, making it difficult to clearly observe
anomalies for some datasets.
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Fig. 12.  ROC curves for Cuprite dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (Pp, Pr). (¢) 2-D ROC curve of (Pp, 7). (d) 2-D ROC curve of (Pg, 7).

TABLE I
ACCURACY COMPARISON OF DIFFERENT METHODS FOR SANDIEGO DATASET

Method RX LRASR CRD RGAE GNLTR Auto-AD CNND Proposed
AUC (Pp, Pr) 09118 0.9891 0.8932 0.9889 0.9919 0.8892 0.9389 0.9933
AUC (Pp 1) 0.0790 0.3048 0.2853 0.1159 0.3306 0.0451 0.8697 0.9868
AUC (Pr.7) 0.0406 0.0659 0.1667 0.0155 0.0566 0.0103 0.5370 0.5603
AUCop 0.9502 1.2280 1.0118 1.0894 1.2659 0.9240 1.2716 1.4198
The optimal performance are marked with bold, while the sub-optimal performance is marked with underline.
TABLE II
ACCURACY COMPARISON OF DIFFERENT METHODS FOR BEACH DATASET
Method RX LRASR CRD RGAE GNLTR Auto-AD CNND Proposed
AUC (Pp, Pr) 0.9880 0.9671 0.9838 0.9646 0.9798 0.9690 0.9935 0.9964
AUC (Pp,7) 0.3990 0.2618 0.2935 1.1075 0.3109 0.1496 0.6500 0.8743
AUC (Pr,7) 0.0111 0.0260 0.0036 0.0049 0.0125 0.0012 0.0092 0.0165
AUCopp 1.3758 1.2029 1.2737 1.0672 1.2783 1.1174 1.6342 1.8542
The optimal performance are marked with bold, while the sub-optimal performance is marked with underline.
TABLE III
ACCURACY COMPARISON OF DIFFERENT METHODS FOR URBAN DATASET
Method RX LRASR CRD RGAE GNLTR Auto-AD CNND Proposed
AUC (Pp, Pr) 0.9906 0.9551 0.9871 0.9822 0.9687 0.9910 0.9896 0.9966
AUC (Pp,7) 03112 0.4863 0.2718 0.3711 0.3601 0.2848 0.7951 0.9534
AUC (Pr7) 0.0555 0.1308 0.0458 0.0178 0.0815 0.0050 0.0329 0.1923
AUCop 1.2463 1.3105 1.2131 1.3355 1.2474 1.2708 1.7518 1.7577
The optimal performance are marked with bold, while the sub-optimal performance is marked with underline.
TABLE IV
ACCURACY COMPARISON OF DIFFERENT METHODS FOR CUPRITE DATASET
Method RX LRASR CRD RGAE GNLTR Auto-AD CNND Proposed
AUC (Pp, Pr) 0.9886 0.9904 0.9962 0.9769 0.8813 0.8638 0.9945 0.9983
AUC (Pp,7) 0.3748 0.4500 0.4811 0.2901 0.2706 0.0325 0.5669 0.4965
AUC (Pr,7) 0.0803 0.0615 0.0557 0.0107 0.1079 0.0067 0.0408 0.0055
AUCop 1.2831 1.3789 1.4216 1.2563 1.0440 0.8896 1.5207 1.4894

The optimal performance are marked with bold, while the sub-optimal performance is marked with underline.

Quantitative evaluations unveil nuanced insights. For the
SanDiego dataset, TD-CNND shows the best comprehensive
detection ability (AUCop), while exhibiting poor background
suppression with bad AUC (Pp, 7). Though LRASR and RGAE
exhibit the most outstanding anomaly detection ability with
higher AUC (Pp, Pr), their highlighting ability of anomalies
is deficient, as represented by AUC (Pp, 7). The traditional
RX detector struggles in complex scenes due to its reliance
solely on Mahalanobis distance, ignoring the global information.
For the Beach and Urban datasets, TD-CNND surpasses other
methods in comprehensive detection ability, anomaly detection

ability, and anomaly highlighting ability, though exhibits poor
performance in background suppression. The inherent limita-
tions of traditional and representation-based methods become
apparent in complex scenes, where they struggle to resist the
influence of interfering information such as shadows and edges,
resulting in the decline and instability of detection results. The
CNND method expands training samples by subtracting spectral
pixel pairs, leading to the drawback of losing intricate spectral
details inherent in the original HSIs. In addition, the compo-
sition of spectral pixel pairs, involving the central pixel and
its surrounding counterparts, poses challenges for the effective
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TABLE V
VALUES OF DIFFERENT DUAL WINDOWS (W;y, Wour) FOR AUC (PD, PF)
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TABLE VI
MODEL COMPLEXITY FOR DNN-BASED METHODS

(Wins Wow) SanDiego Beach Urban Cuprite
(3,95) 0.9660 0.9964 0.9966 0.9976
3,7 0.9793 0.9960 0.9964 0.9983
(3,9) 0.9851 0.9962 0.9961 0.9987

(3,11) 0.9880 0.9965 0.9951 0.9988
(3, 15) 0.9933 0.9959 0.9913 0.9988
5,7 0.9794 0.9962 0.9943 0.9982
5,9) 0.9850 0.9963 0.9944 0.9987
(5,11) 0.9878 0.9966 0.9934 0.9988
(5,15) 0.9934 0.9959 0.9894 0.9988

Cuprite Parameters/M FLOPS/G l}rliurlnrz/nsg (P%[,‘TISF)
Auto-AD 3.2262 28.1454 45.3600 0.8638

CNND 3.5430 89.0302 54.7286 0.9945
TD-CNND 0.5803 15.2692 28.4618 0.9983

adaptation of transfer learning knowledge to the target domain.
The experimental analysis reveals that, though anomalies are
detected using CNND, there is a notable deficiency in the
separation between anomalies and backgrounds, leading to poor
background suppression with complex background distribution
in the detection maps. In contrast, the proposed TD-CNND,
employing Tucker decomposition into the framework, exhibits
more prominent anomalies compared to CNND. The introduc-
tion of Tucker decomposition into the network presents two
advantages, eliminating redundancy in network parameters and
deepening the network, enabling it to focus on more concealed
details. Thus, the experimental results of TD-CNND outperform
those of CNND in terms of detection performance. However, it
is crucial to acknowledge that TD-CNND inherits certain design
limitations from the original CNND, such as poor background
suppression.

In summary, both visual analysis and quantitative evaluation
consistently indicate the superior comprehensive detection abil-
ity of TD-CNND across various datasets with diverse scenar-
ios. While there is a decline in performance with increasing
background complexity, the TD-CNND exhibits robustness and
efficiency, demonstrating its effectiveness in practical scenarios.

E. Parameters Analysis

In this section, we focus on the effect of dual windows (Wi,
Wout) on detection performance AUC (PD, PF). Table V shows
that AUC (PD, PF) varies for different datasets when the dual
windows (Wi, Woyt) take different values. For the SanDiego
dataset, the detection performance of it is strongly influenced
by its high background complexity. For the remaining three
datasets, the impact on detection performance AUC (PD, PF) is
less significant when the dual window (Wi, W) is different.
When the disparity between the values of Wi, and W, is signif-
icant, the dual window gets more pairs of pixels. For the Cuprite
dataset, when (W, Woyy) are (3, 7) and (5, 7), the former has
753 448 more pixel pairs than the latter. Differing from both the
AE and GAN-based methods indirectly detecting anomalies by
reconstructing background, TD-CNND is a pixel-level detection
method that directly detects pixels belonging to an anomaly or
background. Therefore, the selection of the dual window (W,
Wout) needs to consider the performance AUC (PD, PF) and
time cost of detection.

The optimal performance are marked with bold.

F. Model Complexity

In this section, we mainly evaluate TD-CNND in terms of
efficiency. Since DNN-based and non-DNN methods are im-
plemented on different hardware platforms and software, we
mainly compare TD-CNND with CNND and Auto-AD for the
sake of fairness. Table VI gives the model complexity and
AUC (Pp, Pp) of the involved DNN-based methods, and the
experimental data utilizes the Cuprite dataset. Compared with
auto-AD and CNND, TD-CNND has the fewest parameters
and the better performance. Due to the network compression
scheme, TD-CNND has a huge advantage in terms of spatial
memory. The running time of the unsupervised auto-AD method
comprises the whole process. However, for the transfer learning-
based methods CNND and TD-CNND, the models that contain
transfer knowledge from source domains can be pretrained well
in advance. Consequently, for the datasets captured by the same
sensor, the running time can just comprise the detection process.
And auto-AD, in which the background is reconstructed by the
network while the anomalies appear as reconstruction errors, is
an indirect detection method, whereas CNND and TD-CNND
are direct detection methods. For CNND and TD-CNND, the
probability of each pixel in the image belonging to the anomaly
or background is calculated individually. Therefore, this sec-
tion will only discuss the running time and FLOPS of CNND
and TD-CNND. TD-CNND has fewer floating point operations
(FLOPs) than CNND, which benefits from the help of Tucker
decomposition-based network compression. Ignoring transfer
learning, TD-CNND has higher detection accuracy than auto-
AD, despite its longer running time. However, the advantages
of transfer learning cannot be overlooked for practical purposes.
Model training is delegated to other devices, where it can be used
multiple times for various scenarios, leaving only the specific
detection process for the detection device to complete. In sum-
mary, the TD-CNND exhibits superior detection performance
and demonstrates lower model complexity.

G. Ablation Study

To validate the effectiveness of the proposed TD-CNND
method, this section undertakes two ablation studies. The first
aims to reduce computational costs by employing Tucker de-
composition, while the second focuses on enhancing perfor-
mance through SFRA.

1) Impact of Network Compression by Tucker Decomposi-
tion: To access the network compression by the proposed TD-
CNND method, especially for large-scale HSI datasets anomaly
detection, this section conducts two interrelated sets of ablation
experiments.
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TABLE VII
TIME COST OF PASSING THROUGH LAYERS WITH TUCKER DECOMPOSITION AND ORIGINAL LAYERS
Computational costs (second) Conv2 Conv4 Conv6 Conv8 Conv10 Convl12 Convl14
Original Layer without Tucker 0.1007 0.0689 0.0981 0.0606 0.0642 0.0472 0.0977
Decomposition
First Layer 0.0483 0.0251 0.0311 0.0308 0.0286 0.0446 0.0439
Layer with Tucker oy oo 0.0297 0.0009 0.0011 0.0025 0.0015 0.0009 0.0162
decomposition
Last Layer 0.0022 0.0025 0.0011 0.0033 0.0011 0.0007 0.0005
Total fime cost with Tucker 0.0802 0.0285 0.0333 0.0366 0.0312 0.0462 0.0606
ecomposition
The optimal performance are marked with bold.
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Fig. 13.  Time cost for different sizes of datasets, where blue lines and red lines

represent TD-CNND and CNND, respectively.

The first experiment compares the time required for the same
size of data to pass through the convolutional layers with/without
tucker decomposition, as detailed in Table VII. Notably, in
Tucker decomposition, the first layer of the revised structure
consumes a relatively significant amount of time compared to
the core layer and last layer. This is attributed to the first layer’s
role in compressing the data to derive feature vectors for an
easier processing. The results in Table VI indicate that the time
required for the decomposed structures is shorter than that for
the undecomposed convolutional layers. The computational cost
reduction is expected to be more obvious with the increase
in image size. Consequently, the network compression scheme
proposed by the TD-CNND method holds significant advantages
for large-scale HSIs.

To validate the hypothesis that the TD-CNND method is
particularly advantageous for large-scale HSI datasets, another
experiment is conducted on expanded HSI datasets from the
San Diego dataset. The original San Diego dataset undergoes
an enlargement operation with different factors, resulting in
artificially generated datasets expanded by factors of 4 (obtained
size of 240 x 240), 16 (obtained size of 480 x 480), and
64 (obtained size of 960 x 960), respectively. Fig. 13 depicts
the computational costs associated with the original CNND
and the proposed TD-CNND methods across datasets of dif-
ferent sizes. The red lines represent the time cost of CNND,
while the blue lines represent the time cost of TD-CNND. The

experimental results unequivocally demonstrate the superior
computational efficiency of the proposed TD-CNND compared
with the original CNND. Specifically, Fig. 13 illustrates that
the computational time of TD-CNND consistently outperforms
that of CNND for datasets of the same sizes, moreover, as
the dataset size increases, the time reduction becomes more
pronounced. In summary, the results lead to the conclusion that
the proposed TD-CNND method is more efficient in reduc-
ing computational cost, especially for HSIs with larger spatial
dimensions.

2) Impact of Performance Improvement by SFRA: To sub-
stantiate the efficacy of SFRA, comparative experiments are con-
ducted on three real hyperspectral datasets, where the original
CNND, the TD-CNND without SFRA, and the TD-CNND with
SFRA are conducted for HAD. The area under curves (AUCs)
serve as indicators of the detection performance for quantitative
comparisons.

As illustrated in Fig. 14, the blue bar represents the detection
performance of the traditional CNND model, the gray bar repre-
sents the detection performance of TD-CNND without SFRA,
while the orange bar represents the detection performance of
TD-CNND with SFRA as described in this section. The exper-
imental results unequivocally demonstrate that the decomposi-
tion process for network compression leads to a degradation in
detection performance, while the SFRA emerges as the pivotal
role in recovering the detection accuracy of the decomposed
network. In addition, it is evident that the performance of the
TD-CNND method is comparable to or even surpasses that of
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the original CNND method across different real hyperspectral
datasets.

IV. CONCLUSION

To address the time cost challenges associated with deep
learning-based methods for HAD with large-scale HSIs, this
article presents a HAD method with Tucker decomposition. The
proposed method optimizes a CNN-based framework through
Tucker tensor decomposition for the purpose of network com-
pression. Spectral pixel pairs are generated using labeled HSI
from a source domain, and transfer learning is employed to train
the CNN to discern feature differences among different spectra.
Subsequently, Tucker decomposition is performed on selected
convolution layers of the trained network, decomposing each 1-
D convolution and replacing it with a structure of three-layer 1-D
convolution. This process results in a new CNN structure devoid
of network parameter redundancy. Finally, by employing sliding
dual-windows, spatial information is combined and the under-
test image of the target domain is sent into the new CNN with
SFRA to accomplish anomaly detection. The comprehensive
experimental results demonstrate the comparative advantage of
the proposed TD-CNND in terms of quantity of parameters and
detection accuracy, particularly in the time efficacy of HSIs with
large spatial domains.

And something important writing at last, it is crucial to
demonstrate why 1-D networks are not initially compressed
using the Tucker decomposition and then trained with all the
training samples on the source domain. The primary reason for
applying Tucker decomposition after the initial training phase,
rather than before, relates to the initial learning capabilities and
integrity of the convolutional layers. In CNNs, especially when
dealing with hyperspectral data, the convolutional layers are
tightly connected to each other before decomposition, allowing
the network to capture intricate spectral difference features more
effectively, which is crucial for accurate anomaly detection.
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